1
|
Boudriot E, Gabriel V, Popovic D, Pingen P, Yakimov V, Papiol S, Roell L, Hasanaj G, Xu S, Moussiopoulou J, Priglinger S, Kern C, Schulte EC, Hasan A, Pogarell O, Falkai P, Schmitt A, Schworm B, Wagner E, Keeser D, Raabe FJ. Signature of Altered Retinal Microstructures and Electrophysiology in Schizophrenia Spectrum Disorders Is Associated With Disease Severity and Polygenic Risk. Biol Psychiatry 2024; 96:792-803. [PMID: 38679358 DOI: 10.1016/j.biopsych.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 03/30/2024] [Accepted: 04/14/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Optical coherence tomography and electroretinography studies have revealed structural and functional retinal alterations in individuals with schizophrenia spectrum disorders (SSDs). However, it remains unclear which specific retinal layers are affected; how the retina, brain, and clinical symptomatology are connected; and how alterations of the visual system are related to genetic disease risk. METHODS Optical coherence tomography, electroretinography, and brain magnetic resonance imaging were applied to comprehensively investigate the visual system in a cohort of 103 patients with SSDs and 130 healthy control individuals. The sparse partial least squares algorithm was used to identify multivariate associations between clinical disease phenotype and biological alterations of the visual system. The association of the revealed patterns with individual polygenic disease risk for schizophrenia was explored in a post hoc analysis. In addition, covariate-adjusted case-control comparisons were performed for each individual optical coherence tomography and electroretinography parameter. RESULTS The sparse partial least squares analysis yielded a phenotype-eye-brain signature of SSDs in which greater disease severity, longer duration of illness, and impaired cognition were associated with electrophysiological alterations and microstructural thinning of most retinal layers. Higher individual loading onto this disease-relevant signature of the visual system was significantly associated with elevated polygenic risk for schizophrenia. In case-control comparisons, patients with SSDs had lower macular thickness, thinner retinal nerve fiber and inner plexiform layers, less negative a-wave amplitude, and lower b-wave amplitude. CONCLUSIONS This study demonstrates multimodal microstructural and electrophysiological retinal alterations in individuals with SSDs that are associated with disease severity and individual polygenic burden.
Collapse
Affiliation(s)
- Emanuel Boudriot
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany
| | - Vanessa Gabriel
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - David Popovic
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany
| | - Pauline Pingen
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Vladislav Yakimov
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Sergi Papiol
- Max Planck Institute of Psychiatry, Munich, Germany; Institute of Psychiatric Phenomics and Genomics, LMU Munich, Munich, Germany
| | - Lukas Roell
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; NeuroImaging Core Unit Munich, LMU University Hospital, LMU Munich, Munich, Germany
| | - Genc Hasanaj
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; Evidence-Based Psychiatry and Psychotherapy, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Simiao Xu
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Joanna Moussiopoulou
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Siegfried Priglinger
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christoph Kern
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Eva C Schulte
- Institute of Psychiatric Phenomics and Genomics, LMU Munich, Munich, Germany; Institute of Human Genetics, University Hospital, Faculty of Medicine, University of Bonn, Bonn, Germany; Department of Psychiatry and Psychotherapy, University Hospital, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Faculty of Medicine, University of Augsburg, Augsburg, Germany; German Center for Mental Health, partner site Munich-Augsburg, Germany
| | - Oliver Pogarell
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany; German Center for Mental Health, partner site Munich-Augsburg, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany; German Center for Mental Health, partner site Munich-Augsburg, Germany; Laboratory of Neurosciences (LIM-27), Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Benedikt Schworm
- Department of Ophthalmology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Elias Wagner
- Evidence-Based Psychiatry and Psychotherapy, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; NeuroImaging Core Unit Munich, LMU University Hospital, LMU Munich, Munich, Germany; Munich Center for Neurosciences, LMU Munich, Planegg-Martinsried, Germany
| | - Florian J Raabe
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany.
