1
|
Tran LNT, González-Fernández C, Gomez-Pastora J. Impact of Different Red Blood Cell Storage Solutions and Conditions on Cell Function and Viability: A Systematic Review. Biomolecules 2024; 14:813. [PMID: 39062526 PMCID: PMC11274915 DOI: 10.3390/biom14070813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Red blood cell (RBC) storage solutions have evolved significantly over the past decades to optimize the preservation of cell viability and functionality during hypothermic storage. This comprehensive review provides an in-depth analysis of the effects of various storage solutions and conditions on critical RBC parameters during refrigerated preservation. A wide range of solutions, from basic formulations such as phosphate-buffered saline (PBS), to advanced additive solutions (ASs), like AS-7 and phosphate, adenine, glucose, guanosine, saline, and mannitol (PAGGSM), are systematically compared in terms of their ability to maintain key indicators of RBC integrity, including adenosine triphosphate (ATP) levels, morphology, and hemolysis. Optimal RBC storage requires a delicate balance of pH buffering, metabolic support, oxidative damage prevention, and osmotic regulation. While the latest alkaline solutions enable up to 8 weeks of storage, some degree of metabolic and morphological deterioration remains inevitable. The impacts of critical storage conditions, such as the holding temperature, oxygenation, anticoagulants, irradiation, and processing methods, on the accumulation of storage lesions are also thoroughly investigated. Personalized RBC storage solutions, tailored to individual donor characteristics, represent a promising avenue for minimizing storage lesions and enhancing transfusion outcomes. Further research integrating omics profiling with customized preservation media is necessary to maximize post-transfusion RBC survival and functions. The continued optimization of RBC storage practices will not only enhance transfusion efficacy but also enable blood banking to better meet evolving clinical needs.
Collapse
Affiliation(s)
- Linh Nguyen T. Tran
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (L.N.T.T.); (C.G.-F.)
| | - Cristina González-Fernández
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (L.N.T.T.); (C.G.-F.)
- Chemical and Biomolecular Engineering Department, Universidad de Cantabria, Avda. Los Castros, s/n, 39005 Santander, Spain
| | - Jenifer Gomez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (L.N.T.T.); (C.G.-F.)
| |
Collapse
|
2
|
Isiksacan Z, William N, Senturk R, Boudreau L, Wooning C, Castellanos E, Isiksacan S, Yarmush ML, Acker JP, Usta OB. Extended supercooled storage of red blood cells. Commun Biol 2024; 7:765. [PMID: 38914723 PMCID: PMC11196592 DOI: 10.1038/s42003-024-06463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/16/2024] [Indexed: 06/26/2024] Open
Abstract
Red blood cell (RBC) transfusions facilitate many life-saving acute and chronic interventions. Transfusions are enabled through the gold-standard hypothermic storage of RBCs. Today, the demand for RBC units is unfulfilled, partially due to the limited storage time, 6 weeks, in hypothermic storage. This time limit stems from high metabolism-driven storage lesions at +1-6 °C. A recent and promising alternative to hypothermic storage is the supercooled storage of RBCs at subzero temperatures, pioneered by our group. Here, we report on long-term supercooled storage of human RBCs at physiological hematocrit levels for up to 23 weeks. Specifically, we assess hypothermic RBC additive solutions for their ability to sustain supercooled storage. We find that a commercially formulated next-generation solution (Erythro-Sol 5) enables the best storage performance and can form the basis for further improvements to supercooled storage. Our analyses indicate that oxidative stress is a prominent time- and temperature-dependent injury during supercooled storage. Thus, we report on improved supercooled storage of RBCs at -5 °C by supplementing Erythro-Sol 5 with the exogenous antioxidants, resveratrol, serotonin, melatonin, and Trolox. Overall, this study shows the long-term preservation potential of supercooled storage of RBCs and establishes a foundation for further improvement toward clinical translation.
Collapse
Affiliation(s)
- Ziya Isiksacan
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
| | - Nishaka William
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Rahime Senturk
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
- Department of Chemical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Luke Boudreau
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
| | - Celine Wooning
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
- Department of Human Biology, Scripps College, Claremont, CA, USA
| | - Emily Castellanos
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
- Department of Psychology, Amherst College, Amherst, MA, USA
| | - Salih Isiksacan
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
- Department of Electrical-Electronics Engineering, Bilkent University, Ankara, Turkey
| | - Martin L Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada.
