1
|
Steenhuis M, Wouters E, Schrezenmeier H, Rispens T, Tiberghien P, Harvala H, Feys HB, van der Schoot CE. Quality assessment and harmonization of laboratories across Europe for multiple SARS-CoV-2 serology assays. Vox Sang 2023; 118:666-673. [PMID: 37401414 DOI: 10.1111/vox.13480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND AND OBJECTIVES There is a need for conversion of SARS-CoV-2 serology data from different laboratories to a harmonized international unit. We aimed to compare the performance of multiple SARS-CoV-2 antibody serology assays among 25 laboratories across 12 European countries. MATERIALS AND METHODS To investigate this we have distributed to all participating laboratories a panel of 15 SARS-CoV-2 plasma samples and a single batch of pooled plasma calibrated to the WHO IS 20/136 standard. RESULTS All assays showed excellent discrimination between SARS-CoV-2 seronegative plasma samples and pre-vaccinated seropositive plasma samples but differed substantially in raw antibody titres. Titres could be harmonized to binding antibody units per millilitre by calibration in relation to a reference reagent. CONCLUSION The standardization of antibody quantification is of paramount importance to allow interpretation and comparison of serology data reported in clinical trials in order to identify donor cohorts from whom the most effective convalescent plasma can be collected.
Collapse
Affiliation(s)
- Maurice Steenhuis
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, Amsterdam, Netherlands
| | - Elise Wouters
- Transfusion Research Center, Belgian Red Cross Flanders, Ghent, Belgium
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Wurttemberg-Hessen and University Hospital Ulm, Ulm, Germany
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, Amsterdam, Netherlands
| | | | - Heli Harvala
- Microbiology Services, NHS Blood and Transplant, London, UK
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross Flanders, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - C Ellen van der Schoot
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory Academic Medical Centre, Amsterdam, Netherlands
| |
Collapse
|
2
|
Wouters E, Verbrugghe C, Abdelnabi R, Devloo R, De Clippel D, Jochmans D, De Bleser D, Weynand B, Compernolle V, Neyts J, Feys HB. Intranasal administration of convalescent plasma protects against SARS-CoV-2 infection in hamsters. EBioMedicine 2023; 92:104597. [PMID: 37148586 PMCID: PMC10171892 DOI: 10.1016/j.ebiom.2023.104597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Convalescent plasma (CP) transfusion is an early option for treating infections with pandemic potential, often preceding vaccine or antiviral drug rollout. Heterogenous findings from randomized clinical trials on transfusion of COVID-19 CP (CCP) have been reported. However, meta-analysis suggests that transfusion of high titer CCP is associated with a mortality benefit for COVID-19 outpatients or inpatients treated within 5 days after symptom onset, indicating the importance of early administration. METHODS We tested if CCP is an effective prophylactic against SARS-CoV-2 infection by the intranasal administration of 25 μL CCP/nostril (i.e. 0.01-0.06 mg anti-RBD antibodies/kg) in hamsters exposed to infected littermates. FINDINGS In this model, 40% of CCP treated hamsters were fully protected and 40% had significantly reduced viral loads, the remaining 20% was not protected. The effect seems dose-dependent because high-titer CCP from a vaccinated donor was more effective than low-titer CCP from a donation prior to vaccine rollout. Intranasal administration of human CCP resulted in a reactive (immune) response in hamster lungs, however this was not observed upon administration of hamster CCP. INTERPRETATION We conclude that CCP is an effective prophylactic when used directly at the site of primary infection. This option should be considered in future prepandemic preparedness plans. FUNDING Flanders Innovation & Entrepreneurship (VLAIO) and the Foundation for Scientific Research of the Belgian Red Cross Flanders.
Collapse
Affiliation(s)
- Elise Wouters
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | - Caro Verbrugghe
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Rana Abdelnabi
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000, Leuven, Belgium
| | - Rosalie Devloo
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | | | - Dirk Jochmans
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000, Leuven, Belgium
| | | | - Birgit Weynand
- KU Leuven Department of Imaging and Pathology, Translational Cell and Tissue Research, Division of Translational Cell and Tissue Research, B-3000, Leuven, Belgium
| | - Veerle Compernolle
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Blood Services of the Belgian Red Cross-Flanders, Mechelen, Belgium; Transfusion Innovation Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | - Johan Neyts
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000, Leuven, Belgium
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Blood Services of the Belgian Red Cross-Flanders, Mechelen, Belgium.
