1
|
Wise TJ, Ott ME, Joseph MS, Welsby IJ, Darrow CC, McMahon TJ. Modulation of the allosteric and vasoregulatory arms of erythrocytic oxygen transport. Front Physiol 2024; 15:1394650. [PMID: 38915775 PMCID: PMC11194670 DOI: 10.3389/fphys.2024.1394650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/24/2024] [Indexed: 06/26/2024] Open
Abstract
Efficient distribution of oxygen (O2) to the tissues in mammals depends on the evolved ability of red blood cell (RBC) hemoglobin (Hb) to sense not only O2 levels, but metabolic cues such as pH, PCO2, and organic phosphates, and then dispense or take up oxygen accordingly. O2 delivery is the product of not only oxygen release from RBCs, but also blood flow, which itself is also governed by vasoactive molecular mediators exported by RBCs. These vascular signals, including ATP and S-nitrosothiols (SNOs) are produced and exported as a function of the oxygen and metabolic milieu, and then fine-tune peripheral metabolism through context-sensitive vasoregulation. Emerging and repurposed RBC-oriented therapeutics can modulate either or both of these allosteric and vasoregulatory activities, with a single molecule or other intervention influencing both arms of O2 transport in some cases. For example, organic phosphate repletion of stored RBCs boosts the negative allosteric effector 2,3 biphosphoglycerate (BPG) as well as the anti-adhesive molecule ATP. In sickle cell disease, aromatic aldehydes such as voxelotor can disfavor sickling by increasing O2 affinity, and in newer generations, these molecules have been coupled to vasoactive nitric oxide (NO)-releasing adducts. Activation of RBC pyruvate kinase also promotes a left shift in oxygen binding by consuming and lowering BPG, while increasing the ATP available for cell health and export on demand. Further translational and clinical investigation of these novel allosteric and/or vasoregulatory approaches to modulating O2 transport are expected to yield new insights and improve the ability to correct or compensate for anemia and other O2 delivery deficits.
Collapse
Affiliation(s)
- Thomas J. Wise
- Duke University School of Medicine, Durham, NC, United States
| | - Maura E. Ott
- Duke University School of Medicine, Durham, NC, United States
| | - Mahalah S. Joseph
- Duke University School of Medicine, Durham, NC, United States
- Florida International University School of Medicine, Miami, FL, United States
| | - Ian J. Welsby
- Duke University School of Medicine, Durham, NC, United States
| | - Cole C. Darrow
- Duke University School of Medicine, Durham, NC, United States
| | - Tim J. McMahon
- Duke University School of Medicine, Durham, NC, United States
- Durham VA Health Care System, Durham, NC, United States
| |
Collapse
|
2
|
Lv H, Cao Y, Zhu J, Liang Q. Molecular Insights into the Effect of Cholesterol on the Binding of Bicarbonate Ions in Band 3 Protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10908-10915. [PMID: 38739034 DOI: 10.1021/acs.langmuir.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Band 3, or anion exchanger 1 (AE1), is one of the indispensable transmembrane proteins involved in the effective respiratory process of the human body and is primarily responsible for the exchange of bicarbonate and chloride anions across the plasma membrane of erythrocyte. However, the molecular mechanism of ion transport of Band 3 is not completely understood, yet. In this work, we systematically investigate the key binding sites of bicarbonate ions in Band 3 and the impact of cholesterol (CHOL) in lipid bilayers on bicarbonate ion binding using all-atom molecular dynamics (MD) simulations. We examine the dynamics of interactions of bicarbonate ions with Band 3 in the microsecond time scale and calculate the binding free energy of the anion in Band 3. The results indicate that the residue R730 of Band 3 is the most probable binding site for bicarbonate ions. CHOL enhances the bicarbonate ion binding by influencing the conformational stability of Band 3 and compressing the volume of the Band 3 cavity. These findings provide some insights into the bicarbonate ion binding in Band 3 and are helpful for understanding the anion exchange of Band 3.