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB, Canada.
| | - O Berk Usta
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Shriners Children's, Boston, MA, USA.
| |
Collapse
|
3
|
Nikulina M, Nemkov T, D'Alessandro A, Gaccione P, Yoshida T. A deep 96-well plate RBC storage platform for high-throughput screening of novel storage solutions. Front Physiol 2022; 13:1004936. [PMID: 36277188 PMCID: PMC9583842 DOI: 10.3389/fphys.2022.1004936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Red blood cell (RBC) storage solutions, also known as additive solutions (ASs), first developed in the 1970s, enable extended storage of RBCs. Unfortunately, the advancements in this field have been limited, due to labor intensive and time-consuming serial in vitro and in vivo testing, coupled with very high commercialization hurdles. This study examines the utility of deep 96-well plates for preliminary screenings of novel ASs through comparison of RBC storage with the standard PVC bags in terms of hemolysis and ATP levels, under both normoxic (N) and hypoxic/hypocapnic (H) storage conditions. The necessity for the presence of DEHP, normally provided by PVC bags, is also examined. Materials and methods: A pool of 2 ABO compatible RBC units was split between a bag and a plate. Each plate well contained either 1, 2 or 0 PVC strips cut from standard storage bags to supply DEHP. The H bags and plates were processed in an anaerobic glovebox and stored in O2 barrier bags. Hemolysis and ATP were measured bi-weekly using standard methods. Results: Final ATP and hemolysis values for the plate-stored RBCs were comparable to the typical values observed for 6-week storage of leukoreduced AS-3 RBCs in PVC bags under both N and H conditions. Hemolysis was below FDA and EU benchmarks of 1% and 0.8%, respectively, and excluding DEHP from plates during storage, resulted in an inconsequential increase when compared to bag samples. Discussion: In combination with high-throughput metabolomics workflow, this platform provides a highly efficient preliminary screening platform to accelerate the initial testing and consequent development of novel RBC ASs.
Collapse
Affiliation(s)
| | - Travis Nemkov
- Omix Technologies, Aurora, CO, United States
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Angelo D'Alessandro
- Omix Technologies, Aurora, CO, United States
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | | |
Collapse
|
4
|
Aumann SM, Reems MM. The effect of position and frequency of mixing on canine packed red blood cell units during storage. J Vet Emerg Crit Care (San Antonio) 2021; 32:181-188. [PMID: 34962340 DOI: 10.1111/vec.13164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 08/04/2020] [Accepted: 09/18/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Hemolysis is an indicator of storage lesion that occurs in stored packed red blood cells (pRBCs) over time. Intermittent mixing of red blood cells in the additive solutions may be beneficial but may also result in iatrogenic injury. Position of units in storage may also affect the quality of the pRBCs. This prospective study was designed to evaluate hemolytic effect of mixing frequency and storage position on canine pRBCs over a period of 28 days. DESIGN Prospective in vitro study SETTING: Private practice referral hospital with an internal blood bank ANIMALS: Thirty-two healthy prescreened dogs enrolled in a volunteer blood banking program INTERVENTIONS: None MEASUREMENTS AND MAIN RESULTS: A total of 160 samples were evaluated. Forty canine pRBC units were split into 4 daughter bags and stored in varying positions with different mixing frequencies. Samples were stored upright and mixed daily, upright and mixed weekly, horizontally and mixed daily, or horizontally and mixed weekly for a period of 28 days. At days 0, 7, 14, and 28, samples from the units were analyzed to calculate percent hemolysis. No differences were found in any hemolytic indicators investigated (total hemoglobin, free plasma hemoglobin, and packed cell volume) until day 28 in all test groups. Canine pRBCs stored upright and mixed weekly or stored horizontally and mixed weekly resulted in less hemolysis and free plasma hemoglobin when compared to units stored horizontally and mixed daily only at day 28. CONCLUSIONS Statistically significant hemolysis was not evident amongst canine pRBC groups less than 28 days old suggesting that positioning and mixing frequency was irrelevant until day 28. Beyond 28 days despite the presence of hemolysis, no definitive recommendation could be made with respect to best practice for storage position or mixing frequency of stored canine pRBCs.