| |
Collapse
|
3
|
Schrezenmeier H, Hoffmann S, Hofmann H, Appl T, Jahrsdörfer B, Seifried E, Körper S. Immune Plasma for the Treatment of COVID-19: Lessons Learned so far. Hamostaseologie 2023; 43:67-74. [PMID: 36807822 DOI: 10.1055/a-1987-3682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
COVID-19 convalescent plasma (CCP) has been explored as one of the treatment options for COVID-19. Results of many cohort studies and clinical trials have been recently published. At first glance, the results of the CCP studies appear to be inconsistent. However, it became clear that CCP is not beneficial if CCP with low anti-SARS-CoV-2 antibody concentrations is used, if it is administered late in advanced disease stages, and to patients who already mounted an antibody response against SARS-CoV-2 at the time of CCP transfusion. On the other hand, CCP may prevent progression to severe COVID-19 when very high-titer CCP is given early in vulnerable patients. Immune escape of new variants is a challenge for passive immunotherapy. While new variants of concern developed resistance to most clinically used monoclonal antibodies very rapidly, immune plasma from individuals immunized by both a natural SARS-CoV-2 infection and SARS-CoV-2 vaccination retained neutralizing activity against variants. This review briefly summarizes the evidence on CCP treatment to date and identifies further research needs. Ongoing research on passive immunotherapy is not only relevant for improving care for vulnerable patients in the ongoing SARS-CoV-2 pandemic, but even more as a model for passive immunotherapy in case of future pandemics with a newly evolving pathogen. Compared to other drugs, which must be newly developed in a pandemic (e.g., monoclonal antibodies, antiviral drugs), convalescent plasma is rapidly available, inexpensive to produce, and can be adaptive to viral evolution by selection of contemporary convalescent donors.
Collapse
Affiliation(s)
- Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Simone Hoffmann
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Henrike Hofmann
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Thomas Appl
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Erhard Seifried
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg - Hessen, Frankfurt, Germany
| | - Sixten Körper
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, and, University Hospital Ulm, Ulm, Germany.,Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|
4
|
Hervig TA, Flesland Ø, Nissen-Meyer LSH. COVID-19 convalescent plasma: Current status, lessons from the past and future perspectives. Transfus Apher Sci 2022; 61:103487. [PMID: 35778352 PMCID: PMC9188440 DOI: 10.1016/j.transci.2022.103487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
When the COVID-19 pandemic hit, blood transfusion services worldwide started collection of convalescent plasma as early as possible, as exemplified by the response in Norway. There were challenges related to donor selection, donor safety, testing for relevant antibodies and indications for and dosing of the convalescent plasma. As more knowledge became available, the product quality was more standardised. Multiple case reports, observational studies and some randomized studies were published during the pandemic, as well as laboratory studies reporting different approaches to antibody testing. The results were conflicting and the importance of convalescent plasma was disputed. Even though there has been strong international collaboration with involvement of many key organisations, we may better prepare for the next pandemic. An even stronger, more formalised collaboration between these organisations could provide more clear evidence of the importance of convalescent plasma, based on the principles of passive immunisation.
Collapse
Affiliation(s)
- Tor Audun Hervig
- Laboratory for Immunology and Transfusion Medicine, Haugesund Hospital, Norway.
| | | | | |
Collapse
|
5
|
Martin MC, Jimenez A, Ortega N, Parrado A, Page I, Gonzalez MI, Blanco-Peris L. Persistence of SARS-CoV-2 total immunoglobulins in a series of convalescent plasma and blood donors. PLoS One 2022; 17:e0264124. [PMID: 35202394 PMCID: PMC8870513 DOI: 10.1371/journal.pone.0264124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/03/2022] [Indexed: 11/18/2022] Open
Abstract
Background
The vast majority of COVID-19 cases both symptomatic and asymptomatic develop immunity after COVID-19 contagion. Whether lasting differences exist between infection and vaccination boosted immunity is yet to be known. The aim of this study was to determine how long total anti-SARS-CoV2 antibodies due to past infection persist in peripheral blood and whether sex, age or haematological features can influence their lasting.