| |
Collapse
|
2
|
Szilágyi A, Takács B, Szekeres R, Tarjányi V, Nagy D, Priksz D, Bombicz M, Kiss R, Szabó AM, Lehoczki A, Gesztelyi R, Juhász B, Szilvássy Z, Varga B. Effects of voluntary and forced physical exercise on the retinal health of aging Wistar rats. GeroScience 2024; 46:4707-4728. [PMID: 38795184 PMCID: PMC11336036 DOI: 10.1007/s11357-024-01208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/13/2024] [Indexed: 05/27/2024] Open
Abstract
Aging is accompanied by an increased prevalence of degenerative conditions, including those affecting ocular health, which significantly impact quality of life and increase the burden on healthcare systems. Among these, retinal aging is of particular concern due to its direct link to vision impairment, a leading cause of disability in the elderly. Vision loss in the aging population is associated with heightened risks of cognitive decline, social isolation, and morbidity. This study addresses the critical gap in our understanding of modifiable lifestyle factors, such as physical exercise, that may mitigate retinal aging and its related pathologies. We investigated the effects of different exercise regimens-voluntary (recreational-type) and forced (high-intensity)-on the retinal health of aging Wistar rats (18-month-old), serving as a model for studying the translational potential of exercise interventions in humans. Male Wistar rats were divided into four groups: a young control (3-month-old) for baseline comparison, an aged sedentary control, an aged group engaging in voluntary exercise via a running wheel in their cage, and an aged group subjected to forced exercise on a treadmill for six sessions of 20 min each per week. After a 6-month experimental period, we assessed retinal function via electroretinography (ERG), measured retinal thickness histologically, and analyzed protein expression changes relevant to oxidative stress, inflammation, and anti-aging mechanisms. Our findings reveal that voluntary exercise positively impacts retinal function and morphology, reducing oxidative stress and inflammation markers while enhancing anti-aging protein expression. In contrast, forced exercise showed diminished benefits. These insights underscore the importance of exercise intensity and preference in preserving retinal health during aging. The study highlights the potential of recreational physical activity as a non-invasive strategy to counteract retinal aging, advocating for further research into exercise regimens as preventative therapies for age-related ocular degenerations.
Collapse
Affiliation(s)
- Anna Szilágyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Barbara Takács
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Réka Szekeres
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Vera Tarjányi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Dávid Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Dániel Priksz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Mariann Bombicz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Rita Kiss
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Adrienn Mónika Szabó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Andrea Lehoczki
- Departments of Hematology and Stem Cell Transplantation, South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Saint Ladislaus Campus, Budapest, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Béla Juhász
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Zoltán Szilvássy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary
| | - Balázs Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Nagyerdei Krt 98., 4032, Debrecen, Hungary.
| |
Collapse
|
3
|
Jung R, Kempf M, Righetti G, Nasser F, Kühlewein L, Stingl K, Stingl K. Age-dependencies of the electroretinogram in healthy subjects. Doc Ophthalmol 2024; 149:99-113. [PMID: 39251480 PMCID: PMC11442549 DOI: 10.1007/s10633-024-09991-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
OBJECTIVE The purpose of this study was to evaluate the age-dependency of amplitudes and implicit times in the electroretinograms (ERGs) of healthy individuals and provide clinicians and researchers with a reference for a variety of stimulus paradigms. DESIGN AND METHODS Full-field electroretinography was conducted on 73 healthy participants aged 14-73 using an extended ISCEV standard protocol that included an additional 9 Hz flicker stimulus for assessing rod function and special paradigms for isolated On-Off and S-cone responses. Correlation coefficients and best-fit regression models for each parameter's age-dependency were calculated. RESULTS Dark-adapted ERGs, in particular, displayed notable age-related alterations. The attenuation and delay of the b-wave with higher age were most significant in the dark-adapted, rod-driven 0.001 cd s/m2 flash ERG. The age-dependent reduction of the a-wave amplitude was strongest in the standard dark-adapted 3 cd s/m2 flash condition. Cone-driven, light-adapted responses to either flash or flicker stimuli displayed comparatively small alterations at higher age. S-cone function tended to diminish at an early age, but the effect was not significant in the whole population. CONCLUSION The results suggest that rod and cone function decline at different rates with age, with rods being generally more affected by aging. Nonetheless, response amplitudes displayed a wide variability across the whole sample.
Collapse
Affiliation(s)
- Ronja Jung
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Elfriede-Aulhorn-Str.7, 72076, Tuebingen, Germany.
