1
|
Liang H, Gong S, Gui G, Wang H, Jiang L, Li X, Fan J. Secretion of IFN-γ by specific T cells in HCMV infection. Heliyon 2024; 10:e28177. [PMID: 38533049 PMCID: PMC10963622 DOI: 10.1016/j.heliyon.2024.e28177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
One major risk for recipients undergoing allogeneic hematopoietic stem cell transplants (allo-HSCTs) is infection with the human cytomegalovirus (HCMV). For HCMV treatment, it is especially crucial to be able to differentiate between recipients who are at high risk of reactivation and those who are not. In this study, HCMV-DNA was collected from 60 HLA-A*02 allo-HSCT recipients before and after transplantation. After transplantation, the release of interferon (IFN)-γ by T cells specific to HCMV was assessed using the enzyme-linked immunospot assay (ELISPOT). The results show that the median viral load (VL) was significantly higher in the HCMV persistent-infection group compared to the non-persistent-infection group (p = 0.002), and that the late-infection rate was considerably higher in the high-VL group compared to the low-VL group (p = 0.014). The uninfected group had a considerably higher median IFN-γ spot-forming cell (SFC) count than the persistent-infection group (p = 0.001), and IFN-γ SFC counts correlated negatively and linearly with VLs (r = -0.397, p = 0.002). The immune-response groups showed significantly difference in median VL (p = 0.018), and the high immune response group had a reduced late-infection rate than the no/low immune response groups (p = 0.049). Our study showed that allo-HSCT recipients with a high VL at an early transplantation stage were at high risk for late HCMV infection. Further HCMV reactivation can be prevented by HCMV-specific T cells secreting enough IFN-γ.
Collapse
Affiliation(s)
- Hanying Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
| | - Shengnan Gong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
| | - Genyong Gui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
| | - Huiqi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
| | - Lili Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
| | - Xuejie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, PR China
| |
Collapse
|
2
|
Thompson G, Boan P, Purtill D, Cooney J, Cannell P, Wright M, John M. QuantiFERON-CMV to predict clinically significant CMV infection after allogeneic haematopoietic stem cell transplantation. Transpl Infect Dis 2022; 24:e13786. [PMID: 34994053 DOI: 10.1111/tid.13786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/29/2021] [Accepted: 12/27/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Controlling CMV infection through prophylaxis or pre-emptive therapy remains an important contributor to outcomes after allogeneic haematopoetic stem cell transplant (alloHCT). Predicting clinically significant CMV infection (csCMVi) after day 100 remains a challenge. METHODS We examined the abilty of the QuantiFERON-CMV® assay (QFN-CMV) at day 100 (d100) and day 150 (d150) after alloHCT to predict csCMVi after these time points, with median follow-up of 3.1 years (range 1.3 to 4.3 years). RESULTS In 46 transplants (D+R- = 12, D+R+ = 25, D-R+ = 9; matched related = 13, unrelated donor = 32, haploidentical = 1), for the prediction of freedom from csCMVi>d100, QFN-CMVd100 (positive compared to negative/indeterminate) had sensitivity 62% (23/37), specificity 100% (9/9), positive predictive value 100% (23/23), and negative predictive value 39% (9/23). For the prediction of freedom from csCMVi>d150, QFN-CMVd150 (positive compared to negative/indeterminate) had sensitivity 62% (18/29), specificity 83% (5/6), positive predictive value 95% (18/19), and negative predictive value 31% (5/16). CONCLUSION Positive QFN-CMV at d100 and d150 strongly predicted freedom from csCMVi after these time points. QFN-CMV could be utilised to predict the need for pre-emptive therapy and CMV viral load monitoring after day 100 post alloHCT. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Grace Thompson
- Department of Immunology, Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia.,Department of Immunology, PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia
| | - Peter Boan
- Department of Infectious diseases, Fiona Stanley Hospital, Murdoch, Western Australia, Australia.,Department of Microbiology, PathWest Laboratory Medicine Western Australia, Murdoch, Western Australia, Australia
| | - Duncan Purtill
- Department of Haematology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia.,Department of Haematology, PathWest Laboratory Medicine Western Australia, Murdoch, Western Australia, Australia
| | - Julian Cooney
- Department of Haematology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia.,Department of Haematology, PathWest Laboratory Medicine Western Australia, Murdoch, Western Australia, Australia
| | - Paul Cannell
- Department of Haematology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia.,Department of Haematology, PathWest Laboratory Medicine Western Australia, Murdoch, Western Australia, Australia
