1
|
Resveratrol, a New Allosteric Effector of Hemoglobin, Enhances Oxygen Supply Efficiency and Improves Adaption to Acute Severe Hypoxia. Molecules 2023; 28:molecules28052050. [PMID: 36903296 PMCID: PMC10004267 DOI: 10.3390/molecules28052050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Acute altitude hypoxia represents the cause of multiple adverse consequences. Current treatments are limited by side effects. Recent studies have shown the protective effects of resveratrol (RSV), but the mechanism remains unknown. To address this, the effects of RSV on the structure and function of hemoglobin of adult (HbA) were preliminarily analyzed using surface plasmon resonance (SPR) and oxygen dissociation assays (ODA). Molecular docking was conducted to specifically analyze the binding regions between RSV and HbA. The thermal stability was characterized to further validate the authenticity and effect of binding. Changes in the oxygen supply efficiency of HbA and rat RBCs incubated with RSV were detected ex vivo. The effect of RSV on the anti-hypoxic capacity under acute hypoxic conditions in vivo was evaluated. We found that RSV binds to the heme region of HbA following a concentration gradient and affects the structural stability and rate of oxygen release of HbA. RSV enhances the oxygen supply efficiency of HbA and rat RBCs ex vivo. RSV prolongs the tolerance times of mice suffering from acute asphyxia. By enhancing the oxygen supply efficiency, it alleviates the detrimental effects of acute severe hypoxia. In conclusion, RSV binds to HbA and regulates its conformation, which enhances oxygen supply efficiency and improves adaption to acute severe hypoxia.
Collapse
|
2
|
Zywot EM, Orlova N, Ding S, Rampersad RR, Rabjohns EM, Wickenheisser VA, Wang Q, Welfare JG, Haar L, Eudy AM, Tarrant TK, Lawrence DS. Light-Triggered Drug Release from Red Blood Cells Suppresses Arthritic Inflammation. ADVANCED THERAPEUTICS 2022; 5:2100159. [PMID: 35528736 PMCID: PMC9075171 DOI: 10.1002/adtp.202100159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 01/03/2023]
Abstract
Arthritis is a leading cause of disability in adults, which can be intensely incapacitating. The location and intensity of the pain is both subjective and challenging to manage. Consequently, patient-directed delivery of anti-inflammatories is an essential component of future therapeutic strategies for the management of this disorder. We describe the design and application of a light responsive red blood cell (RBC) conveyed dexamethasone (Dex) construct that enables targeted drug delivery upon illumination of the inflamed site. The red wavelength (650 nm) responsive nature of the phototherapeutic was validated using tissue phantoms mimicking the light absorbing properties of various skin types. Furthermore, photoreleased Dex has the same impact on cellular responses as conventional Dex. Murine RBCs containing the photoactivatable therapeutic display comparable circulation properties as fluorescently labelled RBCs. In addition, a single dose of light-targeted Dex delivery is 5-fold more effective in suppressing inflammation than the parent drug, delivered serially over multiple days. These results are consistent with the notion that the circulatory system be used as an on-command drug depot, providing the means to therapeutically target diseased sites both efficiently and effectively.
Collapse
Affiliation(s)
- Emilia M Zywot
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Natalia Orlova
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Song Ding
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rishi R Rampersad
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, Durham, NC 27710, USA
| | - Emily M Rabjohns
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, Durham, NC 27710, USA
| | - Victoria A Wickenheisser
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, Durham, NC 27710, USA
| | - Qunzhao Wang
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Joshua G Welfare
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lauren Haar
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Amanda M Eudy
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, Durham, NC 27710, USA
| | - Teresa K Tarrant
- Department of Medicine, Division of Rheumatology and Immunology, Duke University, Durham, NC 27710, USA
| | - David S Lawrence
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Old, older, the oldest: red blood cell storage and the potential harm of using older red blood cell concentrates. Curr Opin Anaesthesiol 2020; 33:234-239. [PMID: 31876784 DOI: 10.1097/aco.0000000000000824] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW Over the last decades, clinical studies have suggested that transfusion of red blood cells (RBCs) might negatively impact patient outcomes. Even though large randomized clinical trials did not show differences in mortality when transfusing fresh versus standard-issue RBC units, data imply that RBCs at the very end of storage could elicit negative effects. RECENT FINDINGS Certain alterations of RBCs during cold storage -- such as an increase of potassium and lactate in the storage solution -- have been discovered a century ago. In recent years, proteomic and metabolomic studies have shed more light into pathophysiological changes of RBCs during storage and have helped to specify the definition of old blood. These advancements are now utilized to increase the quality of stored RBCs and devise therapeutic strategies (e.g. nitric oxide, haptoglobin, or reduction of the iron load) when transfusing old blood. SUMMARY Further research to improve the quality of RBC units and to study populations potentially at risk is warranted. Until the question whether transfusion of old blood is detrimental for specific patient populations has been answered, a deliberate use of RBC transfusion should be implemented.