Material and methods
A series of 2421 donations either of SARS-CoV-2 convalescent plasma or whole blood from 1107 repeat donors from January 2020 to March 2021 was analysed. An automated chemiluminescence immunoassay for total antibodies recognizing the nucleocapsid protein of SARS-CoV-2 in human serum and plasma was performed. Sex, age, blood group, blood cell counts and percentages and immunoglobulin concentrations were extracted from electronic recordings. Blood donation is allowed after a minimum of one-month post symptom’s relapse. Donors were 69.7% males and their average age was 46. The 250 donors who had later donations after a positive one underwent further analysis. Both qualitative (positivity) and quantitative (rise or decline of optical density regarding consecutive donations) outcomes were evaluated.
Results and discussion
In 97.6% of donors with follow-up, anti-SARS-CoV-2 protein N total antibodies remained positive at the end of a follow-up period of 12.4 weeks median time (1–46, SD = 9.65) after the first positive determination. The blood group was not related to antibody waning. Lower lymphocyte counts and higher neutrophils would help predict future waning or decay of antibodies. Most recovered donors maintain their total anti-SARS-CoV-2 N protein antibodies for at least 16 weeks (at least one month must have been awaited from infection resolution to blood donation). The 10 individuals that could be followed up longer than 40 weeks (approximately 44 weeks after symptom’s relapse) were all still positive.
Collapse
Affiliation(s)
- M. Carmen Martin
- Centro de Hemoterapia y Hemodonacion de Castilla y Leon, Valladolid, Castilla y León, Spain
- * E-mail:
| | - Ana Jimenez
- Centro de Hemoterapia y Hemodonacion de Castilla y Leon, Valladolid, Castilla y León, Spain
| | - Nuria Ortega
- Centro de Hemoterapia y Hemodonacion de Castilla y Leon, Valladolid, Castilla y León, Spain
| | - Alba Parrado
- Centro de Hemoterapia y Hemodonacion de Castilla y Leon, Valladolid, Castilla y León, Spain
| | - Isabel Page
- Centro de Hemoterapia y Hemodonacion de Castilla y Leon, Valladolid, Castilla y León, Spain
| | - M. Isabel Gonzalez
- Centro de Hemoterapia y Hemodonacion de Castilla y Leon, Valladolid, Castilla y León, Spain
| | - Lydia Blanco-Peris
- Centro de Hemoterapia y Hemodonacion de Castilla y Leon, Valladolid, Castilla y León, Spain
| |
Collapse
|
6
|
Franchini M, Mengoli C, Caruso B, Petilino R, Ballotari A, Glingani C. Measuring accuracy of the neutralizing activity of COVID-19 convalescent plasma. Clin Chem Lab Med 2022; 60:e4-e6. [PMID: 34472761 DOI: 10.1515/cclm-2021-0810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/17/2021] [Indexed: 11/15/2022]
Affiliation(s)
- Massimo Franchini
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantova, Italy
| | - Carlo Mengoli
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantova, Italy
| | | | | | - Alessia Ballotari
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantova, Italy
| | - Claudia Glingani
- Department of Hematology and Transfusion Medicine, Carlo Poma Hospital, Mantova, Italy
| |
Collapse
|
7
|
Al‐Riyami AZ, Burnouf T, Yazer M, Triulzi D, Kumaş LT, Sağdur L, Pelit NB, Bazin R, Hindawi SI, Badawi MA, Patidar GK, Pandey HC, Chaurasia R, Fachini RM, Scuracchio P, Wendel S, Ang AL, Ong KH, Young P, Ihalainen J, Vierikko A, Qiu Y, Yang R, Xu H, Rahimi‐Levene N, Shinar E, Izak M, Gonzalez CA, Ferrari DM, Cini PV, Aditya RN, Sharma RR, Sachdev S, Hans R, Lamba DS, Nissen‐Meyer LSH, Devine DV, Lee CK, Leung JN, Hung IFN, Tiberghien P, Gallian P, Morel P, Al Maamari K, Al‐Hinai Z, Vrielink H, So‐Osman C, De Angelis V, Berti P, Ostuni A, Marano G, Nevessignsky MT, El Ekiaby M, Daly J, Hoad V, Kim S, van den Berg K, Vermeulen M, Glatt TN, Schäfer R, Reik R, Gammon R, Lopez M, Estcourt L, MacLennan S, Roberts D, Louw V, Dunbar N. International Forum on the Collection and Use of COVID-19 Convalescent Plasma: Responses. Vox Sang 2021; 116:e71-e120. [PMID: 34013981 PMCID: PMC8242651 DOI: 10.1111/vox.13114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 01/09/2023]
Affiliation(s)
| | | | | | | | | | | | | | | | - Salwa I. Hindawi
- King Abdulaziz University and King Abdulaziz University HospitalJeddahSaudi Arabia
| | - Maha A. Badawi
- King Abdulaziz University and King Abdulaziz University HospitalJeddahSaudi Arabia
| | | | | | | | | | | | | | - Ai Leen Ang