| | - Matthew Wright
- Department of Haematology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia.,Department of Haematology, PathWest Laboratory Medicine Western Australia, Murdoch, Western Australia, Australia
| | - Mina John
- Department of Immunology, Queen Elizabeth II Medical Centre, Nedlands, Western Australia, Australia.,Department of Immunology, PathWest Laboratory Medicine Western Australia, Nedlands, Western Australia, Australia.,Institute for Immunology and Infectious Diseases (IIID), Murdoch University, Western Australia.,Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia
| |
Collapse
|
3
|
Papadopoulou A, Koukoulias K, Alvanou M, Papadopoulos VK, Bousiou Z, Kalaitzidou V, Kika FS, Papalexandri A, Mallouri D, Batsis I, Sakellari I, Anagnostopoulos A, Yannaki E. Patient risk stratification and tailored clinical management of post-transplant CMV-, EBV-, and BKV-infections by monitoring virus-specific T-cell immunity. EJHAEM 2021; 2:428-439. [PMID: 35844677 PMCID: PMC9175754 DOI: 10.1002/jha2.175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Background Despite routine post-transplant viral monitoring and pre-emptive therapy, viral infections remain a major cause of allogeneic hematopoietic cell transplantation-related morbidity and mortality. Objective We here aimed to prospectively assess the kinetics and the magnitude of cytomegalovirus-(CMV), Epstein Barr virus-(EBV), and BK virus-(BKV)-specific T cell responses post-transplant and evaluate their role in guiding therapeutic decisions by patient risk-stratification. Study design The tri-virus-specific immune recovery was assessed by Elispot, in 50 consecutively transplanted patients, on days +20, +30, +60, +100, +150, +200 post-transplant and in case of reactivation, weekly for 1 month. Results The great majority of the patients experienced at least one reactivation, while over 40% of them developed multiple reactivations from more than one of the tested viruses, especially those transplanted from matched or mismatched unrelated donors. The early reconstitution of virus-specific immunity (day +20), favorably correlated with transplant outcomes. Εxpanding levels of CMV-, EBV-, and BKV-specific T cells (VSTs) post-reactivation coincided with decreasing viral load and control of infection. Certain cut-offs of absolute VST numbers or net VST cell expansion post-reactivation were determined, above which, patients with CMV or BKV reactivation had >90% probability of complete response (CR). Conclusion Immune monitoring of virus-specific T-cell reconstitution post-transplant may allow risk-stratification of virus reactivating patients and enable patient-tailored treatment. The identification of individuals with high probability of CR will minimize unnecessary overtreatment and drug-associated toxicity while allowing candidates for pre-emptive intervention with adoptive transfer of VSTs to be appropriately selected.
Collapse
Affiliation(s)
- Anastasia Papadopoulou
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | - Kiriakos Koukoulias
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
- Department of Genetics, Development and Molecular Biology, School of BiologyAristotle University of ThessalonikiThessalonikiGreece
| | - Maria Alvanou
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | | | - Zoe Bousiou
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | - Vasiliki Kalaitzidou
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | - Fotini S. Kika
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | - Apostolia Papalexandri
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | - Despina Mallouri
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | - Ioannis Batsis
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | - Ioanna Sakellari
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | - Achilles Anagnostopoulos
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
| | - Evangelia Yannaki
- Hematology Department‐Hematopoietic Cell Transplantation Unit, Gene and Cell Therapy Center“George Papanikolaou” HospitalThessalonikiGreece
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
4
|
Theobald SJ, Kreer C, Khailaie S, Bonifacius A, Eiz-Vesper B, Figueiredo C, Mach M, Backovic M, Ballmaier M, Koenig J, Olbrich H, Schneider A, Volk V, Danisch S, Gieselmann L, Ercanoglu MS, Messerle M, von Kaisenberg C, Witte T, Klawonn F, Meyer-Hermann M, Klein F, Stripecke R. Repertoire characterization and validation of gB-specific human IgGs directly cloned from humanized mice vaccinated with dendritic cells and protected against HCMV. PLoS Pathog 2020; 16:e1008560. [PMID: 32667948 PMCID: PMC7363084 DOI: 10.1371/journal.ppat.1008560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/18/2020] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) causes serious complications to immune compromised hosts. Dendritic cells (iDCgB) expressing granulocyte-macrophage colony-stimulating