1
|
DeBerge M, Schroth S, Du F, Yeap XY, Wang JJ, Zhang ZJ, Ansari MJ, Scott EA, Thorp EB. Hypoxia inducible factor 2α promotes tolerogenic macrophage development during cardiac transplantation through transcriptional regulation of colony stimulating factor 1 receptor. Proc Natl Acad Sci U S A 2024; 121:e2319623121. [PMID: 38889142 PMCID: PMC11214057 DOI: 10.1073/pnas.2319623121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Solid organ transplantation mobilizes myeloid cells, including monocytes and macrophages, which are central protagonists of allograft rejection. However, myeloid cells can also be functionally reprogrammed by perioperative costimulatory blockade to promote a state of transplantation tolerance. Transplantation tolerance holds promise to reduce complications from chronic immunosuppression and promote long-term survival in transplant recipients. We sought to identify different mediators of transplantation tolerance by performing single-cell RNA sequencing of acute rejecting or tolerized cardiac allografts. This led to the unbiased identification of the transcription factor, hypoxia inducible factor (HIF)-2α, in a subset of tolerogenic monocytes. Using flow cytometric analyses and mice with conditional loss or gain of function, we uncovered that myeloid cell expression of HIF-2α was required for costimulatory blockade-induced transplantation tolerance. While HIF-2α was dispensable for mobilization of tolerogenic monocytes, which were sourced in part from the spleen, it promoted the expression of colony stimulating factor 1 receptor (CSF1R). CSF1R mediates monocyte differentiation into tolerogenic macrophages and was found to be a direct transcriptional target of HIF-2α in splenic monocytes. Administration of the HIF stabilizer, roxadustat, within micelles to target myeloid cells, increased HIF-2α in splenic monocytes, which was associated with increased CSF1R expression and enhanced cardiac allograft survival. These data support further exploration of HIF-2α activation in myeloid cells as a therapeutic strategy for transplantation tolerance.
Collapse
Affiliation(s)
- Matthew DeBerge
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center, Houston, TX77030
| | - Samantha Schroth
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Fanfan Du
- Department of Biomedical Engineering, Northwestern University, Evanston, IL60208
| | - Xin Yi Yeap
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Jiao-Jing Wang
- Department of Surgery, Comprehensive Transplant Center, Northwestern University, Chicago, IL60611
| | - Zheng Jenny Zhang
- Department of Surgery, Comprehensive Transplant Center, Northwestern University, Chicago, IL60611
| | - Mohammed Javeed Ansari
- Division of Nephrology and Hypertension, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Evan A. Scott
- Department of Biomedical Engineering, Northwestern University, Evanston, IL60208
| | - Edward B. Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| |
Collapse
|
2
|
Jiang Z, Fu M, Zhu D, Wang X, Li N, Ren L, He J, Yang G. Genetically modified immunomodulatory cell-based biomaterials in tissue regeneration and engineering. Cytokine Growth Factor Rev 2022; 66:53-73. [PMID: 35690567 DOI: 10.1016/j.cytogfr.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/24/2022] [Indexed: 11/25/2022]
Abstract
To date, the wide application of cell-based biomaterials in tissue engineering and regeneration is remarkably hampered by immune rejection. Reducing the immunogenicity of cell-based biomaterials has become the latest direction in biomaterial research. Recently, genetically modified cell-based biomaterials with immunomodulatory genes have become a feasible solution to the immunogenicity problem. In this review, recent advances and future challenges of genetically modified immunomodulatory cell-based biomaterials are elaborated, including fabrication approaches, mechanisms of common immunomodulatory genes, application and, more importantly, current preclinical and clinical advances. The fabrication approaches can be categorized into commonly used (e.g., virus transfection) and newly developed approaches. The immunomodulatory mechanisms of representative genes involve complicated cell signaling pathways and metabolic activities. Wide application in curing multiple end-term diseases and replacing lifelong immunosuppressive therapy in multiple cell and organ transplantation models is demonstrated. Most significantly, practices of genetically modified organ transplantation have been conducted on brain-dead human decedent and even on living patients after a series of experiments on nonhuman primates. Nevertheless, uncertain biosecurity, nonspecific effects and overlooked personalization of current genetically modified immunomodulatory cell-based biomaterials are shortcomings that remain to be overcome.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Mengdie Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Danji Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Xueting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Na Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Lingfei Ren