- Health Sciences AuthoritySingapore CitySingapore
| | | | | | | | | | - Yan Qiu
- Beijing Red Cross Blood CentreBeijingChina
| | - Ru Yang
- Wuhan Blood CentreWuhanChina
| | - Hua Xu
- Shaanxi Blood CenterShaanxiChina
| | | | - Eilat Shinar
- Magen David Adom National Blood ServicesTel AvivIsrael
| | - Marina Izak
- Magen David Adom National Blood ServicesTel AvivIsrael
| | | | | | | | - Robby Nur Aditya
- Central Blood Transfusion Service Indonesia Red Cross (PMI)JakartaIndonesia
| | - Ratti Ram Sharma
- Post Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Suchet Sachdev
- Post Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Rekha Hans
- Post Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Divjot Singh Lamba
- Post Graduate Institute of Medical Education and ResearchChandigarhIndia
| | | | | | - Cheuk Kwong Lee
- Hong Kong Red Cross Blood Transfusion ServiceHong Kong SARChina
| | | | | | | | | | - Pascal Morel
- Etablissement Français du SangLa Plaine St DenisFrance
| | | | - Zaid Al‐Hinai
- Sultan Qaboos University HospitalSeebSultanate of Oman
| | | | | | | | - Pierluigi Berti
- Italian Society for Hemapheresis cell Manipulation (SIdEM)BariItaly
| | - Angelo Ostuni
- Italian Society for Hemapheresis cell Manipulation (SIdEM)BariItaly
| | | | | | | | - James Daly
- Australian Red Cross LifebloodMelbourneVic.Australia
| | - Veronica Hoad
- Australian Red Cross LifebloodMelbourneVic.Australia
| | - Sinyoung Kim
- Yonsei University College of MedicineSeoulSouth Korea
| | - Karin van den Berg
- South African National Blood ServiceUniversity of Cape TownCape TownSouth Africa
| | - Marion Vermeulen
- South African National Blood ServiceUniversity of Cape TownCape TownSouth Africa
| | - Tanya Nadia Glatt
- South African National Blood ServiceUniversity of Cape TownCape TownSouth Africa
| | - Richard Schäfer
- German Red Cross Blood Donor Service Baden‐Württemberg‐HessenFrankfurtGermany
| | | | | | | | | | | | | | - Vernon Louw
- Western Cape Blood ServiceCape TownSouth Africa
| | | |
Collapse
|
8
|
Körper S, Weiss M, Zickler D, Wiesmann T, Zacharowski K, Corman VM, Grüner B, Ernst L, Spieth P, Lepper PM, Bentz M, Zinn S, Paul G, Kalbhenn J, Dollinger MM, Rosenberger P, Kirschning T, Thiele T, Appl T, Mayer B, Schmidt M, Drosten C, Wulf H, Kruse JM, Jungwirth B, Seifried E, Schrezenmeier H. Results of the CAPSID randomized trial for high-dose convalescent plasma in patients with severe COVID-19. J Clin Invest 2021; 131:e152264. [PMID: 34464358 DOI: 10.1172/jci152264] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/26/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUNDCOVID-19 convalescent plasma (CCP) has been considered a treatment option for COVID-19. This trial assessed the efficacy of a neutralizing antibody containing high-dose CCP in hospitalized adults with COVID-19 requiring respiratory support or intensive care treatment.METHODSPatients (n = 105) were randomized 1:1 to either receive standard treatment and 3 units of CCP or standard treatment alone. Control group patients with progress on day 14 could cross over to the CCP group. The primary outcome was a dichotomous composite outcome of survival and no longer fulfilling criteria for severe COVID-19 on day 21.ResultsThe primary outcome occurred in 43.4% of patients in the CCP group and 32.7% in the control group (P = 0.32). The median time to clinical improvement was 26 days in the CCP group and 66 days in the control group (P = 0.27). The median time to discharge from the hospital was 31 days in the CCP group and 51 days in the control group (P = 0.24). In the subgroup that received a higher cumulative amount of neutralizing antibodies, the primary outcome occurred in 56.0% of the patients (vs. 32.1%), with significantly shorter intervals to clinical improvement (20 vs. 66 days, P < 0.05) and to hospital discharge (21 vs. 51 days, P = 0.03) and better survival (day-60 probability of survival 91.6% vs. 68.1%, P = 0.02) in comparison with the control group.ConclusionCCP added to standard treatment was not associated with a significant improvement in the primary and secondary outcomes. A predefined subgroup analysis showed a significant benefit of CCP among patients who received a larger amount of neutralizing antibodies.Trial registrationClinicalTrials.gov NCT04433910.FundingBundesministerium für Gesundheit (German Federal Ministry of Health): ZMVI1-2520COR802.