factor, interferon-alpha and HCMV-gB were developed to promote de novo antiviral adaptive responses. Mice reconstituted with a human immune system (HIS) were immunized with iDCgB and challenged with HCMV, resulting into 93% protection. Immunization stimulated the expansion of functional effector memory CD8+ and CD4+ T cells recognizing gB. Machine learning analyses confirmed bone marrow T/CD4+, liver B/IgA+ and spleen B/IgG+ cells as predictive biomarkers of immunization (≈87% accuracy). CD8+ and CD4+ T cell responses against gB were validated. Splenic gB-binding IgM-/IgG+ B cells were sorted and analyzed at a single cell level. iDCgB immunizations elicited human-like IgG responses with a broad usage of various IgG heavy chain V gene segments harboring variable levels of somatic hypermutation. From this search, two gB-binding human monoclonal IgGs were generated that neutralized HCMV infection in vitro. Passive immunization with these antibodies provided proof-of-concept evidence of protection against HCMV infection. This HIS/HCMV in vivo model system supported the validation of novel active and passive immune therapies for future clinical translation. Human cytomegalovirus (HCMV) is a ubiquitous pathogen. As long as the immune system is functional, T and B cells can control HCMV. Yet, for patients who have debilitated immune functions, HCMV infections and reactivations cause major complications. Vaccines or antibodies to prevent or treat HCMV are not yet approved. Novel animal models for testing new immunization approaches are emerging and are important tools to identify biomedical products with a reasonable chance to work in patients. Here, we used a model based on mice transplanted with human immune cells and infected with a traceable HCMV. We tested a cell vaccine (iDCgB) carrying gB, a potent HCMV antigen. The model showed that iDCgB halted the HCMV infection in more than 90% of the mice. We found that antibodies were key players mediating protection. Using state-of-the-art methods, we were able to use the sequences of the human antibodies generated in the mice to construct and produce monoclonal antibodies in the laboratory. Proof-of-concept experiments indicated that administration of these monoclonal antibodies into mice protected them against HCMV infection. In summary, this humanized mouse model was useful to test a vaccine and to generate and test novel antibodies that can be further developed for human use.
Collapse
Affiliation(s)
- Sebastian J. Theobald
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, Cologne, Germany
| | - Sahamoddin Khailaie
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology (BRICS), Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Michael Mach
- Institute of Virology, University Erlangen-Nürnberg, Erlangen, Germany
| | - Marija Backovic
- Structural Virology Unit, Department of Virology, Institut Pasteur, Paris, France; CNRS UMR 3569, Paris, France
| | - Matthias Ballmaier
- Research Facility Cell Sorting, Hannover Medical School, Hannover, Germany
| | - Johannes Koenig
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Henning Olbrich
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Andreas Schneider
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Valery Volk
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Simon Danisch
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Meryem Seda Ercanoglu
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, Cologne, Germany
| | - Martin Messerle
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
- Instiute of Virology, Hannover Medical School, Hannover, Germany
| | - Constantin von Kaisenberg
- Department of Obstetrics, Clinic of Gynecology and Reproductive Medicine, and Obstetrics, Hannover Medical School, Hannover, Germany
| | - Torsten Witte
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
| | - Frank Klawonn
- Biostatistics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Information Engineering, Ostfalia University, Wolfenbuettel, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology (BRICS), Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital of Cologne, Cologne, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Renata Stripecke
- Clinic of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
- Laboratory of Regenerative Immune Therapies Applied, Excellence Cluster REBIRTH, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
- * E-mail:
| |
Collapse
|
5
|
Celilova S, Toret E, Adaklı Aksoy B, Ovalı E, Bozkurt C. CMV-specific T-Cells for Treatment of CMV Infection after Hematopoietic Stem Cell Transplantation in a Pediatric Case: First Application in Turkey. Turk J Haematol 2019; 37:65-67. [PMID: 31718117 PMCID: PMC7057740 DOI: 10.4274/tjh.galenos.2019.2019.0293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Sevil Celilova
- Altınbaş University Faculty of Medicine, Medicalpark Bahçelievler Hospital, Department of Pediatric Hematology-Oncology & Bone Marrow Transplantation Unit, İstanbul, Turkey