| | - Melanie Kempf
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Elfriede-Aulhorn-Str.7, 72076, Tuebingen, Germany
- Center for Rare Eye Diseases, University of Tuebingen, Tuebingen, Germany
| | - Giulia Righetti
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Elfriede-Aulhorn-Str.7, 72076, Tuebingen, Germany
| | - Fadi Nasser
- University Eye Hospital, University of Leipzig, Leipzig, Germany
| | - Laura Kühlewein
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Elfriede-Aulhorn-Str.7, 72076, Tuebingen, Germany
| | - Katarina Stingl
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Elfriede-Aulhorn-Str.7, 72076, Tuebingen, Germany
- Center for Rare Eye Diseases, University of Tuebingen, Tuebingen, Germany
| | - Krunoslav Stingl
- Center for Ophthalmology, University Eye Hospital, University of Tuebingen, Elfriede-Aulhorn-Str.7, 72076, Tuebingen, Germany
| |
Collapse
|
4
|
Guo Y, Mao S, Zhou Z. Effects of intramuscular alfaxalone and dexmedetomidine alone and combined on ocular, electroretinographic, and cardiorespiratory parameters in normal cats. Front Vet Sci 2024; 11:1407928. [PMID: 39021405 PMCID: PMC11251925 DOI: 10.3389/fvets.2024.1407928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/17/2024] [Indexed: 07/20/2024] Open
Abstract
Background This study aimed to determine the effects of intramuscular (IM) administration of alfaxalone with or without dexmedetomidine on short electroretinography (ERG), ocular parameters and cardiorespiratory in healthy cats. Methods Eight healthy female spayed cats were treated with three sedation protocols: IM administration of 5 μg/kg dexmedetomidine (DEX), 5 mg/kg alfaxalone (ALF), and 5 μg/kg dexmedetomidine plus 5 mg/kg alfaxalone (DEX + ALF). The washout period after each treatment was 2 weeks. Physiological parameters, time metrics, intraocular pressure (IOP), Schirmer tear test 1 (STT-1) and a short ERG protocol were recorded. For age data, weight data, time metrics and ERG data, one-way ANOVA with Bonferroni posterior comparisons were performed. For physiological parameters, IOP and STT-1 data, two-way repeated measures ANOVA with Bonferroni posterior comparisons were performed. Statistical significance was set at a p-value <0.05. Results IOPs were increased in all three groups compared to baseline and showed no significant differences among three groups at any time point. STT-1 values were decreased significantly during the process. Significant differences were noticed between a-wave amplitude in the dark-adapted response between DEX and ALF, and a-wave amplitude in light-adapted response between ALF and DEX + ALF. Conclusion This study demonstrates the feasibility of three sedation protocols for short ERG recording in cats. All these treatments resulted in increased IOP values and reduced STT-1 values. But baseline data of ERG was not obtained as a blank control in cats.
Collapse
Affiliation(s)
| | | | - Zhenlei Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
5
|
Vėbraitė I, Bar-Haim C, David-Pur M, Hanein Y. Bi-directional electrical recording and stimulation of the intact retina with a screen-printed soft probe: a feasibility study. Front Neurosci 2024; 17:1288069. [PMID: 38264499 PMCID: PMC10804455 DOI: 10.3389/fnins.2023.1288069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Electrophysiological investigations of intact neural circuits are challenged by the gentle and complex nature of neural tissues. Bi-directional electrophysiological interfacing with the retina, in its intact form, is particularly demanding and currently there is no feasible approach to achieve such investigations. Here we present a feasibility study of a novel soft multi-electrode array suitable for bi-directional electrophysiological study of the intact retina. Methods Screen-printed soft electrode arrays were developed and tested. The soft probes were designed to accommodate the curvature of the retina in the eye and offer an opportunity to study the retina in its intact form. Results For the first time, we show both electrical recording and stimulation capabilities from the intact retina. In particular, we demonstrate the ability to characterize retina responses to electrical stimulation and reveal stable, direct, and indirect responses compared with ex-vivo conditions. Discussion These results demonstrate the unique performances of the new probe while also suggesting that intact retinas retain better stability and robustness than ex-vivo retinas making them more suitable for characterizing retina responses to electrical stimulation.
Collapse
Affiliation(s)
- Ieva Vėbraitė
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Chen Bar-Haim
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Moshe David-Pur
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yael Hanein
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Ghilardi S, Bagardi M, Frattini S, Barbariga GE, Brambilla PG, Minozzi G, Polli M. Genotypic and allelic frequencies of progressive rod-cone degeneration and other main variants associated with progressive retinal atrophy in Italian dogs. Vet Rec Open 2023; 10:e77. [PMID: 38028226 PMCID: PMC10665785 DOI: 10.1002/vro2.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/28/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background Progressive retinal atrophy (PRA) is a group of canine inherited retinal disorders affecting up to 100 breeds. Genetic tests are available. The aim of this study was to retrospectively evaluate the genetic variants associated with PRA among dogs residing in Italy. Methods Genetic data of 20 variants associated with different forms of PRA were collected through DNA tests over a 10-year period for several dog breeds in the Italian canine population. Allelic and genotypic frequencies were calculated. Results A total of 1467 DNA tests were conducted for 1180 dogs. Progressive rod-cone degeneration (PRCD) was the most tested form of PRA, with 58.15% (n = 853) of the DNA tests. Among the widespread breeds in Italy, Labrador retrievers and toy poodles showed a prevalence of heterozygous carriers higher than 15%. Among the others, 175 DNA tests for golden retrievers (GR) showed a prevalence of heterozygous carriers of 13.04% (n = 12) for GR-PRA1 and 8.43% (n = 7) for GR-PRA2. The zwergschnauzer breed was tested for the type B and/or the type B1 forms of PRA with 25.32% (n = 20) heterozygous carriers and 0%, respectively. Conclusion The study offers an overview of the prevalence of PRCD and other PRA forms within some of the most popular breeds in Italy.