Collapse
Affiliation(s)
- Samantha M Aumann
- Department of Small Animal Emergency and Critical Care, BluePearl Veterinary Partners, Tampa, Florida, USA
| | - Miryam M Reems
- Department of Small Animal Emergency and Critical Care, BluePearl Veterinary Partners, Tampa, Florida, USA
| |
Collapse
|
5
|
Stone M, Keating SM, Kanias T, Lanteri MC, Lebedeva M, Sinchar D, Hampton D, Jakub A, Rychka V, Brewer G, Bakkour S, Gefter N, Murcia K, Page GP, Endres-Dighe S, Bialkowski W, Fu X, Zimring J, Raife TJ, Kleinman S, Gladwin MT, Busch MP. Piloting and implementation of quality assessment and quality control procedures in RBC-Omics: a large multi-center study of red blood cell hemolysis during storage. Transfusion 2018; 59:57-66. [PMID: 30566231 DOI: 10.1111/trf.15099] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND The major aims of the RBC-Omics study were to evaluate the genomic and metabolomic determinants of spontaneous and stress-induced hemolysis during RBC storage. This study was unique in scale and design to allow evaluation of RBC donations from a sufficient number of donors across the spectrum of race, ethnicity, sex, and donation intensity. Study procedures were carefully piloted, optimized, and controlled to enable high-quality data collection. METHODS The enrollment goal of 14,000 RBC donors across four centers, with characterization of RBC hemolysis across two testing laboratories, required rigorous piloting and optimization and establishment of a quality assurance (QA) and quality control (QC) program. Optimization of WBC elution from leukoreduction (LR) filters, development and validation of small-volume transfer bags, impact of manufacturing and sample-handling procedures on hemolysis parameters, and testing consistency across laboratories and technicians and over time were part of this quality assurance/quality control program. RESULTS LR filter elution procedures were optimized for obtaining DNA for analysis. Significant differences between standard and pediatric storage bags led to use of an alternative LR-RBC transfer bag. The impact of sample preparation and freezing methods on metabolomics analyses was evaluated. Proficiency testing monitored and documented testing consistency across laboratories and technicians. CONCLUSION Piloting and optimization, and establishment of a robust quality assurance/quality control program documented process consistency throughout the study and was essential in executing this large-scale multicenter study. This program supports the validity of the RBC-Omics study results and a sample repository that can be used in future studies.
Collapse
Affiliation(s)
- Mars Stone
- Vitalant Research Institute (Formerly Blood Systems Research Institute), San Francisco, California.,Department of Laboratory Medicine, University of California, San Francisco, California
| | - Sheila M Keating
- Vitalant Research Institute (Formerly Blood Systems Research Institute), San Francisco, California.,Department of Laboratory Medicine, University of California, San Francisco, California
| | - Tamir Kanias
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Marion C Lanteri
- Vitalant Research Institute (Formerly Blood Systems Research Institute), San Francisco, California.,Department of Laboratory Medicine, University of California, San Francisco, California
| | - Mila Lebedeva
- Vitalant Research Institute (Formerly Blood Systems Research Institute), San Francisco, California
| | - Derek Sinchar
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dylan Hampton
- Vitalant Research Institute (Formerly Blood Systems Research Institute), San Francisco, California
| | - Adam Jakub
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Val Rychka
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Greg Brewer
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sonia Bakkour
- Vitalant Research Institute (Formerly Blood Systems Research Institute), San Francisco, California
| | - Nelly Gefter
- Vitalant Research Institute (Formerly Blood Systems Research Institute), San Francisco, California
| | - Karla Murcia
- Vitalant Research Institute (Formerly Blood Systems Research Institute), San Francisco, California
| | | | | | - Walter Bialkowski
- Blood Research and Medical Sciences Institutes, Blood Center of Wisconsin, Milwaukee, Wisconsin
| | - Xiaoyun Fu
- Bloodworks NW Research Institute; and the Department of Laboratory Medicine and the Department of Medicine, Division of Hematology, University of Washington School of Medicine, Seattle, Washington
| | - Jim Zimring
- Bloodworks NW Research Institute; and the Department of Laboratory Medicine and the Department of Medicine, Division of Hematology, University of Washington School of Medicine, Seattle, Washington
| | - Thomas J Raife
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Steve Kleinman