| | - Ersin Toret
- Altınbaş University Faculty of Medicine, Medicalpark Bahçelievler Hospital, Department of Pediatric Hematology-Oncology & Bone Marrow Transplantation Unit, İstanbul, Turkey
| | - Başak Adaklı Aksoy
- Altınbaş University Faculty of Medicine, Medicalpark Bahçelievler Hospital, Department of Pediatric Hematology-Oncology & Bone Marrow Transplantation Unit, İstanbul, Turkey
| | - Ercüment Ovalı
- Acıbadem University Faculty of Medicine, Altunizade Hospital, Department of Hematology, İstanbul, Turkey
| | - Ceyhun Bozkurt
- İstinye University Faculty of Medicine, Medicalpark Bahcelievler Hospital, Department of Pediatric Hematology-Oncology & Bone Marrow Transplantation Unit, İstanbul, Turkey
| |
Collapse
|
6
|
Giménez E, Torres I, Albert E, Piñana JL, Hernández-Boluda JC, Solano C, Navarro D. Cytomegalovirus (CMV) infection and risk of mortality in allogeneic hematopoietic stem cell transplantation (Allo-HSCT): A systematic review, meta-analysis, and meta-regression analysis. Am J Transplant 2019; 19:2479-2494. [PMID: 31247126 DOI: 10.1111/ajt.15515] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/22/2019] [Accepted: 06/17/2019] [Indexed: 01/25/2023]
Abstract
Controversy surrounds the potential association between cytomegalovirus (CMV) infection and increased risk of mortality after allogeneic hematopoietic stem cell transplantation (Allo-HSCT). A systematic literature search was conducted using the PubMed, EMBASE, and Web of Science databases, assessing the association between CMV infection, as documented by the pp65 antigenemia assay or by polymerase chain reaction (PCR) using blood specimens, and overall mortality (OM) and nonrelapse mortality (NRM) in the allo-HSCT setting. Pooled effects were estimated using the generic inverse variance random effects model. Heterogeneity was evaluated by Cochrane's Q test and I2 statistics. The source of heterogeneity was investigated by meta-regression and subgroup analyses. Twenty-six of 1367 studies fulfilled eligibility criteria. CMV infection identified by PCR monitoring was significantly associated with an increased risk of OM and NRM (hazard ratio 1.47, 95% confidence interval [1.20-1.81], P ≤ .001; hazard ratio 1.68, 95% confidence interval [1.14-2.49], P = .05, respectively). In this setting, the use of preemptive antiviral therapy (PET) resulted in a twofold increased risk of OM and NRM. The estimated effect sizes were associated with allo-HSCT modalities. Although our analyses point to an association between CMV infection and an increased risk of OM and NRM in allo-HSCT recipients, the high heterogeneity across studies prevented drawing of robust conclusions on this matter.
Collapse
Affiliation(s)
- Estela Giménez
- Microbiology Service, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain
| | - Ignacio Torres
- Microbiology Service, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain
| | - Eliseo Albert
- Microbiology Service, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain
| | - José-Luis Piñana
- Hematology Service, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain
| | | | - Carlos Solano
- Hematology Service, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain.,Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - David Navarro
- Microbiology Service, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain.,Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
7
|
Stern L, Withers B, Avdic S, Gottlieb D, Abendroth A, Blyth E, Slobedman B. Human Cytomegalovirus Latency and Reactivation in Allogeneic Hematopoietic Stem Cell Transplant Recipients. Front Microbiol 2019; 10:1186. [PMID: 31191499 PMCID: PMC6546901 DOI: 10.3389/fmicb.2019.01186] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) reactivation is a major infectious cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). HCMV is a ubiquitous beta-herpesvirus which asymptomatically infects immunocompetent individuals but establishes lifelong latency, with the potential to reactivate to a life-threatening productive infection when the host immune system is suppressed or compromised. Opportunistic HCMV reactivation is the most common viral complication following engraftment after HSCT and is associated with a marked increase in non-relapse mortality, which appears to be linked to complex effects on post-transplant immune recovery. This minireview explores the cellular sites of HCMV latency and reactivation in HSCT recipients and provides an overview of the risk factors for HCMV reactivation post-HSCT. The impact of HCMV in shaping post-transplant immune reconstitution and its relationship with patient outcomes such as relapse and graft-versus-host disease will be discussed. Finally, we survey current and emerging strategies to prevent and control HCMV reactivation in HSCT recipients, with recent developments including adoptive T cell therapies to accelerate HCMV-specific T cell reconstitution and new anti-HCMV drug therapy for HCMV reactivation after HSCT.