Collapse
Affiliation(s)
- Sixten Körper
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, and Institute of Transfusion Medicine, and
| | - Manfred Weiss
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm University, Ulm, Germany
| | - Daniel Zickler
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas Wiesmann
- Department of Anaesthesiology and Intensive Care Medicine, Philipps University Marburg, Marburg, Germany
| | - Kai Zacharowski
- Clinic of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Victor M Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health and German Centre for Infection Research, Berlin, Germany
| | - Beate Grüner
- Division of Infectious Diseases, University Hospital and Medical Center Ulm, Ulm, Germany
| | - Lucas Ernst
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Spieth
- Department of Anesthesiology and Critical Care Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Philipp M Lepper
- Department of Internal Medicine V - Pneumology, Allergology, Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Martin Bentz
- Department of Internal Medicine III, Hospital of Karlsruhe, Karlsruhe, Germany
| | - Sebastian Zinn
- Clinic of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Gregor Paul
- Department of Gastroenterology, Hepatology, Pneumology and Infectious Diseases, Klinikum Stuttgart, Stuttgart, Germany
| | - Johannes Kalbhenn
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Peter Rosenberger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Thomas Kirschning
- Department of Anaesthesiology and Surgical Intensive Care Medicine, University of Heidelberg, University Medical Centre Mannheim, Mannheim, Germany
| | - Thomas Thiele
- Institute of Immunology and Transfusion Medicine, University Hospital Greifswald, Greifswald, Germany
| | - Thomas Appl
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, and Institute of Transfusion Medicine, and
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Michael Schmidt
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, Frankfurt, Germany
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health and German Centre for Infection Research, Berlin, Germany
| | - Hinnerk Wulf
- Department of Anaesthesiology and Intensive Care Medicine, Philipps University Marburg, Marburg, Germany
| | - Jan Matthias Kruse
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Bettina Jungwirth
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm University, Ulm, Germany
| | - Erhard Seifried
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, Frankfurt, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, and Institute of Transfusion Medicine, and
| | | |
Collapse
|
9
|
Körper S, Weiss M, Zickler D, Wiesmann T, Zacharowski K, Corman VM, Grüner B, Ernst L, Spieth P, Lepper PM, Bentz M, Zinn S, Paul G, Kalbhenn J, Dollinger MM, Rosenberger P, Kirschning T, Thiele T, Appl T, Mayer B, Schmidt M, Drosten C, Wulf H, Kruse JM, Jungwirth B, Seifried E, Schrezenmeier H. Results of the CAPSID randomized trial for high-dose convalescent plasma in patients with severe COVID-19. J Clin Invest 2021. [PMID: 34464358 DOI: 10.1101/2021.05.10.21256192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
BACKGROUNDCOVID-19 convalescent plasma (CCP) has been considered a treatment option for COVID-19. This trial assessed the efficacy of a neutralizing antibody containing high-dose CCP in hospitalized adults with COVID-19 requiring respiratory support or intensive care treatment.METHODSPatients (n = 105) were randomized 1:1 to either receive standard treatment and 3 units of CCP or standard treatment alone. Control group patients with progress on day 14 could cross over to the CCP group. The primary outcome was a dichotomous composite outcome of survival and no longer fulfilling criteria for severe COVID-19 on day 21.ResultsThe primary outcome occurred in 43.4% of patients in the CCP group and 32.7% in the control group (P = 0.32). The median time to clinical improvement was 26 days in the CCP group and 66 days in the control group (P = 0.27). The median time to discharge from the hospital was 31 days in the CCP group and 51 days in the control group (P = 0.24). In the subgroup that received a higher cumulative amount of neutralizing antibodies, the primary outcome occurred in 56.0% of the patients (vs. 32.1%), with significantly shorter intervals to clinical improvement (20 vs. 66 days, P < 0.05) and to hospital discharge (21 vs. 51 days, P = 0.03) and better survival (day-60 probability of survival 91.6% vs. 68.1%, P = 0.02) in comparison with the control group.ConclusionCCP added to standard treatment was not associated with a significant improvement in the primary and secondary outcomes. A predefined subgroup analysis showed a significant benefit of CCP among patients who received a larger amount of neutralizing antibodies.Trial registrationClinicalTrials.gov NCT04433910.FundingBundesministerium für Gesundheit (German Federal Ministry of Health): ZMVI1-2520COR802.