Collapse
Affiliation(s)
- Haiying Lv
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Yu Cao
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Jin Zhu
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| | - Qing Liang
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
3
|
Moutapam-Ngamby-Adriaansen Y, Maillot F, Labarthe F, Lioger B. Blood cytopenias as manifestations of inherited metabolic diseases: a narrative review. Orphanet J Rare Dis 2024; 19:65. [PMID: 38355710 PMCID: PMC10865644 DOI: 10.1186/s13023-024-03074-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/03/2024] [Indexed: 02/16/2024] Open
Abstract
Inherited Metabolic Diseases (IMD) encompass a diverse group of rare genetic conditions that, despite their individual rarity, collectively affect a substantial proportion, estimated at as much as 1 in 784 live births. Among their wide-ranging clinical manifestations, cytopenia stands out as a prominent feature. Consequently, IMD should be considered a potential diagnosis when evaluating patients presenting with cytopenia. However, it is essential to note that the existing scientific literature pertaining to the link between IMD and cytopenia is limited, primarily comprising case reports and case series. This paucity of data may contribute to the inadequate recognition of the association between IMD and cytopenia, potentially leading to underdiagnosis. In this review, we synthesize our findings from a literature analysis along with our clinical expertise to offer a comprehensive insight into the clinical presentation of IMD cases associated with cytopenia. Furthermore, we introduce a structured diagnostic approach underpinned by decision-making algorithms, with the aim of enhancing the early identification and management of IMD-related cytopenia.
Collapse
Affiliation(s)
- Yannick Moutapam-Ngamby-Adriaansen
- Service de Médecine Interne, CHRU de Tours, Tours Cedex 1, France.
- Service de Médecine Interne Et Polyvalente, 2, Centre Hospitalier de Blois, Mail Pierre Charlot, 41000, Blois, France.
| | - François Maillot
- Service de Médecine Interne, CHRU de Tours, Tours Cedex 1, France
- Reference Center for Inborn Errors of Metabolism ToTeM, CHRU de Tours, Hôpital Clocheville, 49 Bd Béranger, 37000, Tours, France
- INSERM U1253, iBrain, Université François Rabelais de Tours, 10 Boulevard Tonnellé, 37000, Tours, France
- INSERM U1069, Nutrition, Croissance et Cancer, Faculté de Médecine, Université François Rabelais de Tours, 10 Boulevard Tonnellé, 37000, Tours, France
| | - François Labarthe
- Reference Center for Inborn Errors of Metabolism ToTeM, CHRU de Tours, Hôpital Clocheville, 49 Bd Béranger, 37000, Tours, France
- INSERM U1069, Nutrition, Croissance et Cancer, Faculté de Médecine, Université François Rabelais de Tours, 10 Boulevard Tonnellé, 37000, Tours, France
- Service de Pédiatrie, CHRU de Tours, Tours Cedex 1, France
| | - Bertrand Lioger
- Service de Médecine Interne Et Polyvalente, 2, Centre Hospitalier de Blois, Mail Pierre Charlot, 41000, Blois, France
| |
Collapse
|
4
|
Kuebler WM, William N, Post M, Acker JP, McVey MJ. Extracellular vesicles: effectors of transfusion-related acute lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 325:L327-L341. [PMID: 37310760 DOI: 10.1152/ajplung.00040.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/27/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
Respiratory transfusion reactions represent some of the most severe adverse reactions related to receiving blood products. Of those, transfusion-related acute lung injury (TRALI) is associated with elevated morbidity and mortality. TRALI is characterized by severe lung injury associated with inflammation, pulmonary neutrophil infiltration, lung barrier leak, and increased interstitial and airspace edema that cause respiratory failure. Presently, there are few means of detecting TRALI beyond clinical definitions based on physical examination and vital signs or preventing/treating TRALI beyond supportive care with oxygen and positive pressure ventilation. Mechanistically, TRALI is thought to be mediated by the culmination of two successive proinflammatory hits, which typically comprise a recipient factor (1st hit-e.g., systemic inflammatory conditions) and a donor factor (2nd hit-e.g., blood products containing pathogenic antibodies or bioactive lipids). An emerging concept in TRALI research is the contribution of extracellular vesicles (EVs) in mediating the first and/or second hit in TRALI. EVs are small, subcellular, membrane-bound vesicles that circulate in donor and recipient blood. Injurious EVs may be released by immune or vascular cells during inflammation, by infectious bacteria, or in blood products during storage, and can target the lung upon systemic dissemination. This review assesses emerging concepts such as how EVs: 1) mediate TRALI, 2) represent targets for therapeutic intervention to prevent or treat TRALI, and 3) serve as biochemical biomarkers facilitating TRALI diagnosis and detection in at-risk patients.