Collapse
Affiliation(s)
- Lauren Stern
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Barbara Withers
- Department of Haematology, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Selmir Avdic
- Westmead Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,Sydney Cellular Therapies Laboratory, Westmead, NSW, Australia
| | - David Gottlieb
- Westmead Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,Sydney Cellular Therapies Laboratory, Westmead, NSW, Australia.,Blood and Marrow Transplant Unit, Westmead Hospital, Sydney, NSW, Australia
| | - Allison Abendroth
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Emily Blyth
- Westmead Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,Sydney Cellular Therapies Laboratory, Westmead, NSW, Australia.,Blood and Marrow Transplant Unit, Westmead Hospital, Sydney, NSW, Australia
| | - Barry Slobedman
- Discipline of Infectious Diseases and Immunology, Sydney Medical School, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
8
|
Solano C, Giménez E, Piñana JL, Albert E, Vinuesa V, Hernández-Boluda JC, Amat P, Navarro D. Impact of cytomegalovirus DNAemia on overall and non-relapse mortality in allogeneic stem cell transplant recipients. Transpl Infect Dis 2017; 19. [DOI: 10.1111/tid.12717] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/06/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Carlos Solano
- Hematology Service; Hospital Clínico Universitario; Institute for Research INCLIVA; Valencia Spain
- Department of Medicine; School of Medicine; University of Valencia; Valencia Spain
| | - Estela Giménez
- Microbiology Service; Hospital Clínico Universitario; Institute for Research INCLIVA; Valencia Spain
| | - José Luis Piñana
- Hematology Service; Hospital Clínico Universitario; Institute for Research INCLIVA; Valencia Spain
| | - Eliseo Albert
- Microbiology Service; Hospital Clínico Universitario; Institute for Research INCLIVA; Valencia Spain
| | - Víctor Vinuesa
- Microbiology Service; Hospital Clínico Universitario; Institute for Research INCLIVA; Valencia Spain
| | | | - Paula Amat
- Hematology Service; Hospital Clínico Universitario; Institute for Research INCLIVA; Valencia Spain
| | - David Navarro
- Microbiology Service; Hospital Clínico Universitario; Institute for Research INCLIVA; Valencia Spain
- Department of Microbiology; School of Medicine; University of Valencia; Valencia Spain
| |
Collapse
|
9
|
Heath CH, Boan P, Flexman JP. Cytomegalovirus reactivation in the critically ill septic intensive care patient: pathogen or passenger? Anaesth Intensive Care 2017; 44:535-8. [PMID: 27608334 DOI: 10.1177/0310057x1604400525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- C H Heath
- Department of Microbiology and Infectious Diseases, Royal Perth Hospital, Department of Microbiology (PathWest Laboratory Medicine), Fiona Stanley Hospital, Department of Infectious Diseases, Fiona Stanley Hospital, Murdoch, The School of Medicine and Pharmacology, University of Western Australia
| | - P Boan
- Department of Microbiology (PathWest Laboratory Medicine), Fiona Stanley Hospital, Department of Infectious Diseases, Fiona Stanley Hospital, Perth, Western Australia
| | - J P Flexman
- Department of Microbiology (PathWest Laboratory Medicine), Fiona Stanley Hospital, Department of Microbiology and Immunology, School of Pathology and Laboratory Medicine, Perth, WA
| |
Collapse
|
10
|
Abudayyeh A, Hamdi A, Abdelrahim M, Lin H, Page VD, Rondon G, Andersson BS, Afrough A, Martinez CS, Tarrand JJ, Kontoyiannis DP, Marin D, Gaber AO, Oran B, Chemaly RF, Ahmed S, Abudayyeh I, Olson A, Jones R, Popat U, Champlin RE, Shpall EJ, Rezvani K. Poor immune reconstitution is associated with symptomatic BK polyomavirus viruria in allogeneic stem cell transplant recipients. Transpl Infect Dis 2016; 19. [PMID: 27862740 DOI: 10.1111/tid.12632] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/24/2016] [Accepted: 08/01/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND BK polyomavirus (BKPyV) infections are known indicators of immune suppression in hematopoietic stem cell transplant (HSCT) recipients; they can lead to hemorrhagic cystitis, ureteral stenosis, renal dysfunction, and prolonged hospital stays. In this study, we determined transplant-associated variables and immune parameters that can predict for the risk of BKPyV viruria. We hypothesized that BKPyV infection is a marker of poor immune recovery. METHODS We analyzed all engrafted patients undergoing first allogeneic HSCT at MD Anderson Cancer Center in Houston between January 2004 and December 2012. We evaluated their immune parameters and their transplant-associated factors. BKPyV positivity was defined as BKPyV detection in urine by polymerase chain reaction