1
|
Rancilio NJ, Murakami K, Harm T, Christensen N. Radiation therapy communication: Retreatment of multiple histologically confirmed oligodendroglioma drop metastasis with stereotactic radiotherapy in a dog. Vet Radiol Ultrasound 2024. [PMID: 39395151 DOI: 10.1111/vru.13454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/16/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024] Open
Abstract
A 10-year-old female spayed boxer was treated with stereotactic radiotherapy (SRT) for a suspected glioma in the left piriform lobe. The intra-axial lesion was T2 hyperintense, T2 FLAIR hyperintense, T1 hypointense, and did not uptake contrast. Imaging was performed with an MRI every 3 months, and at the 6-month recheck, new lesions in the left hippocampus and right piriform lobe were evident without clinically apparent neurological progression. A second course of SRT was prescribed for the new lesions. Euthanasia was elected 14 months after the first course of SRT, and necropsy confirmed oligodendroglioma with drop metastasis.
Collapse
Affiliation(s)
- Nicholas J Rancilio
- Department of Veterinary Clinical Sciences and Department of Pathology Iowa State, University College of Veterinary Medicine, Ames, Iowa, USA
| | - Keiko Murakami
- Department of Veterinary Clinical Sciences and Department of Pathology Iowa State, University College of Veterinary Medicine, Ames, Iowa, USA
| | - Tyler Harm
- Department of Veterinary Clinical Sciences and Department of Pathology Iowa State, University College of Veterinary Medicine, Ames, Iowa, USA
| | - Neil Christensen
- Department of Surgical Sciences, The University of Wisconsin, School of Veterinary Medicine, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Gieger TL. Radiation Therapy for Brain Tumors in Dogs and Cats. Vet Clin North Am Small Anim Pract 2024:S0195-5616(24)00061-5. [PMID: 39393930 DOI: 10.1016/j.cvsm.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
External beam radiation therapy (RT) has become the standard of care for non-resectable or post-operative incompletely excised brain tumors in dogs and cats due to its relatively low side effect profile and increasing availability. This article reviews the indications for, expected outcomes of and possible toxicities associated with RT, follow-up care recommendations after RT, and publications about specific tumor types in dogs and cats with brain tumors.
Collapse
Affiliation(s)
- Tracy L Gieger
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| |
Collapse
|
3
|
Strasberg JR, Rossmeisl JH, Kelsey KL, Yoshikawa H, Gieger TL, Nolan MW. A prospective evaluation of succinct prednisone tapering after brain tumor irradiation in dogs. J Vet Intern Med 2024; 38:2571-2577. [PMID: 39122668 PMCID: PMC11423478 DOI: 10.1111/jvim.17163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND To ameliorate anticipated or ongoing neurological deficits, dogs undergoing brain tumor irradiation often are prescribed lengthy courses of prednisone PO during and after radiotherapy (RT). This practice can contribute to unwanted corticosteroid-associated morbidity and may be unnecessary. OBJECTIVE Determine whether long-term corticosteroid dependency can be minimized by use of succinct prednisone tapering. ANIMALS Fifty-five pet dogs undergoing brain tumor irradiation. METHODS Nineteen dogs were treated using a "rapid-taper" protocol wherein corticosteroid dose reduction began 0 to 20 days after completing RT. Outcomes were compared with a retrospectively studied control group ("slow-taper"; N = 36 dogs) in which corticosteroids were tapered more slowly according to individual clinician recommendations. RESULTS Patient demographics were similar between groups. Mean time to lowest prednisone dose was 41 days postirradiation in the rapid-taper group and 117 days in the slow-taper group (P = .003). In the rapid-taper group, 15 of 19 dogs (84%) were completely tapered off prednisone, vs 18 of 36 (50%) in the slow-taper group (P = .04). Rates at which corticosteroids had to be reinstituted later were similar for the 2 groups (approximately 1 in 3 dogs). Adverse effect rates were similar for the 2 groups. Although no comparable questionnaire-derived data were available for the "slow-taper" group, overall and neurologic quality of life remained stable after RT in the rapid-taper group. CONCLUSIONS AND CLINICAL IMPORTANCE For many dogs, lengthy courses of PO prednisone are avoidable after intracranial RT. Future efforts should aim to identify which dogs benefit most from accelerated prednisone tapering.