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jin He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center of Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
3
|
Kling L, Schreiber A, Eckardt KU, Kettritz R. Hypoxia-inducible factors not only regulate but also are myeloid-cell treatment targets. J Leukoc Biol 2020; 110:61-75. [PMID: 33070368 DOI: 10.1002/jlb.4ri0820-535r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Hypoxia describes limited oxygen availability at the cellular level. Myeloid cells are exposed to hypoxia at various bodily sites and even contribute to hypoxia by consuming large amounts of oxygen during respiratory burst. Hypoxia-inducible factors (HIFs) are ubiquitously expressed heterodimeric transcription factors, composed of an oxygen-dependent α and a constitutive β subunit. The stability of HIF-1α and HIF-2α is regulated by oxygen-sensing prolyl-hydroxylases (PHD). HIF-1α and HIF-2α modify the innate immune response and are context dependent. We provide a historic perspective of HIF discovery, discuss the molecular components of the HIF pathway, and how HIF-dependent mechanisms modify myeloid cell functions. HIFs enable myeloid-cell adaptation to hypoxia by up-regulating anaerobic glycolysis. In addition to effects on metabolism, HIFs control chemotaxis, phagocytosis, degranulation, oxidative burst, and apoptosis. HIF-1α enables efficient infection defense by myeloid cells. HIF-2α delays inflammation resolution and decreases antitumor effects by promoting tumor-associated myeloid-cell hibernation. PHDs not only control HIF degradation, but also regulate the crosstalk between innate and adaptive immune cells thereby suppressing autoimmunity. HIF-modifying pharmacologic compounds are entering clinical practice. Current indications include renal anemia and certain cancers. Beneficial and adverse effects on myeloid cells should be considered and could possibly lead to drug repurposing for inflammatory disorders.
Collapse
Affiliation(s)
- Lovis Kling
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Adrian Schreiber
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ralph Kettritz
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrueck Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
4
|
Li X, Zhang Q, Nasser MI, Xu L, Zhang X, Zhu P, He Q, Zhao M. Oxygen homeostasis and cardiovascular disease: A role for HIF? Biomed Pharmacother 2020; 128:110338. [PMID: 32526454 DOI: 10.1016/j.biopha.2020.110338] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 12/17/2022] Open
Abstract
Hypoxia, the decline of tissue oxygen stress, plays a role in mediating cellular processes. Cardiovascular disease, relatively widespread with increased mortality, is closely correlated with oxygen homeostasis regulation. Besides, hypoxia-inducible factor-1(HIF-1) is reported to be a crucial component in regulating systemic hypoxia-induced physiological and pathological modifications like oxidative stress, damage, angiogenesis, vascular remodeling, inflammatory reaction, and metabolic remodeling. In addition, HIF1 controls the movement, proliferation, apoptosis, differentiation and activity of numerous core cells, such as cardiomyocytes, endothelial cells (ECs), smooth muscle cells (SMCs), and macrophages. Here we review the molecular regulation of HIF-1 in cardiovascular diseases, intended to improve therapeutic approaches for clinical diagnoses. Better knowledge of the oxygen balance control and the signal mechanisms involved is important to advance the development of hypoxia-related diseases.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan Province 410013, China
| | - Quyan Zhang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan Province 410013, China
| | - M I Nasser
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China
| | - Linyong Xu
- Xiangya School of Life Science, Central South University, Changsha, Hunan Province 410013, China
| | - Xueyan Zhang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, China; Xiangya School of Medicine, Central South University, Changsha, Hunan Province 410013, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510100, China.
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, China.
