1
|
Nikolopoulos VK, Augustine R, Camci-Unal G. Harnessing the potential of oxygen-generating materials and their utilization in organ-specific delivery of oxygen. Biomater Sci 2023; 11:1567-1588. [PMID: 36688522 PMCID: PMC10015602 DOI: 10.1039/d2bm01329k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The limited availability of transplantable organs hinders the success of patient treatment through organ transplantation. In addition, there are challenges with immune rejection and the risk of disease transmission when receiving organs from other individuals. Tissue engineering aims to overcome these challenges by generating functional three-dimensional (3D) tissue constructs. When developing tissues or organs of a particular shape, structure, and size as determined by the specific needs of the therapeutic intervention, a tissue specific oxygen supply to all parts of the tissue construct is an utmost requirement. Moreover, the lack of a functional vasculature in engineered tissues decreases cell survival upon implantation in the body. Oxygen-generating materials can alleviate this challenge in engineered tissue constructs by providing oxygen in a sustained and controlled manner. Oxygen-generating materials can be incorporated into 3D scaffolds allowing the cells to receive and utilize oxygen efficiently. In this review, we present an overview of the use of oxygen-generating materials in various tissue engineering applications in an organ specific manner as well as their potential use in the clinic.
Collapse
Affiliation(s)
- Vasilios K Nikolopoulos
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, USA.
| | - Robin Augustine
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, USA.
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, USA.
- Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
2
|
Suvarnapathaki S, Nguyen A, Goulopoulos A, Camci-Unal G. Oxygen-Generating Scaffolds for Cardiac Tissue Engineering Applications. ACS Biomater Sci Eng 2023; 9:409-426. [PMID: 36469567 PMCID: PMC11416866 DOI: 10.1021/acsbiomaterials.2c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Homogeneous vascularization of implanted tissue constructs can extend to 5 weeks, during which cell death can occur due to inadequate availability of oxygen. Researchers are engineering biomaterials that generate and release oxygen in a regulated manner, in an effort to overcome this hurdle. A main limitation of the existing oxygen-generating biomaterials is the uncontrolled release of oxygen, which is ultimately detrimental to the cells. This study demonstrates the incorporation of calcium peroxide (CaO2) within a hydrophobic polymer, polycaprolactone (PCL), to yield composite scaffolds with controlled oxygen release kinetics sustained over 5 weeks. Oxygen-generating microparticles coencapsulated with cardiomyocytes in a gelatin-based hydrogel matrix can serve as model systems for cardiac tissue engineering. Specifically, the results reveal that the oxygen-generating microspheres significantly improve the scaffold mechanical strength ranging from 5 kPa to 35 kPa, have an average scaffold pore size of 50-100 μm, swelling ratios of 33.3-29.8%, and degradation with 10-49% remaining mass at the end of a 48 h accelerated enzymatic degradation. The oxygen-generating scaffolds demonstrate improvement in cell viability, proliferation, and metabolic activity compared to the negative control group when cultured under hypoxia. Additionally, the optimized oxygen-generating constructs display no cytotoxicity or apoptosis. These oxygen-generating scaffolds can possibly assist the in vivo translation of cardiac tissue constructs.
Collapse
Affiliation(s)
- Sanika Suvarnapathaki
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
| | - Angelina Nguyen
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
| | - Anastasia Goulopoulos
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
- Department of Surgery, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01605, United States
| |
Collapse
|
3
|
Messner F, Bogensperger C, Hunter JP, Kaths MJ, Moers C, Weissenbacher A. Normothermic machine perfusion of kidneys: current strategies and future perspectives. Curr Opin Organ Transplant 2022; 27:446-453. [PMID: 35857331 DOI: 10.1097/mot.0000000000001003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW This review aims to summarize the latest original preclinical and clinical articles in the setting of normothermic machine perfusion (NMP) of kidney grafts. RECENT FINDINGS Kidney NMP can be safely translated into the clinical routine and there is increasing evidence that NMP may be beneficial in graft preservation especially in marginal kidney grafts. Due to the near-physiological state during NMP, this technology may be used as an ex-vivo organ assessment and treatment platform. There are reports on the application of mesenchymal stromal/stem cells, multipotent adult progenitor cells and microRNA during kidney NMP, with first data indicating that these therapies indeed lead to a decrease in inflammatory response and kidney injury. Together with the demonstrated possibility of prolonged ex-vivo perfusion without significant graft damage, NMP could not only be used as a tool to perform preimplant graft assessment. Some evidence exists that it truly has the potential to be a platform to treat and repair injured kidney grafts, thereby significantly reducing the number of declined organs. SUMMARY Kidney NMP is feasible and can potentially increase the donor pool not only by preimplant graft assessment, but also by ex-vivo graft treatment.