Collapse
Affiliation(s)
- Jason R Strasberg
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - John H Rossmeisl
- Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, USA
| | - Krista L Kelsey
- Carolina Veterinary Specialists, Mathews, North Carolina, USA
| | - Hiroto Yoshikawa
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Tracy L Gieger
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael W Nolan
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
4
|
Nolan MW, Gieger TL. Update in Veterinary Radiation Oncology: Focus on Stereotactic Radiation Therapy. Vet Clin North Am Small Anim Pract 2024; 54:559-575. [PMID: 38160099 DOI: 10.1016/j.cvsm.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Stereotactic radiotherapy (SRT) involves the precise delivery of highly conformal, dose-intense radiation to well-demarcated tumors. Special equipment and expertise are needed, and a unique biological mechanism distinguishes SRT from other forms of external beam radiotherapy. Families find the convenient schedules and minimal acute toxicity of SRT appealing. Common indications in veterinary oncology include nasal, brain, and bone tumors. Many other solid tumors can also be treated, including spinal, oral, lung, heart-base, liver, adrenal, and prostatic malignancies. Accessibility of SRT is improving, and new data are constantly emerging to define parameters for appropriate case selection, radiation dose prescription, and long-term follow-up.
Collapse
Affiliation(s)
- Michael W Nolan
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| | - Tracy L Gieger
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| |
Collapse
|
5
|
Trageser E, Martin T, Burdekin B, Hart C, Leary D, LaRue S, Boss MK. Efficacy of stereotactic radiation therapy for the treatment of confirmed or presumed canine glioma. Vet Comp Oncol 2023; 21:578-586. [PMID: 37423611 DOI: 10.1111/vco.12920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Abstract
Intracranial gliomas are the second most common brain tumour in dogs. Radiation therapy provides a minimally invasive treatment option for this tumour type. Earlier publications reporting on the use of non-modulated radiation therapy suggested a poor prognosis for dogs with glioma, with median survival times ranging between 4 and 6 months; more recent literature utilizing stereotactic radiation therapy (SRT) demonstrates that the prognosis for canine gliomas may be more promising, with survival times closer to 12 months. A single institution retrospective study was performed between 2010 and 2020 investigating the outcomes of dogs with biopsy-confirmed glioma or a presumptive diagnosis of intra-cranial glioma based on MRI characteristics that were treated with SRT. Twenty-three client-owned dogs were included. Brachycephalic breeds were overrepresented, totalling 13 dogs (57%). SRT protocols included 16 Gy single fraction (n = 1, 4%), 18 Gy single fraction (n = 1, 4%), 24 Gy in 3 daily fractions (n = 20, 91%), or 27 Gy in four daily fractions (n = 1, 4%). Twenty-one dogs (91%) had improvement of their presenting clinical signs following SRT. Median overall survival time (MST) was 349 days (95% CI, 162-584). Median disease specific survival time was 413 days (95% CI, 217-717). When SRT is incorporated into the management plan for dogs with confirmed or presumed intracranial glioma, a median survival time of approximately 12 months may be achievable.
Collapse
Affiliation(s)
- Erin Trageser
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Tiffany Martin
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Braden Burdekin
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Cullen Hart
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Del Leary
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Susan LaRue
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Mary-Keara Boss
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
6
|
José-López R. Chemotherapy for the treatment of intracranial glioma in dogs. Front Vet Sci 2023; 10:1273122. [PMID: 38026627 PMCID: PMC10643662 DOI: 10.3389/fvets.2023.1273122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Gliomas are the second most common primary brain tumor in dogs and although they are associated with a poor prognosis, limited data are available relating to the efficacy of standard therapeutic options such as surgery, radiation and chemotherapy. Additionally, canine glioma is gaining relevance as a naturally occurring animal model that recapitulates human disease with fidelity. There is an intense comparative research drive to test new therapeutic approaches in dogs and assess if results translate efficiently into human clinical trials to improve the poor outcomes associated with the current standard-of-care. However, the paucity of data and controversy around most appropriate treatment for intracranial gliomas in dogs make comparisons among modalities troublesome. To further inform therapeutic decision-making, client discussion, and future studies evaluating treatment responses, the outcomes of 127 dogs with intracranial glioma, either presumed (n = 49) or histologically confirmed (n = 78), that received chemotherapy as leading or adjuvant treatment are reviewed here. This review highlights the status of current chemotherapeutic approaches to intracranial gliomas in dogs, most notably temozolomide and lomustine; areas of novel treatment currently in development, and difficulties to consensuate and compare different study observations. Finally, suggestions are made to facilitate evidence-based research in the field of canine glioma therapeutics.