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410013, China.
| |
Collapse
|
5
|
Mohapatra SR, Sadik A, Tykocinski LO, Dietze J, Poschet G, Heiland I, Opitz CA. Hypoxia Inducible Factor 1α Inhibits the Expression of Immunosuppressive Tryptophan-2,3-Dioxygenase in Glioblastoma. Front Immunol 2019; 10:2762. [PMID: 31866995 PMCID: PMC6905408 DOI: 10.3389/fimmu.2019.02762] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Abnormal circulation in solid tumors results in hypoxia, which modulates both tumor intrinsic malignant properties as well as anti-tumor immune responses. Given the importance of hypoxia in glioblastoma (GBM) biology and particularly in shaping anti-tumor immunity, we analyzed which immunomodulatory genes are differentially regulated in response to hypoxia in GBM cells. Gene expression analyses identified the immunosuppressive enzyme tryptophan-2,3-dioxygenase (TDO2) as the second most downregulated gene in GBM cells cultured under hypoxic conditions. TDO2 catalyses the oxidation of tryptophan to N-formyl kynurenine, which is the first and rate-limiting step of Trp degradation along the kynurenine pathway (KP). In multiple GBM cell lines hypoxia reduced TDO2 expression both at mRNA and protein levels. The downregulation of TDO2 through hypoxia was reversible as re-oxygenation rescued TDO2 expression. Computational modeling of tryptophan metabolism predicted reduced flux through the KP and lower intracellular concentrations of kynurenine and its downstream metabolite 3-hydroxyanthranilic acid under hypoxia. Metabolic measurements confirmed the predicted changes, thus demonstrating the ability of the mathematical model to infer intracellular tryptophan metabolite concentrations. Moreover, we identified hypoxia inducible factor 1α (HIF1α) to regulate TDO2 expression under hypoxic conditions, as the HIF1α-stabilizing agents dimethyloxalylglycine (DMOG) and cobalt chloride reduced TDO2 expression. Knockdown of HIF1α restored the expression of TDO2 upon cobalt chloride treatment, confirming that HIF1α controls TDO2 expression. To investigate the immunoregulatory effects of this novel mechanism of TDO2 regulation, we co-cultured isolated T cells with TDO2-expressing GBM cells under normoxic and hypoxic conditions. Under normoxia TDO2-expressing GBM cells suppressed T cell proliferation, while hypoxia restored the proliferation of the T cells, likely due to the reduction in kynurenine levels produced by the GBM cells. Taken together, our data suggest that the regulation of TDO2 expression by HIF1α may be involved in modulating anti-tumor immunity in GBM.
Collapse
Affiliation(s)
- Soumya R Mohapatra
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ahmed Sadik
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
| | - Lars-Oliver Tykocinski
- Division of Rheumatology, Department of Medicine V, University Hospital of Heidelberg, Heidelberg, Germany
| | - Jørn Dietze
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Gernot Poschet
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Ines Heiland
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Christiane A Opitz
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurology Clinic and National Center for Tumor Diseases, University Hospital of Heidelberg, Heidelberg, Germany
| |
Collapse
|
6
|
Dexmedetomidine preconditioning attenuates ischemia/reperfusion injury in isolated rat hearts with endothelial dysfunction. Biomed Pharmacother 2019; 114:108837. [PMID: 30965239 DOI: 10.1016/j.biopha.2019.108837] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/30/2019] [Accepted: 03/31/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND AND PURPOSES Dexmedetomidine preconditioning (DP) can mimic pharmacological preconditioning and induce cardiac protection. There are controversies on the roles of coronary endothelia in cardioprotection of dexmedetomidine. Herein, we tested the hypothesis that protection of dexmedetomidine is not endothelial dependent in heart against myocardial ischemia/reperfusion (I/R) injury. METHODS Langendorff-perfused rat hearts were pretreated by 60 mM of potassium to produce endothelial dysfunction (ED), then medicated with dexmedetomidine, and subsequently subjected to 30 min of global ischemia followed by 60 min of