Collapse
Affiliation(s)
- Franka Messner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Christina Bogensperger
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - James P Hunter
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Moritz J Kaths
- Department of General, Visceral and Transplantation Surgery, Faculty of Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Cyril Moers
- Department of Surgery-Organ Donation and Transplantation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Annemarie Weissenbacher
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Jain P, Kathuria H, Dubey N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials 2022; 287:121639. [PMID: 35779481 DOI: 10.1016/j.biomaterials.2022.121639] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Tissue/organ shortage is a major medical challenge due to donor scarcity and patient immune rejections. Furthermore, it is difficult to predict or mimic the human disease condition in animal models during preclinical studies because disease phenotype differs between humans and animals. Three-dimensional bioprinting (3DBP) is evolving into an unparalleled multidisciplinary technology for engineering three-dimensional (3D) biological tissue with complex architecture and composition. The technology has emerged as a key driver by precise deposition and assembly of biomaterials with patient's/donor cells. This advancement has aided in the successful fabrication of in vitro models, preclinical implants, and tissue/organs-like structures. Here, we critically reviewed the current state of 3D-bioprinting strategies for regenerative therapy in eight organ systems, including nervous, cardiovascular, skeletal, integumentary, endocrine and exocrine, gastrointestinal, respiratory, and urinary systems. We also focus on the application of 3D bioprinting to fabricated in vitro models to study cancer, infection, drug testing, and safety assessment. The concept of in situ 3D bioprinting is discussed, which is the direct printing of tissues at the injury or defect site for reparative and regenerative therapy. Finally, issues such as scalability, immune response, and regulatory approval are discussed, as well as recently developed tools and technologies such as four-dimensional and convergence bioprinting. In addition, information about clinical trials using 3D printing has been included.
Collapse
Affiliation(s)
- Pooja Jain
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, Maharashtra, India; Faculty of Dentistry, National University of Singapore, Singapore
| | - Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, 117543, Singapore; Nusmetic Pte Ltd, Makerspace, I4 Building, 3 Research Link Singapore, 117602, Singapore.
| | - Nileshkumar Dubey
- Faculty of Dentistry, National University of Singapore, Singapore; ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore.
| |
Collapse
|
5
|
Peloso A, Moeckli B, Delaune V, Oldani G, Andres A, Compagnon P. Artificial Intelligence: Present and Future Potential for Solid Organ Transplantation. Transpl Int 2022; 35:10640. [PMID: 35859667 PMCID: PMC9290190 DOI: 10.3389/ti.2022.10640] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022]
Abstract
Artificial intelligence (AI) refers to computer algorithms used to complete tasks that usually require human intelligence. Typical examples include complex decision-making and- image or speech analysis. AI application in healthcare is rapidly evolving and it undoubtedly holds an enormous potential for the field of solid organ transplantation. In this review, we provide an overview of AI-based approaches in solid organ transplantation. Particularly, we identified four key areas of transplantation which could be facilitated by AI: organ allocation and donor-recipient pairing, transplant oncology, real-time immunosuppression regimes, and precision transplant pathology. The potential implementations are vast—from improved allocation algorithms, smart donor-recipient matching and dynamic adaptation of immunosuppression to automated analysis of transplant pathology. We are convinced that we are at the beginning of a new digital era in transplantation, and that AI has the potential to improve graft and patient survival. This manuscript provides a glimpse into how AI innovations could shape an exciting future for the transplantation community.