Collapse
Affiliation(s)
- Roberto José-López
- Hamilton Specialist Referrals – IVC Evidensia, High Wycombe, United Kingdom
| |
Collapse
|
7
|
TAKAHASHI T, SHIOZAWA H, ISHIZAKI T, OKADA K, KONDO H. Anaplastic oligodendroglioma with nasal invasion and systemic metastasis in a dog. J Vet Med Sci 2023; 85:1052-1056. [PMID: 37558495 PMCID: PMC10600530 DOI: 10.1292/jvms.23-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023] Open
Abstract
An 11-year-old spayed female French bulldog was referred on suspicion of nasal tumor. Anaplastic oligodendroglioma in the olfactory bulb that was suspected to have invaded the nasal cavity was diagnosed from imaging and histopathology. Metastasis to cervical lymph nodes was suspected, with no other metastases identified. The brain-to-nasal lesion and lymph nodes were treated with hypo-fractionated radiation therapy. Nasal congestion soon resolved. About 3 months later, follow-up computed tomography revealed multiple hepatic and splenic masses, which were cytologically suspected as metastatic oligodendroglioma. Nimustine, followed by toceranib phosphate, seemed to have no effect, and the dog died on day 167. Postmortem examination revealed the primary tumor disappearance and systemic metastases. Canine oligodendroglioma can grow outside the cranial vault, and systemically metastasize.
Collapse
Affiliation(s)
- Tomoko TAKAHASHI
- Department of Veterinary Medicine, College of Bioresource
Sciences, Nihon University, Kanagawa, Japan
| | - Hitoshi SHIOZAWA
- Department of Veterinary Medicine, College of Bioresource
Sciences, Nihon University, Kanagawa, Japan
| | | | | | - Hirotaka KONDO
- Department of Veterinary Medicine, College of Bioresource
Sciences, Nihon University, Kanagawa, Japan
| |
Collapse
|
8
|
Mortier JR, Maddox TW, Blackwood L, La Fontaine MD, Busoni V. Dynamic contrast-enhanced computed tomography perfusion parameters of canine suspected brain tumors at baseline and during radiotherapy might be different depending on tumor location but not associated with survival. Front Vet Sci 2023; 10:1179762. [PMID: 37187932 PMCID: PMC10175699 DOI: 10.3389/fvets.2023.1179762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction Treatment of brain tumors in dogs can be associated with significant morbidity and reliable prognostic factors are lacking. Dynamic contrast-enhanced computed tomography (DCECT) can be used to assess tumor perfusion. The objectives of this study were to assess perfusion parameters and change in size of suspected brain tumors before and during radiotherapy (RT) depending on their location and find a potential correlation with survival. Methods Seventeen client-owned dogs with suspected brain tumors were prospectively recruited. All dogs had a baseline DCECT to assess mass size, blood volume (BV), blood flow (BF), and transit time (TT). Twelve dogs had a repeat DCECT after 12 Gy of megavoltage RT. Survival times were calculated. Results Intra-axial masses had lower BF (p = 0.005) and BV (p < 0.001) than extra-axial masses but not than pituitary masses. Pituitary masses had lower BF (p = 0.001) and BV (p = 0.004) than extra-axial masses. The volume of the mass was positively associated with TT (p = 0.001) but not with BF and BV. Intra-axial masses showed a more marked decrease in size than extra-axial and pituitary masses during RT (p = 0.022 for length, p = 0.05 for height). Extra-axial masses showed a greater decrease in BF (p = 0.011) and BV (p = 0.012) during RT than pituitary masses and intra-axial masses. Heavier dogs had a shorter survival time (p = 0.011). Perfusion parameters were not correlated with survival. Conclusion DCECT perfusion parameters and change in size of brain masses during RT might be different based on the location of the mass.