reperfusion. To investigate the cardioprotective effect of dexmedetomidine in heart with ED, isolated rat hearts were randomly divided into the following six groups: sham, I/R, DP, ED, ED + I/R, and ED + DP + I/R. Heart rates, left ventricular function, and coronary perfusion pressure were assessed for each heart. Infarct size was evaluated by triphenyltetrazolium chloride staining. High-sensitivity cardiac troponin T (hs-cTNT) of coronary flow perfusion was determined. RESULTS After the isolated hearts with pretreatment of 60 mM of potassium chloride, diastolic function of coronary endothelia in performance of response to histamine was significantly decreased (P < 0.05). DP attenuated I/R-induced infarct size of the left ventricle (P < 0.05) and decreased hs-cTNT (P < 0.05). Additionally, left ventricular developed pressure, +dp/dtmax, and -dp/dtmax were elevated in rat hearts pretreated with dexmedetomidine. Furthermore, dexmedetomidine-mediated cardiac protection against I/R injury was still remained in isolated hearts with coronary ED. CONCLUSION Continuous perfusion of 60 mM of potassium for 10 min can produce coronary ED in isolated rat hearts. Dexmedetomidine maintains its protective function against I/R injury in heart with coronary ED. Myocardial protection of dexmedetomidine is non-endothelial function dependent in alleviating I/R injury.
Collapse
|
7
|
Köstlin-Gille N, Dietz S, Schwarz J, Spring B, Pauluschke-Fröhlich J, Poets CF, Gille C. HIF-1α-Deficiency in Myeloid Cells Leads to a Disturbed Accumulation of Myeloid Derived Suppressor Cells (MDSC) During Pregnancy and to an Increased Abortion Rate in Mice. Front Immunol 2019; 10:161. [PMID: 30804946 PMCID: PMC6370686 DOI: 10.3389/fimmu.2019.00161] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/18/2019] [Indexed: 12/11/2022] Open
Abstract
Abortions are the most important reason for unintentional childlessness. During pregnancy, maternal immune cells are in close contact to cells of the semi-allogeneic fetus. Dysregulation of the maternal immune system leading to defective adaptation to pregnancy often plays a role in pathogenesis of abortions. Myeloid-derived suppressor cells (MDSC) are myeloid cells that suppress functions of other immune cells, especially T-cells, thereby negatively affecting diseases such as cancer, sepsis or trauma. They seem, however, also necessary for maintenance of maternal-fetal tolerance. Mechanisms regulating MDSC expansion and function during pregnancy are only incompletely understood. In tumor environment, hypoxia is crucial for MDSC accumulation and activation. Hypoxia is also important for early placenta and embryo development. Effects of hypoxia are mediated through hypoxia-inducible factor 1α (HIF-1α). In the present study we aimed to examine the role of HIF-1α in myeloid cells for MDSC accumulation and MDSC function during pregnancy and for pregnancy outcome. We therefore used a mouse model with targeted deletion of HIF-1α in myeloid cells (myeloid HIF-KO) and analyzed blood, spleens and uteri of pregnant mice at gestational day E 10.5 in comparison to non-pregnant animals and wildtype (WT) animals. Further we analyzed pregnancy success by determining rates of failed implantation and abortion in WT and myeloid HIF-KO animals. We found that myeloid HIF-KO in mice led to an abrogated MDSC accumulation in the pregnant uterus and to impaired suppressive activity of MDSC. While expression of chemokine receptors and integrins on MDSC was not affected by HIF-1α, myeloid HIF-KO led to increased apoptosis rates of MDSC in the uterus. Myeloid-HIF-KO resulted in increased proportions of non-pregnant animals after positive vaginal plug and increased abortion rates, suggesting that activation of HIF-1α dependent pathways in MDSC are important for maintenance of pregnancy.
Collapse
Affiliation(s)
| | - Stefanie Dietz
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
| | - Julian Schwarz
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
| | - Bärbel Spring
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
| | | | - Christian F Poets
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
| | - Christian Gille
- Department of Neonatology, Tuebingen University Children's Hospital, Tuebingen, Germany
| |
Collapse
|