- Clinical Pathology, University of British Columbia, School of Medicine, Vancouver, British Columbia, Canada
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael P Busch
- Vitalant Research Institute (Formerly Blood Systems Research Institute), San Francisco, California.,Department of Laboratory Medicine, University of California, San Francisco, California
| | | |
Collapse
|
6
|
D'Alessandro A, Reisz JA, Culp-Hill R, Korsten H, van Bruggen R, de Korte D. Metabolic effect of alkaline additives and guanosine/gluconate in storage solutions for red blood cells. Transfusion 2018; 58:1992-2002. [PMID: 29624679 DOI: 10.1111/trf.14620] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Over a century of advancements in the field of additive solutions for red blood cell (RBC) storage has made transfusion therapy a safe and effective practice for millions of recipients worldwide. Still, storage in the blood bank results in the progressive accumulation of metabolic alterations, a phenomenon that is mitigated by storage in novel storage additives, such as alkaline additive solutions. While novel alkaline additive formulations have been proposed, no metabolomics characterization has been performed to date. STUDY DESIGN AND METHODS We performed UHPLC-MS metabolomics analyses of red blood cells stored in SAGM (standard additive in Europe), (PAGGSM), or alkaline additives SOLX, E-SOL 5 and PAG3M for either 1, 21, 35 (end of shelf-life in the Netherlands), or 56 days. RESULTS Alkaline additives (especially PAG3M) better preserved 2,3-diphosphoglycerate and adenosine triphosphate (ATP). Deaminated purines such as hypoxanthine were predictive of hemolysis and morphological alterations. Guanosine supplementation in PAGGSM and PAG3M fueled ATP generation by feeding into the nonoxidative pentose phosphate pathway via phosphoribolysis. Decreased urate to hypoxanthine ratios were observed in alkaline additives, suggestive of decreased generation of urate and hydrogen peroxide. Despite the many benefits observed in purine and redox metabolism, alkaline additives did not prevent accumulation of free fatty acids and oxidized byproducts, opening a window for future alkaline formulations including (lipophilic) antioxidants. CONCLUSION Alkalinization via different strategies (replacement of chloride anions with either high bicarbonate, high citrate/phosphate, or membrane impermeant gluconate) results in different metabolic outcomes, which are superior to current canonical additives in all cases.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Rachel Culp-Hill
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| | - Herbert Korsten
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, the Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research, Amsterdam, the Netherlands.,Landsteiner Laboratory, Academic Medical Centre, Amsterdam, the Netherlands
| | - Dirk de Korte
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, the Netherlands.,Department of Blood Cell Research, Sanquin Research, Amsterdam, the Netherlands.,Landsteiner Laboratory, Academic Medical Centre, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Ning S, Heddle NM, Acker JP. Exploring donor and product factors and their impact on red cell post-transfusion outcomes. Transfus Med Rev 2017; 32:28-35. [PMID: 28988603 DOI: 10.1016/j.tmrv.2017.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/06/2017] [Accepted: 07/24/2017] [Indexed: 01/28/2023]
Abstract
The impact of donor characteristics, red cell age, and red cell processing methods on recipient outcomes is an emerging area of research. Knowledge generated from exploring this transfusion continuum has the potential to change the way donors are selected and how donations are processed and stored with important clinical and operational impact. Recently, donor characteristics including age, gender, donation frequency, genetics, and ethnicity have been shown to affect product quality and possibly recipient outcomes. The structural, biochemical and immunological changes that occur with red cell storage appear to not cause harm to blood recipients after 14 randomized clinical trials. However, both in vitro and clinical data are now beginning to question the safety of blood stored for a shorter duration. Whole blood filtration, a method of blood processing, has been linked to inferior recipient outcomes when compared to red cell filtration. Collectively, this emerging body of literature suggests that pre-transfusion parameters impact product quality and recipient outcomes and that no 2 units of red cells are quite the same. This review will summarize both the pre-clinical and clinical studies evaluating these associations.
Collapse
Affiliation(s)
- Shuoyan Ning
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Nancy M Heddle
- Department of Medicine, McMaster University, Hamilton, ON, Canada; Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.