testing. Cox proportional hazards model, as well as competing risk analysis method using subdistribution hazard models with death as competing risk, were applied to assess risk of BKPyV viruria. RESULTS We identified a total of 2477 patients with a median age of 52 years. BKPyV viruria was manifest in 25% (n=629) of the patients. The median time from transplantation to BKPyV viruria development was 42 days among the patients who had BKPyV viruria. On multivariate analysis, tumor type, acute GVHD, chronic GVHD, myeloablative conditioning regimen, cord blood as the graft source, CD3+ , CD4+ , CD8+ , CD56+ , NK counts, and low platelet count were shown to be significantly associated with BKPyV infection. These finding were further confirmed when models incorporating the competing risk of death yielded similar findings. CONCLUSION In this study, we report significant associations between BKPyV reactivation following allogeneic HSCT and suppressed immune variables. In addition, this study provides valuable information on the immune status of HSCT recipients as a predictor of BKPyV infections that may in turn help us formulate plans for more effective prevention and treatment of this infection.
Collapse
Affiliation(s)
- Ala Abudayyeh
- Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amir Hamdi
- Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Maen Abdelrahim
- Division of Medical Oncology, Duke University School of Medicine, Durham, NC, USA
| | - Heather Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Valda D Page
- Department of Emergency Medicine and Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriela Rondon
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Borje S Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aimaz Afrough
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charles S Martinez
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey J Tarrand
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Marin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - A Osama Gaber
- Department of Transplant Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Betul Oran
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roy F Chemaly
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sairah Ahmed
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Islam Abudayyeh
- Division of Cardiology, Interventional Cardiology, Loma Linda University Health, Loma Linda, CA, USA
| | - Amanda Olson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Roy Jones
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Uday Popat
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Blanco-Lobo P, Bulnes-Ramos Á, McConnell MJ, Navarro D, Pérez-Romero P. Applying lessons learned from cytomegalovirus infection in transplant patients to vaccine design. Drug Discov Today 2016; 21:674-81. [DOI: 10.1016/j.drudis.2016.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/10/2016] [Accepted: 03/04/2016] [Indexed: 01/30/2023]
|
12
|
Romero PP, Blanco P, Giménez E, Solano C, Navarro D. An update on the management and prevention of cytomegalovirus infection following allogeneic hematopoietic stem cell transplantation. Future Virol 2015. [DOI: 10.2217/fvl.14.102] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT A significant progress has been made in deciphering critical aspects of the biology and immunology of CMV infection in the allogeneic stem cell transplantation setting. Genetic traits predisposing to active CMV infection and CMV end-organ disease have begun to be delineated. Reliable molecular assays for CMV DNA load quantitation in body fluids have been developed. Elucidation of immune mechanisms affording control of CMV infection will help to improve the management of active CMV infection. Finally, the advent of new CMV-specific antivirals and promising vaccine prototypes as well as the development of fine procedures for large-scale ex vivo generation of functional CMV-specific T cells for adoptive T cell transfer therapies will certainly minimize the negative impact of CMV on survival in these patients.
Collapse
Affiliation(s)
- Pilar Pérez Romero
- Infectious Diseases, Microbiology & Preventive Medicine Unit, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Pilar Blanco
- Infectious Diseases, Microbiology & Preventive Medicine Unit, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Estela Giménez
- Microbiology Service, Hospital Clínico Universitario, Fundación INCLIVA, Valencia, Spain
| | - Carlos Solano
- Hematology & Medical Oncology Service, Hospital Clínico Universitario, Fundación INCLIVA, Valencia, Spain
| | - David Navarro
- Microbiology Service, Hospital Clínico Universitario, Fundación INCLIVA, Valencia, Spain
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|