Collapse
Affiliation(s)
- Andrea Peloso
- Department of General Surgery, University of Geneva Hospitals, University of Geneva, Geneva, Switzerland
- Department of Transplantation, University of Geneva Hospitals, University of Geneva, Geneva, Switzerland
- *Correspondence: Andrea Peloso,
| | - Beat Moeckli
- Department of General Surgery, University of Geneva Hospitals, University of Geneva, Geneva, Switzerland
- Department of Transplantation, University of Geneva Hospitals, University of Geneva, Geneva, Switzerland
| | - Vaihere Delaune
- Department of General Surgery, University of Geneva Hospitals, University of Geneva, Geneva, Switzerland
| | - Graziano Oldani
- Department of General Surgery, University of Geneva Hospitals, University of Geneva, Geneva, Switzerland
- Department of Transplantation, University of Geneva Hospitals, University of Geneva, Geneva, Switzerland
| | - Axel Andres
- Department of General Surgery, University of Geneva Hospitals, University of Geneva, Geneva, Switzerland
- Department of Transplantation, University of Geneva Hospitals, University of Geneva, Geneva, Switzerland
| | - Philippe Compagnon
- Department of Transplantation, University of Geneva Hospitals, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Gluconate-Lactobionate-Dextran Perfusion Solutions Attenuate Ischemic Injury and Improve Function in a Murine Cardiac Transplant Model. Cells 2022; 11:cells11101653. [PMID: 35626690 PMCID: PMC9139252 DOI: 10.3390/cells11101653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 12/10/2022] Open
Abstract
Static cold storage is the cheapest and easiest method and current gold standard to store and preserve donor organs. This study aimed to compare the preservative capacity of gluconate-lactobionate-dextran (Unisol) solutions to histidine-tryptophan-ketoglutarate (HTK) solution. Murine syngeneic heterotopic heart transplantations (Balb/c-Balb/c) were carried out after 18 h of static cold storage. Cardiac grafts were either flushed and stored with Unisol-based solutions with high-(UHK) and low-potassium (ULK) ± glutathione, or HTK. Cardiac grafts were assessed for rebeating and functionality, histomorphologic alterations, and cytokine expression. Unisol-based solutions demonstrated a faster rebeating time (UHK 56 s, UHK + Glut 44 s, ULK 45 s, ULK + Glut 47 s) compared to HTK (119.5 s) along with a better contractility early after reperfusion and at the endpoint on POD 3. Ischemic injury led to a significantly increased leukocyte recruitment, with similar degrees of tissue damage and inflammatory infiltrate in all groups, yet the number of apoptotic cells tended to be lower in ULK compared to HTK. In UHK- and ULK-treated animals, a trend toward decreased expression of proinflammatory markers was seen when compared to HTK. Unisol-based solutions showed an improved preservative capacity compared with the gold standard HTK early after cardiac transplantation. Supplemented glutathione did not further improve tissue-protective properties.
Collapse
|
7
|
Liu Z, Zheng X, Wang J. Bioinspired Ice-Binding Materials for Tissue and Organ Cryopreservation. J Am Chem Soc 2022; 144:5685-5701. [PMID: 35324185 DOI: 10.1021/jacs.2c00203] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cryopreservation of tissues and organs can bring transformative changes to medicine and medical science. In the past decades, limited progress has been achieved, although cryopreservation of tissues and organs has long been intensively pursued. One key reason is that the cryoprotective agents (CPAs) currently used for cell cryopreservation cannot effectively preserve tissues and organs because of their cytotoxicity and tissue destructive effect as well as the low efficiency in controlling ice formation. In stark contrast, nature has its unique ways of controlling ice formation, and many living organisms can effectively prevent freezing damage. Ice-binding proteins (IBPs) are regarded as the essential materials identified in these living organisms for regulating ice nucleation and growth. Note that controversial results have been reported on the utilization of IBPs and their mimics for the cryopreservation of tissues and organs, that is, some groups revealed that IBPs and mimics exhibited unique superiorities in tissues cryopreservation, while other groups showed detrimental effects. In this perspective, we analyze possible reasons for the controversy and predict future research directions in the design and construction of IBP inspired ice-binding materials to be used as new CPAs for tissue cryopreservation after briefly introducing the cryo-injuries and the challenges of conventional CPAs in the cryopreservation of tissues and organs.