| | - Jason P Acker
- Centre for Innovation, Product and Process Development, Canadian Blood Services, Edmonton, AB, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
8
|
Prevention of red cell storage lesion: a comparison of five different additive solutions. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 15:456-462. [PMID: 28488968 DOI: 10.2450/2017.0371-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/31/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND In Europe, red cell concentrates (RCC) are usually stored in SAGM (saline-adenine-glucose-mannitol). During storage, in vitro red cell quality declines, including lowered energy status and increased cell lysis. Recently, several additive solutions (ASs), designed to diminish the decline in in vitro quality during storage, have been developed. These new solutions have mainly been developed to better maintain red blood cell (RBC) 2,3-biphosphoglycerate (2,3 BPG) levels and energy status during storage. High levels of 2,3 BPG allow for better oxygen release while high energy status is necessary for function and survival of RBC in vivo. In a paired study design, RBC ASs were compared for their ability to provide improved in vitro quality during hypothermic storage. MATERIALS AND METHODS For each experiment, 5 whole blood units held overnight were pooled and split. The whole blood units were processed according to the buffy coat method. RBCs were resuspended in either SAGM, PAGGSM, PAG3M, E-Sol 5 or AS-7 and leucoreduced by filtration. RCCs were stored for eight weeks at 2-6 °C and sampled weekly for analysis of in vitro quality parameters. RESULTS Red cell concentrates stored in PAG3M, E-Sol 5 and AS-7 showed significantly higher lactate production and higher levels of intracellular adenosine triphosphate (ATP) and total adenylate. 2,3 BPG levels rapidly declined during storage in SAGM and PAGGSM. The decline in 2,3 BPG was inhibited during storage in E-Sol 5 and AS-7, while in PAG3M, 2,3 BPG level increased above the initial level till day 35 and remained detectable till day 56. Haemolysis was comparable for all ASs until day 35, upon prolonged storage, haemolysis in SAGM was higher than with the other ASs. As compared to SAGM, storage in PAGGSM, PAG3M, E-Sol 5 and AS-7 better maintained morphological properties. DISCUSSION Storage of RBCs in the new generation ASs yield RBCs with more stable metabolite levels and improved overall quality during storage as compared with RBCs stored in SAGM.
Collapse
|
9
|
McEntire MC, Wardrop KJ, Davis WC. Comparison of established and novel methods for the detection and enumeration of microparticles in canine stored erythrocyte concentrates for transfusion. Vet Clin Pathol 2016; 46:54-63. [DOI: 10.1111/vcp.12434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Meredeth C. McEntire
- Veterinary Clinical Sciences Washington State University College of Veterinary Medicine Pullman WA USA
| | - K. Jane Wardrop
- Veterinary Clinical Sciences Washington State University College of Veterinary Medicine Pullman WA USA
| | - William C. Davis
- Veterinary Microbiology and Pathology Washington State University College of Veterinary Medicine Pullman WA USA
| |
Collapse
|
10
|
The Role of Physical Stabilization in Whole Blood Preservation. Sci Rep 2016; 6:21023. [PMID: 26876805 PMCID: PMC4753451 DOI: 10.1038/srep21023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/14/2016] [Indexed: 11/09/2022] Open
Abstract
The rapid degradation of blood ex vivo imposes logistical limitations on the utilization of blood-borne cells in medical diagnostics and scientific investigations. A fundamental but overlooked aspect in the storage of this fluid tissue is blood settling, which induces physical stress and compaction, aggregates blood cells, and causes collateral damage due to leukocyte activation. Here we show that the polymer Ficoll 70 kDa stabilized blood samples and prevented blood settling over the course of 72 hours, primarily by inhibiting depletion-mediated red blood cell aggregation. Physical stabilization decreased echinocyte formation, improved leukocyte viability, and inhibited the release of neutrophil elastase—a marker of neutrophil extracellular trap formation. In addition, Ficoll-stabilized blood was compatible with common leukocyte enrichment techniques including red blood cell lysis and immunomagnetic purification. This study showed for the first time that blood settling can be prevented using polymers and has implications in diagnostics.