Collapse
Affiliation(s)
- Sara Ghilardi
- Department of Veterinary Medicine and Animal Sciences—DIVASUniversity of MilanLodiItaly
| | - Mara Bagardi
- Department of Veterinary Medicine and Animal Sciences—DIVASUniversity of MilanLodiItaly
| | | | - Giulia E. Barbariga
- Department of Veterinary Medicine and Animal Sciences—DIVASUniversity of MilanLodiItaly
| | - Paola G. Brambilla
- Department of Veterinary Medicine and Animal Sciences—DIVASUniversity of MilanLodiItaly
| | - Giulietta Minozzi
- Department of Veterinary Medicine and Animal Sciences—DIVASUniversity of MilanLodiItaly
| | - Michele Polli
- Department of Veterinary Medicine and Animal Sciences—DIVASUniversity of MilanLodiItaly
| |
Collapse
|
7
|
Occelli LM, Zobel L, Stoddard J, Wagner J, Pasmanter N, Querubin J, Renner LM, Reynaga R, Winkler PA, Sun K, Marinho LFLP, O'Riordan CR, Frederick A, Lauer A, Tsang SH, Hauswirth WW, McGill TJ, Neuringer M, Michalakis S, Petersen-Jones SM. Development of a translatable gene augmentation therapy for CNGB1-retinitis pigmentosa. Mol Ther 2023; 31:2028-2041. [PMID: 37056049 PMCID: PMC10362398 DOI: 10.1016/j.ymthe.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/07/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023] Open
Abstract
In this study, we investigate a gene augmentation therapy candidate for the treatment of retinitis pigmentosa (RP) due to cyclic nucleotide-gated channel beta 1 (CNGB1) mutations. We use an adeno-associated virus serotype 5 with transgene under control of a novel short human rhodopsin promoter. The promoter/capsid combination drives efficient expression of a reporter gene (AAV5-RHO-eGFP) exclusively in rod photoreceptors in primate, dog, and mouse following subretinal delivery. The therapeutic vector (AAV5-RHO-CNGB1) delivered to the subretinal space of CNGB1 mutant dogs restores rod-mediated retinal function (electroretinographic responses and vision) for at least 12 months post treatment. Immunohistochemistry shows human CNGB1 is expressed in rod photoreceptors in the treated regions as well as restoration of expression and trafficking of the endogenous alpha subunit of the rod CNG channel required for normal channel formation. The treatment reverses abnormal accumulation of the second messenger, cyclic guanosine monophosphate, which occurs in rod photoreceptors of CNGB1 mutant dogs, confirming formation of a functional CNG channel. In vivo imaging shows long-term preservation of retinal structure. In conclusion, this study establishes the long-term efficacy of subretinal delivery of AAV5-RHO-CNGB1 to rescue the disease phenotype in a canine model of CNGB1-RP, confirming its suitability for future clinical development.
Collapse
Affiliation(s)
- Laurence M Occelli
- College of Veterinary Medicine, Michigan State University, 736 Wilson Road, East Lansing, MI 48864, USA
| | - Lena Zobel
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; Department of Ophthalmology, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Jonathan Stoddard
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185(th) Avenue, Beaverton, OR 97005, USA
| | - Johanna Wagner
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Nathaniel Pasmanter
- College of Veterinary Medicine, Michigan State University, 736 Wilson Road, East Lansing, MI 48864, USA
| | - Janice Querubin
- College of Veterinary Medicine, Michigan State University, 736 Wilson Road, East Lansing, MI 48864, USA
| | - Lauren M Renner
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185(th) Avenue, Beaverton, OR 97005, USA
| | - Rene Reynaga
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185(th) Avenue, Beaverton, OR 97005, USA
| | - Paige A Winkler
- College of Veterinary Medicine, Michigan State University, 736 Wilson Road, East Lansing, MI 48864, USA
| | - Kelian Sun
- College of Veterinary Medicine, Michigan State University, 736 Wilson Road, East Lansing, MI 48864, USA
| | - Luis Felipe L P Marinho
- College of Veterinary Medicine, Michigan State University, 736 Wilson Road, East Lansing, MI 48864, USA
| | | | - Amy Frederick
- Genomic Medicine Unit, Sanofi, 225 Second Avenue, Waltham, MA 02451, USA
| | - Andreas Lauer
- Casey Eye Institute, Oregon Health & Science University, 515 Campus Drive, Portland, OR 97239, USA
| | - Stephen H Tsang
- Jonas Children's Vision Care, Departments of Ophthalmology, Pathology and Cell Biology, Institute of Human Nutrition, Columbia Stem Cell Initiative, Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - William W Hauswirth
- Department of Ophthalmology, College of Medicine, University of Florida, Box 100284 HSC, Gainesville, FL 32610, USA
| | - Trevor J McGill
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185(th) Avenue, Beaverton, OR 97005, USA; Casey Eye Institute, Oregon Health & Science University, 515 Campus Drive, Portland, OR 97239, USA
| | - Martha Neuringer
- Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185(th) Avenue, Beaverton, OR 97005, USA; Casey Eye Institute, Oregon Health & Science University, 515 Campus Drive, Portland, OR 97239, USA
| | - Stylianos Michalakis
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; Department of Ophthalmology, University Hospital, LMU Munich, 80336 Munich, Germany.