Collapse
|
4
|
Smethurst PA, Jolley J, Braund R, Proffitt S, Lynes T, Hazell M, Mellor P, Ridgwell K, Procter S, Griffiths A, Marinaki AM, New HV, Murphy GJ, Edmondson D, Cardigan R. Rejuvenation of RBCs: validation of a manufacturing method suitable for clinical use. Transfusion 2019; 59:2952-2963. [PMID: 31294868 DOI: 10.1111/trf.15426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/01/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Rejuvenation of stored red blood cells (RBCs) increases levels of adenosine 5'-triphosphate (ATP) and 2,3-diphosphoglycerate (2,3-DPG) to those of fresh cells. This study aimed to optimize and validate the US-approved process to a UK setting for manufacture and issue of rejuvenated RBCs for a multicenter randomized controlled clinical trial in cardiac surgery. STUDY DESIGN AND METHODS Rejuvenation of leukoreduced RBC units involved adding a solution containing pyruvate, inosine, phosphate, and adenine (Rejuvesol, Zimmer Biomet), warming at 37°C for 60 minutes, then "manual" washing with saline adenine glucose mannitol solution. A laboratory study was conducted on six pools of ABO/D-matched units made the day after donation. On Days 7, 21, and 28 of 4 ± 2°C storage, one unit per pool was rejuvenated and measured over 96 hours for volume, hematocrit, hemolysis, ATP, 2,3-DPG, supernatant potassium, lactate, and purines added (inosine) or produced (hypoxanthine) by rejuvenation. Subsequently, an operational validation (two phases of 32 units each) was undertaken, with results from the first informing a trial component specification applied to the second. Rejuvenation effects were also tested on crossmatch reactivity and RBC antigen profiles. RESULTS Rejuvenation raised 2,3-DPG to, and ATP above, levels of fresh cells. The final component had potassium and hemolysis values below those of standard storage Days 7 and 21, respectively, containing 1.2% exogenous inosine and 500 to 1900 μmoles/unit of hypoxanthine. The second operational validation met compliance to the trial component specification. Rejuvenation did not adversely affect crossmatch reactivity or RBC antigen profiles. CONCLUSION The validated rejuvenation process operates within defined quality limits, preserving RBC immunophenotypes, enabling manufacture for clinical trials.
Collapse
Affiliation(s)
- Peter A Smethurst
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, United Kingdom
| | - Jennifer Jolley
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, United Kingdom
| | - Rebecca Braund
- Manufacturing & Development, NHS Blood and Transplant, Bristol, United Kingdom
| | - Sue Proffitt
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, United Kingdom
| | - Thomas Lynes
- Red Cell Immunohaematology, NHS Blood and Transplant, Bristol, United Kingdom
| | - Matthew Hazell
- Red Cell Immunohaematology, NHS Blood and Transplant, Bristol, United Kingdom
| | - Phil Mellor
- Manufacturing & Development, NHS Blood and Transplant, Bristol, United Kingdom
| | - Kay Ridgwell
- IBGRL Protein Development & Production Unit, NHS Blood and Transplant, Bristol, United Kingdom
| | - Simon Procter
- Quality Monitoring, NHS Blood and Transplant, London, United Kingdom
| | | | | | - Helen V New
- Clinical Directorate, NHS Blood and Transplant, London, United Kingdom.,Department of Haematology, Imperial College London, London, United Kingdom
| | - Gavin J Murphy
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, Glenfield General Hospital, University of Leicester, Leicester, United Kingdom
| | - Dave Edmondson
- Manufacturing & Development, NHS Blood and Transplant, Bristol, United Kingdom
| | - Rebecca Cardigan
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, United Kingdom.,Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|