Collapse
|
11
|
Affiliation(s)
- D. de Korte
- Sanquin Blood Bank; Amsterdam the Netherlands
- Sanquin Research; Amsterdam the Netherlands
| |
Collapse
|
12
|
Serrano K, Levin E, Chen D, Hansen A, Turner TR, Kurach J, Reidel A, Boecker WF, Acker JP, Devine DV. An investigation of red blood cell concentrate quality during storage in paediatric-sized polyvinylchloride bags plasticized with alternatives to di-2-ethylhexyl phthalate (DEHP). Vox Sang 2015; 110:227-35. [PMID: 26646434 DOI: 10.1111/vox.12355] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/25/2015] [Accepted: 09/16/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVES Di-2-ethylhexyl phthalate (DEHP) is a blood bag plasticizer. It is also a toxin, raising concerns for vulnerable populations, for example, neonates and infants. Here, the in vitro quality of red cell concentrates (RCC) stored in paediatric bags formulated with alternative plasticizers to DEHP was compared. MATERIALS AND METHODS RCC were pooled and split into polyvinylchloride (PVC)/DEHP, PVC/1,2-cyclohexanedicarboxylic acid diisononyl ester (DINCH) or PVC/butyryl trihexyl citrate (BTHC) bags. Quality was assessed on storage days 5, 21, 35 and 43. RESULTS Metabolism differed among the bags: pCO2 levels were lowest and pO2 were highest in BTHC bags. Glucose consumption and lactate production suggested higher metabolic rates in BTHC bags. ATP levels were best maintained in DINCH bags (day 43 mean level: 2·86 ± 0·29 μmol/g Hb). RCC in BTHC bags had the greatest potassium release (54·6 ± 3·0 mm on day 43). From day 21, haemolysis was higher in BTHC bags (P < 0·01) and by day 43 had exceeded 0·8% (0·85 ± 0·10%). RCC in BTHC bags showed more microparticle formation than RCC in DEHP or DINCH bags. CONCLUSION The results suggest that the BTHC formulation used was detrimental to RBC quality. DINCH bags could be a viable alternative to DEHP: they outperformed DEHP bags energetically, with better maintenance of ATP levels.
Collapse
Affiliation(s)
- K Serrano
- Canadian Blood Services' Centre for Innovation, The Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - E Levin
- Canadian Blood Services' Centre for Innovation, The Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - D Chen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - A Hansen
- Canadian Blood Services' Centre for Innovation, Edmonton, AB, Canada
| | - T R Turner
- Canadian Blood Services' Centre for Innovation, Edmonton, AB, Canada
| | - J Kurach
- Canadian Blood Services' Centre for Innovation, Edmonton, AB, Canada
| | - A Reidel
- Fresenius Kabi Deutschland GmbH, Bad Homburg, Germany
| | - W F Boecker
- Fresenius Kabi Deutschland GmbH, Bad Homburg, Germany
| | - J P Acker
- Canadian Blood Services' Centre for Innovation, Edmonton, AB, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - D V Devine
- Canadian Blood Services' Centre for Innovation, The Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Proffitt S, Thomas S, Swann I, Popovsky MA, Smith DJ, Roberts DJ, Cardigan R. Storage of washed or irradiated red cells in AS-7 improves their in vitro characteristics. Vox Sang 2015; 109:203-13. [PMID: 25900147 DOI: 10.1111/vox.12271] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 01/16/2015] [Accepted: 02/03/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND AS-7 is a new alkaline hypotonic red cell additive solution (AS) shown to improve red cell quality during storage compared with AS-1. We sought to compare red cells stored in AS-7 with those stored in SAGM using RCC that were either untreated, or washed or irradiated on day 14 of storage. STUDY DESIGN AND METHODS A pooled and split study design was used to produce seven identical RCC (four in SAGM and three in AS-7). At day 14 following donation, two RCC (one in SAGM and one in AS-7) were gamma irradiated and three RCC (two in SAGM and one in AS-7) were washed and resuspended in either SAGM or AS-7. RCC were sampled for analysis throughout storage and at end of shelf life: day 28 for washed or irradiated and day 35 for untreated RCC. RESULTS For untreated, washed or irradiated RCC, those stored in AS-7 had lower haemolysis, red cell microvesicles and supernatant potassium content than RCC in SAGM. In addition, ATP levels and pH were better maintained in AS-7 RCC than in SAGM RCC. CONCLUSION These data suggest that the quality of these components may be improved by storage in AS-7 compared with SAGM.