| | - Simon M Petersen-Jones
- College of Veterinary Medicine, Michigan State University, 736 Wilson Road, East Lansing, MI 48864, USA.
| |
Collapse
|
8
|
Bhatt Y, Hunt DM, Carvalho LS. The origins of the full-field flash electroretinogram b-wave. Front Mol Neurosci 2023; 16:1153934. [PMID: 37465364 PMCID: PMC10351385 DOI: 10.3389/fnmol.2023.1153934] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/12/2023] [Indexed: 07/20/2023] Open
Abstract
The electroretinogram (ERG) measures the electrical activity of retinal neurons and glial cells in response to a light stimulus. Amongst other techniques, clinicians utilize the ERG to diagnose various eye diseases, including inherited conditions such as cone-rod dystrophy, rod-cone dystrophy, retinitis pigmentosa and Usher syndrome, and to assess overall retinal health. An ERG measures the scotopic and photopic systems separately and mainly consists of an a-wave and a b-wave. The other major components of the dark-adapted ERG response include the oscillatory potentials, c-wave, and d-wave. The dark-adapted a-wave is the initial corneal negative wave that arises from the outer segments of the rod and cone photoreceptors hyperpolarizing in response to a light stimulus. This is followed by the slower, positive, and prolonged b-wave, whose origins remain elusive. Despite a large body of work, there remains controversy around the mechanisms involved in the generation of the b-wave. Several hypotheses attribute the origins of the b-wave to bipolar or Müller glial cells or a dual contribution from both cell types. This review will discuss the current hypothesis for the cellular origins of the dark-adapted ERG, with a focus on the b-wave.
Collapse
Affiliation(s)
- Yashvi Bhatt
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute Ltd., Nedlands, WA, Australia
| | - David M. Hunt
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute Ltd., Nedlands, WA, Australia
| | - Livia S. Carvalho
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia
- Lions Eye Institute Ltd., Nedlands, WA, Australia
| |
Collapse
|
9
|
Pasmanter N, Petersen-Jones SM. Characterization of scotopic and mesopic rod signaling pathways in dogs using the On-Off electroretinogram. BMC Vet Res 2022; 18:422. [PMID: 36463174 PMCID: PMC9719241 DOI: 10.1186/s12917-022-03505-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND The On-Off, or long flash, full field electroretinogram (ERG) separates retinal responses to flash onset and offset. Depending on degree of dark-adaptation and stimulus strength the On and Off ERG can be shaped by rod and cone photoreceptors and postreceptoral cells, including ON and OFF bipolar cells. Interspecies differences have been shown, with predominantly positive Off-response in humans and other primates and a negative Off-response in rodents and dogs. However, the rod signaling pathways that contribute to these differential responses have not been characterized. In this study, we designed a long flash protocol in the dog that varied in background luminance and stimulus strength allowing for some rod components to be present to better characterize how rod pathways vary from scotopic to mesopic conditions. RESULTS With low background light the rod a-wave remains while the b-wave is significantly reduced resulting in a predominantly negative waveform in mesopic conditions. Through modeling and subtraction of the rod-driven response, we show that rod bipolar cells saturate with dimmer backgrounds than rod photoreceptors, resulting in rod hyperpolarization contributing to a large underlying negativity with mesopic backgrounds. CONCLUSIONS Reduction in rod bipolar cell responses in mesopic conditions prior to suppression of rod photoreceptor responses may reflect the changes in signaling pathway of rod-driven responses needed to extend the range of lighting conditions over which the retina functions.
Collapse
Affiliation(s)
- Nate Pasmanter
- grid.17088.360000 0001 2150 1785Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Road, D208 East Lansing, MI USA
| | - Simon M. Petersen-Jones
- grid.17088.360000 0001 2150 1785Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, 736 Wilson Road, D208 East Lansing, MI USA
| |
Collapse
|
10
|
Abstract
PURPOSE Mutations in the cyclic nucleotide-gated (CNG) channel beta subunit (CNGB1) are an important cause of recessive retinitis pigmentosa. We identified a large animal model with a truncating mutation of CNGB1. This study reports the persistence of small, desensitized rod ERG responses in this model. METHODS Dark-, light-adapted and chromatic ERGs were recorded in CNGB1 mutant dogs and age and breed matched controls. Comparisons were made with a dog model known to completely lack rod function; young dogs with a mutation in the rod phosphodiesterase 6 alpha subunit (PDE6A-/-). Immunohistochemistry (IHC) to label the rod CNG alpha (CNGA1) and CNGB1 subunits was performed. RESULTS The dark-adapted ERG of CNGB1 mutant dogs had a raised response threshold with lack of normal rod response and a remaining cone response. Increasing stimulus strength resulted in the appearance of a separate, slower positive waveform following the dark-adapted cone b-wave. With increasing stimulus strength this increased in amplitude and became faster to merge with the initial b-wave. Comparison of responses from PDE6A-/- (cone only dogs) with CNGB1 mutant dogs to red and blue flashes and between dark-adapted and light-adapted responses supported the hypothesis that the CNGB1 mutant dog had residual desensitized rod responses. CNGB1 mutant dogs had a small amount of CNGA1 detectable in the outer segments. CONCLUSIONS CNGB1 mutant dogs have a residual ERG response from desensitized rods. This may be due to low levels of CNGA1 in outer segments.