Collapse
Affiliation(s)
- Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin, Berlin, Germany
- Keenan Research Centre, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Nishaka William
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Martin Post
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Jason P Acker
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, Alberta, Canada
| | - Mark J McVey
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Translational Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Bogusławska DM, Kraszewski S, Skulski M, Potoczek S, Kuliczkowski K, Sikorski AF. Novel Variant of the SLC4A1 Gene Associated with Hereditary Spherocytosis. Biomedicines 2023; 11:biomedicines11030784. [PMID: 36979763 PMCID: PMC10045460 DOI: 10.3390/biomedicines11030784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Hereditary spherocytosis (HS) refers to the group of the most frequently occurring non-immune hereditary hemolytic anemia in people of Caucasian central or northern European ancestry. HS is mainly associated with pathogenic variants of genes encoding defects in five membrane proteins, including anion exchanger 1 encoded by the SLC4A1 gene. In this study, in a family affected with HS, we identified a hitherto unreported AE1 defect, variant p.G720W. The result of it is most likely the HS phenotype. Molecular dynamics simulation study of the AE1 transmembrane domain may indicate reasonable changes in AE1 domain structure, i.e., significant displacement of the tryptophan residue towards the membrane surface connected with possible changes in AE1 function. The WES analysis verified by classical sequencing in conjunction with biochemical analysis and molecular simulation studies shed light on the molecular mechanism underlying this case of hereditary spherocytosis, for which the newly discovered AE1 variant p.G720W seems crucial.
Collapse
Affiliation(s)
- Dżamila M. Bogusławska
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Góra, Prof. Szafrana St. 1, 65-516 Zielona Góra, Poland
| | - Sebastian Kraszewski
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Plac Grunwaldzki 13 (D-1), 50-377 Wroclaw, Poland
| | - Michał Skulski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a St., 50-383 Wroclaw, Poland
| | - Stanisław Potoczek
- Department and Clinic of Haematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Wybrzeże L. Pasteura 4, 50-367 Wroclaw, Poland
| | - Kazimierz Kuliczkowski
- Silesian Park of Medical Technology Kardio-Med Silesia, ul. M. Curie-Skłodowskiej 10c, 41-800 Zabrze, Poland
| | - Aleksander F. Sikorski
- Research and Development Centre, Regional Specialist Hospital, Kamieńskiego 73a, 51-154 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-327-05-16; Fax: +48-71-375-62-08
| |
Collapse
|
6
|
Ryan MJ, Grant-St James A, Lawler NG, Fear MW, Raby E, Wood FM, Maker GL, Wist J, Holmes E, Nicholson JK, Whiley L, Gray N. Comprehensive Lipidomic Workflow for Multicohort Population Phenotyping Using Stable Isotope Dilution Targeted Liquid Chromatography-Mass Spectrometry. J Proteome Res 2023; 22:1419-1433. [PMID: 36828482 PMCID: PMC10167688 DOI: 10.1021/acs.jproteome.2c00682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Dysregulated lipid metabolism underpins many chronic diseases including cardiometabolic diseases. Mass spectrometry-based lipidomics is an important tool for understanding mechanisms of lipid dysfunction and is widely applied in epidemiology and clinical studies. With ever-increasing sample numbers, single batch acquisition is often unfeasible, requiring advanced methods that are accurate and robust to batch-to-batch and interday analytical variation. Herein, an optimized comprehensive targeted workflow for plasma and serum lipid quantification is presented, combining stable isotope internal standard dilution, automated sample preparation, and ultrahigh performance liquid chromatography-tandem mass spectrometry with rapid polarity switching to target 1163 lipid species spanning 20 subclasses. The resultant method is robust to common sources of analytical variation including blood collection tubes, hemolysis, freeze-thaw cycles, storage stability, analyte extraction technique, interinstrument variation, and batch-to-batch variation with 820 lipids reporting a relative standard deviation of <30% in 1048 replicate quality control plasma samples acquired across 16 independent batches (total injection count = 6142). However, sample hemolysis of ≥0.4% impacted lipid concentrations, specifically for phosphatidylethanolamines (PEs). Low interinstrument variability across two identical LC-MS systems indicated feasibility for intra/inter-lab parallelization of the assay. In summary, we have optimized a comprehensive lipidomic protocol to support rigorous analysis for large-scale, multibatch applications in precision medicine. The mass spectrometry lipidomics data have been deposited to massIVE: data set identifiers MSV000090952 and 10.25345/C5NP1WQ4S.