Collapse
Affiliation(s)
- Zhang Liu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xia Zheng
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jianjun Wang
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, PR China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
8
|
Three-dimensional scaffolds for tissue bioengineering cartilages. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Zhang B, Su Y, Zhou J, Zheng Y, Zhu D. Toward a Better Regeneration through Implant-Mediated Immunomodulation: Harnessing the Immune Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100446. [PMID: 34117732 PMCID: PMC8373114 DOI: 10.1002/advs.202100446] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Indexed: 05/06/2023]
Abstract
Tissue repair/regeneration, after implantation or injury, involves comprehensive physiological processes wherein immune responses play a crucial role to enable tissue restoration, amidst the immune cells early-stage response to tissue damages. These cells break down extracellular matrix, clear debris, and secret cytokines to orchestrate regeneration. However, the immune response can also lead to abnormal tissue healing or scar formation if not well directed. This review first introduces the general immune response post injury, with focus on the major immune cells including neutrophils, macrophages, and T cells. Next, a variety of implant-mediated immunomodulation strategies to regulate immune response through physical, chemical, and biological cues are discussed. At last, various scaffold-facilitated regenerations of different tissue types, such as, bone, cartilage, blood vessel, and nerve system, by harnessing the immunomodulation are presented. Therefore, the most recent data in biomaterials and immunomodulation is presented here in a bid to shape expert perspectives, inspire researchers to go in new directions, and drive development of future strategies focusing on targeted, sequential, and dynamic immunomodulation elicited by implants.
Collapse
Affiliation(s)
- Ben Zhang
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| | - Yingchao Su
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| | - Juncen Zhou
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| | - Yufeng Zheng
- Department of Materials Science and EngineeringCollege of EngineeringPeking UniversityBeijing100871China
| | - Donghui Zhu
- Department of Biomedical EngineeringStony Brook UniversityStony BrookNew York11794USA
| |
Collapse
|
10
|
Datta S, Fitzpatrick AM, Haykal S. Preservation solutions for attenuation of ischemia-reperfusion injury in vascularized composite allotransplantation. SAGE Open Med 2021; 9:20503121211034924. [PMID: 34367640 PMCID: PMC8312154 DOI: 10.1177/20503121211034924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/07/2021] [Indexed: 01/21/2023] Open
Abstract
Vascularized composite allotransplantation represents the final level of the reconstructive ladder, offering treatment options for severe tissue loss and functional deficiencies. Vascularized composite allotransplantation is particularly susceptible to ischemia–reperfusion injury and requires preservation techniques when subjected to extended storage times prior to transplantation. While static cold storage functions to reduce ischemic damage and is widely employed in clinical settings, there exists no consensus on the ideal preservation solution for vascularized composite allotransplantation. This review aims to highlight current clinical and experimental advances in preservation solution development and their critical role in attenuating ischemia–reperfusion injury in the context of vascularized composite allotransplantation.
Collapse
Affiliation(s)
- Shaishav Datta
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Aisling M Fitzpatrick
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Siba Haykal
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Latner Thoracic Surgery Laboratories, University Health Network, Toronto General Hospital, University of Toronto, Toronto, ON, Canada.,Division of Plastic & Reconstructive Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Harrison SP, Baumgarten SF, Verma R, Lunov O, Dejneka A, Sullivan GJ. Liver Organoids: Recent Developments, Limitations and Potential. Front Med (Lausanne) 2021; 8:574047. [PMID: 34026769 PMCID: PMC8131532 DOI: 10.3389/fmed.2021.574047] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Liver cell types derived from induced pluripotent stem cells (iPSCs) share the potential to investigate development, toxicity, as well as genetic and infectious disease in ways currently limited by the availability of primary tissue. With the added advantage of patient specificity, which can play a role in all of these areas. Many iPSC differentiation protocols focus on 3 dimensional (3D) or organotypic differentiation, as these offer the advantage of more closely mimicking in vivo systems including; the formation of tissue like architecture and interactions/crosstalk between different cell types. Ultimately such models have the potential to be used clinically and either with or more aptly, in place of animal models. Along with the development of organotypic and micro-tissue models, there will be a need to co-develop imaging technologies to enable their visualization. A variety of liver models termed "organoids" have been reported in the literature ranging from simple spheres or cysts of a single cell type, usually hepatocytes, to those containing multiple cell types combined during the differentiation process such as hepatic stellate cells, endothelial cells, and mesenchymal cells, often leading to an improved hepatic phenotype. These allow specific functions or readouts to be examined such as drug metabolism, protein secretion or an improved phenotype, but because of their relative simplicity they lack the flexibility and general applicability of ex vivo tissue culture. In the liver field these are more often constructed rather than developed together organotypically as seen in other organoid models such as brain, kidney, lung and intestine. Having access to organotypic liver like surrogates containing multiple cell types with in vivo like interactions/architecture, would provide vastly improved models for disease, toxicity and drug development, combining disciplines such as microfluidic chip technology with organoids and ultimately paving the way to new therapies.