Collapse
|
11
|
Ventrella D, Maya-Vetencourt JF, Elmi A, Barone F, Aniballi C, Muscatello LV, Mete M, Pertile G, Benfenati F, Bacci ML. The p-ERG spatial acuity in the biomedical pig under physiological conditions. Sci Rep 2022; 12:15479. [PMID: 36104429 PMCID: PMC9474814 DOI: 10.1038/s41598-022-19925-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 09/06/2022] [Indexed: 11/09/2022] Open
Abstract
Pigs are becoming an important pre-clinical animal species for translational ophthalmology, due to similarities with humans in anatomical and physiological patterns. Different models of eye disorders have been proposed, and they are good candidates to assess biocompatibility/functionality of retinal prostheses. Electroretinography is a common tool allowing to gain information on retinal function, with several types of electroretinogram (ERG) been implemented including full field (ff-ERG), multifocal (mf-ERG) and pattern (p-ERG). p-ERG represents a valuable tool to monitor Retinal Ganglion Cells (RGCs) activity and can be used to calculate p-ERG spatial acuity. Unfortunately, scarce methodological data are available regarding recording/interpretation of p-ERG and retinal acuity in biomedical pigs yet enhancing knowledge regarding pig vision physiology will allow for more refined and responsible use of such species. Aim of this study was to record p-ERG in juvenile pigs to functionally assess visual acuity. Six female hybrid pigs underwent two p-ERG recording sessions at 16 and 19 weeks of age. Photopic ff-ERG were also recorded; optical coherence tomography (OCT) and histology were used to confirm retinal integrity. ff-ERG signals were repeatable within/across sessions. All p-ERG traces consistently displayed characterizing peaks, and the progressive decrease of amplitude in response to the increment of spatial frequency revealed the reliability of the method. Mean p-ERG spatial acuities were 5.7 ± 0.14 (16 weeks) and 6.2 ± 0.15 cpd (19 weeks). Overall, the p-ERG recordings described in the present work seem reliable and repeatable, and may represent an important tool when it comes to vision assessment in pigs.
Collapse
|
12
|
Petersen-Jones SM, Pasmanter N, Occelli LM, Gervais KJ, Mowat FM, Querubin J, Winkler PA. An unusual inherited electroretinogram feature with an exaggerated negative component in dogs. Vet Ophthalmol 2022; 25:385-397. [PMID: 35713167 PMCID: PMC9540982 DOI: 10.1111/vop.12998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To assess an inherited abnormal negative response electroretinogram (NRE) that originated in a family of Papillon dogs. ANIMALS STUDIED Thirty-eight dogs (Papillons, or Papillon cross Beagles or Beagles). PROCEDURES Dogs underwent routine ophthalmic examination and a detailed dark-adapted, light-adapted and On-Off electroretinographic study. Vision was assessed using a four-choice exit device. Spectral-domain optical coherence tomography (SD-OCT) was performed on a subset of dogs. Two affected males were outcrossed to investigate the mode of inheritance of the phenotype. RESULTS The affected dogs had an increased underlying negative component to the ERG. This was most pronounced in the light-adapted ERG, resulting in a reduced b-wave and an exaggerated photopic negative response (PhNR). Changes were more pronounced with stronger flashes. Similarly, the On-response of the On-Off ERG had a reduced b-wave and a large post-b-wave negative component. The dark-adapted ERG had a significant increase in the scotopic threshold response (STR) and a significant reduction in the b:a-wave ratio. Significant changes could be detected at 2 months of age but became more pronounced with age. Vision testing using a four-choice device showed affected dogs had reduced visual performance under the brightest light condition. There was no evidence of a degenerative process in the affected dogs up to 8.5 years of age. Test breeding results suggested the NRE phenotype had an autosomal dominant mode of inheritance. CONCLUSIONS We describe an inherited ERG phenotype in Papillon dogs characterized by an underlying negative component affecting both dark- and light-adapted ERG responses.