Collapse
Affiliation(s)
- Sixten Körper
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, and Institute of Transfusion Medicine, and
| | - Manfred Weiss
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm University, Ulm, Germany
| | - Daniel Zickler
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas Wiesmann
- Department of Anaesthesiology and Intensive Care Medicine, Philipps University Marburg, Marburg, Germany
| | - Kai Zacharowski
- Clinic of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Victor M Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health and German Centre for Infection Research, Berlin, Germany
| | - Beate Grüner
- Division of Infectious Diseases, University Hospital and Medical Center Ulm, Ulm, Germany
| | - Lucas Ernst
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Spieth
- Department of Anesthesiology and Critical Care Medicine, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Philipp M Lepper
- Department of Internal Medicine V - Pneumology, Allergology, Intensive Care Medicine, Saarland University Hospital, Homburg, Germany
| | - Martin Bentz
- Department of Internal Medicine III, Hospital of Karlsruhe, Karlsruhe, Germany
| | - Sebastian Zinn
- Clinic of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Gregor Paul
- Department of Gastroenterology, Hepatology, Pneumology and Infectious Diseases, Klinikum Stuttgart, Stuttgart, Germany
| | - Johannes Kalbhenn
- Department of Anesthesiology and Critical Care, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Peter Rosenberger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Thomas Kirschning
- Department of Anaesthesiology and Surgical Intensive Care Medicine, University of Heidelberg, University Medical Centre Mannheim, Mannheim, Germany
| | - Thomas Thiele
- Institute of Immunology and Transfusion Medicine, University Hospital Greifswald, Greifswald, Germany
| | - Thomas Appl
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, and Institute of Transfusion Medicine, and
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Michael Schmidt
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, Frankfurt, Germany
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health and German Centre for Infection Research, Berlin, Germany
| | - Hinnerk Wulf
- Department of Anaesthesiology and Intensive Care Medicine, Philipps University Marburg, Marburg, Germany
| | - Jan Matthias Kruse
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, corporate member of Free University Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Bettina Jungwirth
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm University, Ulm, Germany
| | - Erhard Seifried
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, Frankfurt, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, and Institute of Transfusion Medicine, and
| |
Collapse
|
10
|
Wouters E, Verbrugghe C, Devloo R, Debruyne I, De Clippel D, Van Heddegem L, Van Asch K, Van Gaver V, Vanbrabant M, Muylaert A, Compernolle V, Feys HB. A novel competition ELISA for the rapid quantification of SARS-CoV-2 neutralizing antibodies in convalescent plasma. Transfusion 2021; 61:2981-2990. [PMID: 34498761 PMCID: PMC8662007 DOI: 10.1111/trf.16652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/28/2021] [Accepted: 07/31/2021] [Indexed: 12/20/2022]
Abstract
Background COVID‐19 convalescent plasma (CCP) ideally contains high titers of (neutralizing) anti‐SARS‐CoV‐2 antibodies. Several scalable immunoassays for CCP selection have been developed. We designed an enzyme‐linked immunosorbent assay (ELISA) that measures neutralizing antibodies (of all isotypes) in plasma by determining the level of competition between CCP and a mouse neutralizing antibody for binding to the receptor binding domain (RBD) of SARS‐CoV‐2. Methods Plasma was collected from 72 convalescent individuals and inhibition of viral infection was determined by plaque reduction neutralization (PRNT50). The level of neutralizing antibodies was measured in the novel competition ELISA and in a commercially available ELISA that measures inhibition of recombinant ACE2 binding to immobilized RBD. These results were compared with a high throughput chemiluminescent microparticle immunoassay (CMIA). Results The results from both ELISAs were correlating, in particular for high titer CCP (PRNT50 ≥ 1:160) (Spearman r = .73, p < .001). Moderate correlation was found between the competition ELISA and CMIA (r = .57 for high titer and r = .62 for low titer CCP, p < .001). Receiver operator characteristic analysis showed that the competition ELISA selected CCP with a sensitivity and specificity of 61% and 100%, respectively. However, discrimination between low and high titer CCP had a lower resolution (sensitivity: 34% and specificity: 89%). Conclusion The competition ELISA screens for neutralizing antibodies in CCP by competition for just a single epitope. It exerts a sensitivity of 61% with no false identifications. These ELISA designs can be used for epitope mapping or for selection of CCP.