Collapse
Affiliation(s)
- Jeremy R. Mortier
- Small Animal Teaching Hospital, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom
- Diagnostic Imaging Section, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- *Correspondence: Jeremy R. Mortier,
| | - Thomas W. Maddox
- Small Animal Teaching Hospital, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom
| | - Laura Blackwood
- Small Animal Teaching Hospital, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom
| | | | - Valeria Busoni
- Diagnostic Imaging Section, Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
9
|
Survival Time after Surgical Debulking and Temozolomide Adjuvant Chemotherapy in Canine Intracranial Gliomas. Vet Sci 2022; 9:vetsci9080427. [PMID: 36006342 PMCID: PMC9414206 DOI: 10.3390/vetsci9080427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/03/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Infiltrative brain tumours are common in dogs. Although different treatments have been used, such as surgery, radiotherapy, chemotherapy, or combinations, guidelines for the most effective management are lacking. In this study, we report the effect of combining surgery and chemotherapy on the survival of 14 dogs with infiltrative gliomas. Four dogs were operated on two or three times to remove the tumors, and only one of these dogs died shortly after the second surgery. All tolerated the surgery with minimal or no deterioration, and all were euthanized between 6 months to 2 years after diagnosis due to tumour progression. To conclude, surgery and chemotherapy, although not curative, can prolong survival in dogs with infiltrative brain tumours. This information may help future research into the most appropriate treatment for this debilitating condition. Abstract Intracranial gliomas are associated with a poor prognosis, and the most appropriate treatment is yet to be defined. The objectives of this retrospective study are to report the time to progression and survival times of a group of dogs with histologically confirmed intracranial gliomas treated with surgical debulking and adjuvant temozolomide chemotherapy. All cases treated in a single referral veterinary hospital from 2014 to 2021 were reviewed. Inclusion criteria comprised a histopathological diagnosis of intracranial glioma, adjunctive chemotherapy, and follow-up until death. Cases were excluded if the owner declined chemotherapy or there was insufficient follow-up information in the clinical records. Fourteen client-owned dogs were included with a median time to progression (MTP) of 156 days (95% CI 133–320 days) and median survival time (MST) of 240 days (95% CI 149–465 days). Temozolomide was the first-line adjuvant chemotherapy but changed to another chemotherapy agent (lomustine, toceranib phosphate, or melphalan) when tumour relapse was either suspected by clinical signs or confirmed by advanced imaging. Of the fourteen dogs, three underwent two surgical resections and one, three surgeries. Survival times (ST) were 241, 428, and 468 days for three dogs treated twice surgically and 780 days for the dog treated surgically three times. Survival times for dogs operated once was 181 days. One case was euthanized after developing aspiration pneumonia, and all other cases after progression of clinical signs due to suspected or confirmed tumour relapse. In conclusion, the results of this study suggest that debulking surgery and adjuvant chemotherapy are well-tolerated options in dogs with intracranial gliomas in which surgery is a possibility and should be considered a potential treatment option. Repeated surgery may be considered for selected cases.
Collapse
|
10
|
Pons-Sorolla M, Dominguez E, Czopowicz M, Suñol A, Maeso Ordás C, Morales Moliner C, Pérez Soteras M, Montoliu P. Clinical and Magnetic Resonance Imaging (MRI) Features, Tumour Localisation, and Survival of Dogs with Presumptive Brain Gliomas. Vet Sci 2022; 9:257. [PMID: 35737309 PMCID: PMC9230849 DOI: 10.3390/vetsci9060257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
Brain gliomas are common tumours diagnosed in dogs. However, limited information is available on the clinical features and overall survival time (OS) in dogs receiving palliative treatment. The aim of this study was to evaluate possible associations between presenting complaint, tumour localisation, Magnetic Resonance Imaging (MRI) features, survival times, and reason for the death of dogs with suspected intracranial glioma treated palliatively. Sixty dogs from a single institution were retrospectively included (from September 2017 to December 2021). Dogs were included if a presumptive diagnosis of brain glioma was obtained based on an MRI scan and medical history. French Bulldogs were overrepresented (40/60); 46 out of 60 dogs (77%) presented due to epileptic seizures (ES) and in 25/60 dogs (42%), cluster seizures or status epilepticus were the first manifestation of the disease. Dogs with suspected gliomas located in the piriform lobe showed a higher probability of presenting due to epilepsy compared to dogs with glioma in other regions, and more frequently died or were euthanised because of increased ES. Magnetic Resonance Imaging (MRI) features differed between localisations. Fronto-olfactory tumours were more frequently, whereas piriform tumours were less frequently, classified as suspected high-grade glioma. The median survival time was 61 days. Dogs with contrast-enhancing suspected gliomas had significantly shorter OS. This study provides additional information on the clinical features and survival of dogs with suspected brain gliomas treated palliatively.