Collapse
Affiliation(s)
- Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Nate Pasmanter
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Laurence M Occelli
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Kristen J Gervais
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA.,South Shore Animal Hospital, Boston, Massachusetts, USA
| | - Freya M Mowat
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA.,Department of Surgical Sciences School of Veterinary Medicine, and Department of Ophthalmology and Visual Sciences School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Janice Querubin
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Paige A Winkler
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
13
|
Wegg ML, Pollard D, Ofri R. Retrospective evaluation of pre-surgical electroretinography results in a mixed-breed canine population presented for cataract removal surgery. Vet Ophthalmol 2022; 26:145-154. [PMID: 35649104 DOI: 10.1111/vop.13001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Electroretinography (ERG) is used prior to cataract removal surgery to assess retinal function. We aimed to replicate and improve upon previous studies by performing a full ECVO protocol and by examining the retina post-surgery in all patients. ANIMALS STUDIED One hundred twenty-seven eyes from 67 dogs were included in the study. PROCEDURES A full ECVO protocol electroretinography, which includes extensive rod and cone analysis, was performed on all dogs presenting for cataract surgery. RESULTS Our main findings were that amplitudes, but not implicit times of rod responses decreased with advanced cataracts. Amplitudes of the single flash rod and rod flicker responses were significantly lower in eyes with mature cataracts, and the former also decreased in hypermature cataracts. Cone flicker amplitude responses were also significantly lower in eyes with mature and hypermature cataracts. However, mixed single flash rod-cone and cone responses, with the exception of the mixed rod-cone a-wave amplitude in eyes with hypermature cataracts, were unaffected by cataract stage. The b-wave amplitude of the scotopic, mixed rod-cone, and photopic cone responses were affected by age and decreased by an average of 2.9, 7.5, and 1.5 μV/year, retrospectively (p < 0.01). CONCLUSIONS Lower ERG amplitudes in canine cataract patients may result from aging or the presence of advanced cataracts and may not indicate the presence of retinal disease.
Collapse
Affiliation(s)
- Michaela L Wegg
- The Roslin Institute, The University of Edinburgh, Midlothian, UK
| | | | - Ron Ofri
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
14
|
Morriss NJ, Conley GM, Hodgson N, Boucher M, Ospina-Mora S, Fagiolini M, Puder M, Mejia L, Qiu J, Meehan W, Mannix R. Visual Dysfunction after Repetitive Mild Traumatic Brain Injury in a Mouse Model and Ramifications on Behavioral Metrics. J Neurotrauma 2021; 38:2881-2895. [PMID: 34375128 PMCID: PMC10495212 DOI: 10.1089/neu.2021.0165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is a major cause of morbidity and mortality with a poorly understood pathophysiology. Animal models have been increasingly utilized to better understand mTBI and recent research has identified visual deficits in these models that correspond to human literature. While visual impairment is being further characterized within TBI, the implications of impaired vision on behavioral tasks commonly utilized in animal models has not been well described thus far. Visual deficits may well confound behavioral tests that are believed to be isolated to cognitive functioning such as learning and memory. We utilized a mouse model of repetitive mTBI (rmTBI) to further characterize visual deficits using an optomotor task, electroretinogram, and visually evoked potential, and located likely areas of damage to the visual pathway. Mice were tested on multiple behavioral metrics, including a touchscreen conditional learning task to better identify the contribution of visual dysfunction to behavioral alterations. We found that rmTBI caused visual dysfunction resulting from damage distal to the retina that likely involves pathology within the optic nerve. Moreover, loss of vision led to poorer performance of rmTBI animals on classic behavioral tests such as the Morris water maze that would otherwise be attributed solely to learning and memory deficits. The touchscreen conditional learning task was able to differentiate rmTBI induced learning and memory dysfunction from visual impairment and is a valuable tool for elucidating subtle changes resulting from TBI.