Collapse
Affiliation(s)
- Monique J Ryan
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Alanah Grant-St James
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Nathan G Lawler
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Mark W Fear
- Burn Injury Research Unit, University of Western Australia, Perth, Western Australia 6009, Australia.,Fiona Wood Foundation, Perth, Western Australia 6150, Australia
| | - Edward Raby
- Department of Microbiology, PathWest Laboratory Medicine, Perth, Western Australia 6009, Australia.,Department of Infectious Diseases, Fiona Stanley Hospital, Perth, Western Australia 6150, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, University of Western Australia, Perth, Western Australia 6009, Australia.,WA Department of Health, Burns Service WA, Perth, Western Australia 6009, Australia.,Fiona Wood Foundation, Perth, Western Australia 6150, Australia
| | - Garth L Maker
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Julien Wist
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Elaine Holmes
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Jeremy K Nicholson
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| | - Luke Whiley
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
| | - Nicola Gray
- Australian National Phenome Centre, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia.,Centre for Computational and Systems Medicine, Health Futures Institute, Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, Western Australia 6150, Australia
| |
Collapse
|
7
|
Himbert S, Qadri SM, Sheffield WP, Schubert P, D’Alessandro A, Rheinstädter MC. Blood bank storage of red blood cells increases RBC cytoplasmic membrane order and bending rigidity. PLoS One 2021; 16:e0259267. [PMID: 34767588 PMCID: PMC8589153 DOI: 10.1371/journal.pone.0259267] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/17/2021] [Indexed: 12/05/2022] Open
Abstract
Blood banks around the world store blood components for several weeks ensuring its availability for transfusion medicine. Red blood cells (RBCs) are known to undergo compositional changes during storage, which may impact the cells' function and eventually the recipients' health. We extracted the RBC's cytoplasmic membrane (RBCcm) to study the effect of storage on the membranes' molecular structure and bending rigidity by a combination of X-ray diffraction (XRD), X-ray diffuse scattering (XDS) and coarse grained Molecular Dynamics (MD) simulations. Blood was stored in commercial blood bags for 2 and 5 weeks, respectively and compared to freshly drawn blood. Using mass spectrometry, we measured an increase of fatty acids together with a slight shift towards shorter tail lengths. We observe an increased fraction (6%) of liquid ordered (lo) domains in the RBCcms with storage time, and an increased lipid packing in these domains, leading to an increased membrane thickness and membrane order. The size of both, lo and liquid disordered (ld) lipid domains was found to decrease with increased storage time by up to 25%. XDS experiments reveal a storage dependent increase in the RBCcm's bending modulus κ by a factor of 2.8, from 1.9 kBT to 5.3 kBT. MD simulations were conducted in the absence of proteins. The results show that the membrane composition has a small contribution to the increased bending rigidity and suggests additional protein-driven mechanisms.
Collapse
Affiliation(s)
- Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Origins Institute, McMaster University, Hamilton, ON, Canada
| | - Syed M. Qadri
- Faculty of Health Sciences, Ontario Tech University, Oshawa, ON, Canada
| | - William P. Sheffield
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | - Peter Schubert
- Centre for Innovation, Canadian Blood Services, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Angelo D’Alessandro
- University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, United States of America
| | - Maikel C. Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Origins Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|