Collapse
Affiliation(s)
- Marta Pons-Sorolla
- AniCura Ars Veterinaria Hospital Veterinari, Carrer dels Cavallers 37, 08034 Barcelona, Spain; (M.P.-S.); (E.D.); (A.S.); (C.M.O.); (C.M.M.); (M.P.S.)
| | - Elisabet Dominguez
- AniCura Ars Veterinaria Hospital Veterinari, Carrer dels Cavallers 37, 08034 Barcelona, Spain; (M.P.-S.); (E.D.); (A.S.); (C.M.O.); (C.M.M.); (M.P.S.)
| | - Michał Czopowicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Anna Suñol
- AniCura Ars Veterinaria Hospital Veterinari, Carrer dels Cavallers 37, 08034 Barcelona, Spain; (M.P.-S.); (E.D.); (A.S.); (C.M.O.); (C.M.M.); (M.P.S.)
| | - Christian Maeso Ordás
- AniCura Ars Veterinaria Hospital Veterinari, Carrer dels Cavallers 37, 08034 Barcelona, Spain; (M.P.-S.); (E.D.); (A.S.); (C.M.O.); (C.M.M.); (M.P.S.)
| | - Carles Morales Moliner
- AniCura Ars Veterinaria Hospital Veterinari, Carrer dels Cavallers 37, 08034 Barcelona, Spain; (M.P.-S.); (E.D.); (A.S.); (C.M.O.); (C.M.M.); (M.P.S.)
| | - Marc Pérez Soteras
- AniCura Ars Veterinaria Hospital Veterinari, Carrer dels Cavallers 37, 08034 Barcelona, Spain; (M.P.-S.); (E.D.); (A.S.); (C.M.O.); (C.M.M.); (M.P.S.)
| | - Patrícia Montoliu
- AniCura Ars Veterinaria Hospital Veterinari, Carrer dels Cavallers 37, 08034 Barcelona, Spain; (M.P.-S.); (E.D.); (A.S.); (C.M.O.); (C.M.M.); (M.P.S.)
| |
Collapse
|
11
|
Coppola G, Morris J, Gutierrez-Quintana R, Burnside S, José-López R. Comparison of response assessment in veterinary neuro-oncology and two volumetric neuroimaging methods to assess therapeutic brain tumour responses in veterinary patients. Vet Comp Oncol 2021; 20:404-415. [PMID: 34792828 DOI: 10.1111/vco.12786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Standardized veterinary neuroimaging response assessment methods for brain tumours are lacking. Consequently, a response assessment in veterinary neuro-oncology (RAVNO) system which uses the sum product of orthogonal lesion diameters on 1-image section with the largest tumour area, has recently been proposed. In this retrospective study, 22 pre-treatment magnetic resonance imaging (MRI) studies from 18 dogs and four cats with suspected intracranial neoplasia were compared by a single observer to 32 post-treatment MRIs using the RAVNO system and two volumetric methods based on tumour margin or area delineation with HOROS and 3D Slicer software, respectively. Intra-observer variability was low, with no statistically significant differences in agreement index between methods (mean AI ± SD, 0.91 ± 0.06 for RAVNO; 0.86 ± 0.08 for HOROS; and 0.91 ± 0.05 for 3D slicer), indicating good reproducibility. Response assessments consisting of complete or partial responses, and stable or progressive disease, agreed in 23 out of 32 (72%) MRI evaluations using the three methods. The RAVNO system failed to identify changes in mass burden detected with volumetric methods in six cases. 3D Slicer differed from the other two methods in three cases involving cysts or necrotic tissue as it allowed for more accurate exclusion of these structures. The volumetric response assessment methods were more precise in determining changes in absolute tumour burden than RAVNO but were more time-consuming to use. Based on observed agreement between methods, low intra-observer variability and decreased time constraint, RAVNO might be a suitable response assessment method for the clinical setting.