Collapse
Affiliation(s)
- Elise Wouters
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | - Caro Verbrugghe
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Rosalie Devloo
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | | | | | | | - Kristin Van Asch
- Blood Service of the Belgian Red Cross-Flanders, Mechelen, Belgium
| | | | - Miek Vanbrabant
- Blood Service of the Belgian Red Cross-Flanders, Mechelen, Belgium
| | - An Muylaert
- Blood Service of the Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Veerle Compernolle
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.,Blood Service of the Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium.,Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
11
|
Izak M, Gendelman V, Bransburg-Zabary S, Stoyanov E, Gat R, Cohen D, Chen J, Maor Y, Benov A, Lev B, Zimhony O, Shinar E. Qualifying coronavirus disease 2019 convalescent plasma donors in Israel. Vox Sang 2021; 117:185-192. [PMID: 34125976 PMCID: PMC8447161 DOI: 10.1111/vox.13162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022]
Abstract
Background and Objectives Passive immunization using investigational COVID‐19 convalescent plasma (CCP) is a promising therapeutic strategy and could improve outcome if transfused early and contain high levels of anti‐SARS‐CoV‐2 antibodies. We report the management of a national CCP collection and distribution program in Israel. Materials and Methods From 1 April 2020 to 15 January 2021, 4020 volunteer donors donated 5221 CCP units and 837 (20.8%) donors donated more than once. Anti‐nucleocapsid IgG antibodies were determined using chemiluminescent immunoassay method (Abbott). A statistical model based on repeated IgG tests in sequential donations was created to predict the time of antibody decline below sample/cut‐off (S/CO) level of 4.0. Results Ninety‐six percent of CCP donors suffered a mild disease or were asymptomatic. Older donors had higher antibody levels. Higher antibody levels (S/CO ≥4) were detected in 35.2% of the donors. Low positive (S/CO ≥1.4–3.99) were found in 37%, and 27.8% had undetectable antibodies (S/CO ≤1.4). The model predicted decrease antibody thresholds of 0.55%/day since the first CCP donation, providing guidance for the effective timing of future collections from donors with high antibody levels. Conclusions An efficient CCP collection and distribution program was achieved, based on performing initial and repeated plasma collections, preferably from donors with higher antibody levels, and only antibody‐rich units were supplied for therapeutic use. The inventory met the quantity and quality standards of the authorities, enabled to respond to the growing demand of the medical system and provide a product that may contribute to improve prognosis in patients with COVID‐19.
Collapse
Affiliation(s)
- Marina Izak
- National Blood Services, Magen David Adom, Ramat Gan, Israel
| | | | | | | | - Roni Gat
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Clinical Research Center, Soroka University Medical Center, Beer Sheva, Israel
| | - Daniel Cohen
- School of Public Health, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Chen
- Trauma and Combat Medicine Branch, Israel Defense Forces Medical Corps, Ramat Gan, Israel.,Hospital Management, Meir Medical Center, KfarSaba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yasmin Maor
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Infectious Disease Unit, Wolfson Medical Center, Holon, Israel
| | - Avi Benov
- Trauma and Combat Medicine Branch, Israel Defense Forces Medical Corps, Ramat Gan, Israel.,The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Boaz Lev
- Epidemic Unit, Ministry of Health, Jerusalem, Israel
| | - Oren Zimhony
- Infectious Disease Unit, Kaplan Medical Center, Rehovot, Israel
| | - Eilat Shinar
- National Blood Services, Magen David Adom, Ramat Gan, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
12
|
Körper S, Jahrsdörfer B, Corman VM, Pilch J, Wuchter P, Blasczyk R, Müller R, Tonn T, Bakchoul T, Schäfer R, Juhl D, Schwarz T, Gödecke N, Burkhardt T, Schmidt M, Appl T, Eichler H, Klüter H, Drosten C, Seifried E, Schrezenmeier H. Donors for SARS-CoV-2 Convalescent Plasma for a Controlled Clinical Trial: Donor Characteristics, Content and Time Course of SARS-CoV-2 Neutralizing Antibodies. Transfus Med Hemother 2021; 48:137-147. [PMID: 34177417 PMCID: PMC8216018 DOI: 10.1159/000515610] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/28/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Convalescent plasma is one of the treatment options for COVID-19 which is currently being investigated in many clinical trials. Understanding of donor and product