Collapse
Affiliation(s)
- Sean Philip Harrison
- Hybrid Technology Hub–Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Saphira Felicitas Baumgarten
- Hybrid Technology Hub–Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Rajneesh Verma
- Hybrid Technology Hub–Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
| | - Oleg Lunov
- Institute of Physics of the Czech Academy of Sciences, Prague, Czechia
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, Prague, Czechia
| | - Gareth John Sullivan
- Hybrid Technology Hub–Center of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Pediatric Research, Oslo University Hospital, Oslo, Norway
- Norwegian Center for Stem Cell Research, Oslo University Hospital, University of Oslo, Oslo, Norway
- Institute of Immunology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
12
|
Arambula‐Maldonado R, Geraili A, Xing M, Mequanint K. Tissue engineering and regenerative therapeutics: The nexus of chemical engineering and translational medicine. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Armin Geraili
- Department of Chemical and Biochemical Engineering University of Western Ontario London Ontario Canada
| | - Malcolm Xing
- Department of Mechanical Engineering University of Manitoba Winnipeg Manitoba Canada
| | - Kibret Mequanint
- School of Biomedical Engineering, University of Western Ontario London Ontario Canada
- Department of Chemical and Biochemical Engineering University of Western Ontario London Ontario Canada
| |
Collapse
|
13
|
He F, Tao T, Liu H, Wang Y, Cui K, Guo Y, Qin J. Controllable Fabrication of Composite Core-Shell Capsules at a Macroscale as Organoid Biocarriers. ACS APPLIED BIO MATERIALS 2021; 4:1584-1596. [PMID: 35014507 DOI: 10.1021/acsabm.0c01441] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cell encapsulation technology is promising for generation of functional carriers with well-tailored structures for efficient transplantation and immunoprotection of cells/tissues. Stem cell organoids are highly potential for recapitulating the intricate architectures and functionalities of native organs and also providing an unlimited cell source for cellular replacement therapy. However, it remains challenging for loading the organoids with hundreds of micrometers size by current existing cell carriers. Herein, a simple and facile coextrusion strategy is developed for controllable fabrication of Ca-alginate/poly(ethylene imine) (Alg/PEI) macrocapsules for efficient encapsulation and cultivation of organoids. Human-induced pluripotent stem cell (hiPSC)-derived islet organoids are encapsulated in the aqueous compartments of the capsules and immunoisolated by a semipermeable Alg/PEI shell. Via electrostatic interactions, a PEI polyelectrolyte can be incorporated in the shell for restricting its swelling, thus effectively improving the stability of the capsules. The Alg/PEI macrocapsules are featured with desirable selective permeability for immunoisolation of antibodies from reaching the loaded organoids. Meanwhile, they also exhibit excellent permeability for mass transfer due to their well-defined core-shell structure. As such, the encapsulated islet organoids contain islet-specific multicellular components, with high viability and sensitive glucose-stimulated insulin secretion function. The proposed approach provides a versatile encapsulation system for tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Fan He
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Tingting Tao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Haitao Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yaqing Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Kangli Cui
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yaqiong Guo
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianhua Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, P. R. China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| |
Collapse
|
14
|
|
15
|
Moving the Margins: Updates on the Renaissance in Machine Perfusion for Organ Transplantation. CURRENT TRANSPLANTATION REPORTS 2020. [DOI: 10.1007/s40472-020-00277-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
|