Collapse
Affiliation(s)
- Nicholas J. Morriss
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Grace M. Conley
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Nathaniel Hodgson
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Masen Boucher
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Sara Ospina-Mora
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Michaela Fagiolini
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Mark Puder
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Leo Mejia
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Jianhua Qiu
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - William Meehan
- Harvard Medical School, Boston, Massachusetts, USA
- The Micheli Center for Sports Injury Prevention, Boston, Massachusetts, USA
- Sports Concussion Clinic, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Rebekah Mannix
- Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
He B, Yang J, Liu Y, Xie X, Hao H, Xing X, Liu W. An in situ-forming polyzwitterion hydrogel: Towards vitreous substitute application. Bioact Mater 2021; 6:3085-3096. [PMID: 33778190 PMCID: PMC7960944 DOI: 10.1016/j.bioactmat.2021.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/06/2021] [Accepted: 02/20/2021] [Indexed: 12/18/2022] Open
Abstract
Development of a biostable and biosafe vitreous substitute is highly desirable, but remains a grand challenge. Herein, we propose a novel strategy for constructing a readily administered vitreous substitute based on a thiol-acrylate clickable polyzwitterion macromonomer. A biocompatible multivinyl polycarboxybetaine (PCB-OAA) macromonomer is designed and synthesized, and mixed with dithiothreitol (DTT) via a Michael addition reaction to form a hydrogel in vitreous cavity. This resultant PCB-OAA hydrogel exhibits controllable gelation time, super anti-fouling ability against proteins and cells, excellent biocompatibility, and approximate key parameters to human vitreous body including equilibrium water content, density, optical properties, modulus. Remarkably, outperforming clinically used silicone oil in biocompatibility, this rapidly formed hydrogel in the vitreous cavity of rabbit eyes remains stable in vitreous cavity, showing an appealing ability to prevent significantly inflammatory response, fibrosis and complications such as raised intraocular pressure (IOP), and cataract formation. This zwitterionic polymer hydrogel holds great potential as a vitreous substitute.
Collapse
Affiliation(s)
- Binbin He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Jianhai Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Yang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Xianhua Xie
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Huijie Hao
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xiaoli Xing
- Tianjin International Joint Research and Development Centre of Ophthalmology and Vision Science, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
16
|
Susanti L, Kang S, Kim S, Park S, Lee S, Kim SA, Seo K. Effect of mydriasis with topical rocuronium bromide on electroretinography in domestic pigeons (Columba livia). J Vet Med Sci 2021; 83:1395-1400. [PMID: 34261835 PMCID: PMC8498831 DOI: 10.1292/jvms.21-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study aimed to investigate the effect of mydriasis using topical rocuronium bromide on electroretinography (ERG) in domestic pigeons (Columba livia). Scotopic mixed rod and cone, photopic cone, and photopic flicker ERG were performed on nine eyes of nine healthy adult pigeons under sedation. Each pigeon underwent two sets of ERG recordings. First, without the induction of mydriasis (control) and the second time with the induction of mydriasis using topical rocuronium bromide (treatment). The results were compared using either the Student's t-test or Wilcoxon rank-sum test, where a P-value of <0.05 was considered statistically significant. No significant differences were observed in the a- and b-wave implicit times and amplitudes during scotopic ERG between the two groups. The a- and b-wave amplitudes in the photopic cone were significantly higher in the treatment group (63.83 ± 32.33 and 191.75 ± 94.46 µV) compared to the control group (46.15 ± 27.60 and 116.76 ± 70.65 µV; P=0.045 and P=0.032, respectively). The photopic flicker amplitude was also significantly higher in the treatment group (76.23 ± 48.56 µV) than in the control group (42.18 ± 31.18 µV; P=0.044). No statistically significant differences were observed in the photopic cone and flicker implicit times between both groups. In conclusions, mydriasis induced by rocuronium bromide in pigeon resulting in higher amplitudes during the photopic ERG but not scotopic ERG.
Collapse
Affiliation(s)
- Lina Susanti
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Seonmi Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Sunhyo Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Sanghyun Park
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Songhui Lee
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Su An Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| | - Kangmoon Seo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
17
|
ERG assessment of altered retinal function in canine models of retinitis pigmentosa and monitoring of response to translatable gene augmentation therapy. Doc Ophthalmol 2021; 143:171-184. [PMID: 33818677 DOI: 10.1007/s10633-021-09832-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 03/16/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To analyze ERG responses from two dog models of retinitis pigmentosa, one due to a PDE6A mutation and the other a CNGB1 mutation, both to assess the effect of these mutations on retinal function and the ability of gene augmentation therapy to restore normal function. METHODS Scotopic and photopic ERGs from young affected and normal control dogs and affected dogs following AAV-mediated gene augmentation therapy were analyzed. Parameters reflecting rod and cone function were collected by modeling the descending slope of the a-wave to measure receptor response and sensitivity. Rod-driven responses were further assessed by Naka-Rushton fitting of the first limb of the scotopic b-wave luminance-response plot. RESULTS PDE6A-/- dogs showed a dramatic decrease in rod-driven responses with very reduced rod maximal responses and sensitivity. There was a minor reduction in the amplitude of maximal cone responses. In contrast, CNGB1-/- dogs had some residual rod responses with reduced amplitude and sensitivity and normal cone responses. Following gene augmentation therapy, rod parameters were substantially improved in both models with restoration of sensitivity parameters log S and log K and a large increase in log Rmax in keeping with rescue of normal rod phototransduction in the treated retinal regions. CONCLUSIONS Modeling of rod and cone a-waves and the luminance-response function of the scotopic b-wave characterized the loss of rod photoreceptor function in two dog models of retinitis pigmentosa and showed the effectiveness of gene augmentation therapy in restoring normal functional parameters.
Collapse
|