Collapse
Affiliation(s)
- S Proffitt
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK
| | - S Thomas
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK
| | - I Swann
- Haemonetics Corporation, Braintree, MA, USA
| | | | - D J Smith
- NHS Blood and Transplant, Oxford Centre, John Radcliffe Hospital, Oxford, UK
| | - D J Roberts
- NHS Blood and Transplant, Oxford Centre, John Radcliffe Hospital, Oxford, UK.,Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - R Cardigan
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK
| |
Collapse
|
14
|
Eckstein M, Zimmermann R, Roth T, Hauck-Dlimi B, Strasser EF, Xiang W. The effects of an overnight holding of whole blood at room temperature on haemoglobin modification and in vitro markers of red blood cell aging. Vox Sang 2015; 108:359-67. [PMID: 25753392 DOI: 10.1111/vox.12235] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/16/2014] [Accepted: 11/18/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Some effects of the red blood cell (RBC) storage lesion are well documented whereas others are not. Whether a period of room temperature hold (RTH) during RBC production enhances the RBC storage lesion has remained controversial. In this study, we compared whole blood (WB)-derived RBCs produced after 24-h RTH with rapidly cooled (RC) RBCs and tested them for classical metabolic markers and signs of oxidative damage. STUDY DESIGN AND METHODS SAGM-RBCs were prepared from mixed and split pairs (n = 12) of WB units. RBCs prepared after a 24-h period of RTH on day+1 after collection (RTH-RBCs) were compared with RC-RBCs. All RBCs were stored at 4°C for 42 days with assay of in vitro variables on days+1, +15, +22, +29 and +42. The study examined standard quality parameters, glutathione, catalase and superoxide dismutase (SOD) activities, and indicative markers of oxidative cell damage including post-translational haemoglobin modification, malondialdehyde (MDA), and phosphatidylserine expression. RESULTS RTH-RBCs exhibited decreased levels of potassium (1·98 ± 0·26 vs. 5·23 ± 0·65 mmol/l) and of 2,3-diphosphoglycerate (2,3-DPG) on day+1 compared with RC-RBCs. Haemolysis rate on day+42 was higher in RTH-RBCs than in RC-RBCs (0·52 ± 0·13 vs. 0·37 ± 0·12%). The phosphatidylserine expression amounted to 0·25 ± 0·20% in RTH-RBCs and 0·07 ± 0·12% in RC-RBCs. Haemoglobin modification was not different between both RBC groups. RTH-RBCs showed slightly higher MDA concentration on days +29 and +42. CONCLUSIONS RC-RBCs and RTH-RBCs show only small differences of classical in vitro parameters and no relevant differences in antioxidative metabolism and oxidative haemoglobin modification. These findings do not explain the loss observed in in vivo survival studies with RBCs.
Collapse
Affiliation(s)
- M Eckstein
- Department of Transfusion Medicine and Haemostaseology, University Hospital Erlangen, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Lagerberg JW, Gouwerok E, Vlaar R, Go M, de Korte D. In vitro evaluation of the quality of blood products collected and stored in systems completely free of di(2-ethylhexyl)phthalate-plasticized materials. Transfusion 2014; 55:522-31. [PMID: 25331824 DOI: 10.1111/trf.12870] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND The plasticizer di(2-ethylhexyl)phthalate (DEHP) is a common component in blood bags. DEHP is noncovalently bound to polyvinylchloride (PVC) polymer and can leach into the blood product. There are public concerns that exposure to DEHP might induce developmental and reproductive toxicity in humans. The aim of this study was to evaluate an alternative plasticizer, di(isononyl) cyclohexane-1,2-dicarboxylate (Hexamoll DINCH, BASF SE), for its use in blood bags. STUDY DESIGN AND METHODS Whole blood (WB) was collected into DEHP-containing and DEHP-free collection systems. After overnight hold, WB was centrifuged and separated in plasma, buffy coat, and red blood cells (RBCs). Buffy coats and plasma were used to make platelet (PLT) concentrates in DEHP-free systems. After addition of additive solution (AS), SAG-M, PAGGS-M, AS-3, or PAGGG-M, RBCs were leukoreduced and analyzed for in vitro characteristics and plasticizer levels during storage. RESULTS The use of DINCH-based systems had no effect on WB composition, blood processing, and plasma quality. PLT in vitro quality variables were maintained during storage in DEHP-free systems. During storage in SAG-M, hemolysis was significantly higher in DINCH-PVC while potassium leakage and adenosine triphosphate content were comparable. During storage in alternative ASs, hemolysis was reduced compared to storage in SAG-M. CONCLUSIONS The complete absence of DEHP in the collection system had no effect on WB composition, processing, or plasma and PLT quality. During storage in SAG-M, the absence of DEHP resulted in increased hemolysis. With alternative ASs like PAGGS-M, AS-3, or PAGGG-M, the absence of DEHP had no effect on hemolysis. Leakage of DINCH into the blood product was less pronounced than that of DEHP.
Collapse
|