Collapse
Affiliation(s)
- Giovanni Coppola
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Joanna Morris
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Rodrigo Gutierrez-Quintana
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shona Burnside
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Roberto José-López
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
12
|
Boss MK. Canine comparative oncology for translational radiation research. Int J Radiat Biol 2021; 98:496-505. [PMID: 34586958 DOI: 10.1080/09553002.2021.1987572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Laboratory and clinical research are essential for advancing radiation research; however, there is a growing awareness that conventional laboratory animal models and early-phase clinical studies in patients have not improved the low success rates and late-stage failures in new cancer therapy efforts. There are considerable costs and inefficiencies in moving preclinical research into effective cancer therapies for patients. Canine translational models of radiation research can fill an important niche between rodent and human studies, ultimately providing valuable, predictive, translational biological and clinical results for human cancer patients. Companion dogs naturally and spontaneously develop cancers over the course of their lifetime. Many canine tumor types share important similarities to human disease, molecularly and biologically, with a comparable clinical course. Dogs receive state-of-the-art medical care, which can include radiotherapy, experimental therapeutics, and novel technologies, offering an important opportunity for radiobiology and radiation oncology research. Notably, the National Cancer Institute has developed the Comparative Oncology Program to promote this area of increased research interest. CONCLUSION In this review, the benefits and limitations of performing translational radiation research in companion dogs will be presented, and current research utilizing the canine model will be highlighted, including studies across research areas focusing on common canine tumor types treated with radiotherapy, comparative normal tissue effects, radiation and immunology research, and alternative radiation therapy approaches involving canine cancer patients.
Collapse
Affiliation(s)
- Mary-Keara Boss
- Flint Animal Cancer Center, Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
13
|
Carter GL, Ogilvie GK, Mohammadian LA, Bergman PJ, Lee RP, Proulx DR. CyberKnife stereotactic radiotherapy for treatment of primary intracranial tumors in dogs. J Vet Intern Med 2021; 35:1480-1486. [PMID: 33755255 PMCID: PMC8163137 DOI: 10.1111/jvim.16086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/05/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022] Open
Abstract
Background Limited data exist about the use, efficacy, and prognostic factors influencing outcome when CyberKnife is used to treat dogs with intracranial neoplasia. Objectives To determine the prognosis and associated prognostic factors for dogs that were imaged, determined to have primary intracranial tumors, and treated with CyberKnife radiotherapy. Animals Fifty‐nine dogs treated with CyberKnife radiotherapy for primary intracranial tumors. Methods Retrospective medical record review of cases from January 2010 to June 2016. Data extracted from medical records included signalment, weight, seizure history, tumor location, tumor type (based on imaging), gross tumor volume, planned tumor volume, treatment dates, radiation dose, recurrence, date of death, and cause of death. Results The median progression‐free interval (PFI) was 347 days (range 47 to 1529 days), and the median survival time (MST) was 738 days (range 4 to 2079 days). Tumor location was significantly associated with PFI when comparing cerebrum (median PFI 357 days; range 47‐1529 days) versus cerebellum (median PFI 97 days; range 97‐168 days) versus brainstem (median PFI 266 days; range 30‐1484 days), P = .03. Additionally, the presumed tumor type was significantly associated with MST (P < .001). Conclusions and Clinical Importance Use of Cyberknife and SRT might improve MST, compared with RT, in dogs with intracranial neoplasia.
Collapse
Affiliation(s)
| | - Gregory K Ogilvie
- VCA California Veterinary Specialists, Carlsbad, California, USA.,Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
| | | | | | - Rachel P Lee
- VCA California Veterinary Specialists, Carlsbad, California, USA
| | - David R Proulx
- VCA California Veterinary Specialists, Carlsbad, California, USA
| |
Collapse
|