characteristics is important for optimization of convalescent plasma. METHODS Patients who had recovered from CO-VID-19 were recruited as donors for COVID-19 convalescent plasma (CCP) for a randomized clinical trial of CCP for treatment of severe COVID-19 (CAPSID Trial). Titers of neutralizing antibodies were measured by a plaque-reduction neutralization test (PRNT). Correlation of antibody titers with host factors and evolution of neutralizing antibody titers over time in repeat donors were analysed. RESULTS A series of 144 donors (41% females, 59% males; median age 40 years) underwent 319 plasmapheresis procedures providing a median collection volume of 850 mL and a mean number of 2.7 therapeutic units per plasmapheresis. The majority of donors had a mild or moderate course of COVID-19. The titers of neutralizing antibodies varied greatly between CCP donors (from <1:20 to >1:640). Donor factors (gender, age, ABO type, body weight) did not correlate significantly with the titer of neutralizing antibodies. We observed a significant positive correlation of neutralization titers with the number of reported COVID-19 symptoms and with the time from SARS-CoV-2 diagnosis to plasmapheresis. Neutralizing antibody levels were stable or increased over time in 58% of repeat CCP donors. Mean titers of neutralizing antibodies of first donation and last donation of repeat CCP donors did not differ significantly (1:86 at first compared to 1:87 at the last donation). There was a significant correlation of neutralizing antibodies measured by PRNT and anti-SARS-CoV-2 IgG and IgA antibodies which were measured by ELISA. CCP donations with an anti-SARS-CoV-2 IgG antibody content above the 25th percentile were substantially enriched for CCP donations with higher neutralizing antibody levels. CONCLUSION We demonstrate the feasibility of collection of a large number of CCP products under a harmonized protocol for a randomized clinical trial. Titers of neutralizing antibodies were stable or increased over time in a subgroup of repeat donors. A history of higher number of COVID-19 symptoms and higher levels of anti-SARS-CoV-2 IgG and IgA antibodies in immunoassays can preselect donations with higher neutralizing capacity.
Collapse
Affiliation(s)
- Sixten Körper
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Bernd Jahrsdörfer
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Victor M. Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health and German Centre for Infection Research, Berlin, Germany
| | - Jan Pilch
- Institute of Clinical Hemostaseology and Transfusion Medicine, University Hospital and University of the Saarland, Homburg, Germany
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, Medical Faculty of Medicine Mannheim, University Mannheim, Mannheim, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Rebecca Müller
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, Medical Faculty of Medicine Mannheim, University Mannheim, Mannheim, Germany
| | - Torsten Tonn
- Experimental Transfusion Medicine, Technical University of Dresden, German Red Cross Blood Transfusion Service Nord-Ost gGmbH Dresden, Dresden, Germany
| | - Tamam Bakchoul
- Institute of Clinical and Experimental Transfusion Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Richard Schäfer
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg − Hessen, Frankfurt, Germany
| | - David Juhl
- Institute of Transfusion Medicine, University Hospital Schleswig-Holstein, Kiel and Lübeck, Germany
| | - Tatjana Schwarz
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health and German Centre for Infection Research, Berlin, Germany
| | - Nina Gödecke
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Thomas Burkhardt
- Experimental Transfusion Medicine, Technical University of Dresden, German Red Cross Blood Transfusion Service Nord-Ost gGmbH Dresden, Dresden, Germany
| | - Michael Schmidt
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg − Hessen, Frankfurt, Germany
| | - Thomas Appl
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Hermann Eichler
- Institute of Clinical Hemostaseology and Transfusion Medicine, University Hospital and University of the Saarland, Homburg, Germany
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen, Medical Faculty of Medicine Mannheim, University Mannheim, Mannheim, Germany
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health and German Centre for Infection Research, Berlin, Germany
| | - Erhard Seifried
- Institute of Transfusion Medicine and Immunohematology, German Red Cross Blood Transfusion Service Baden-Württemberg − Hessen, Frankfurt, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|
13
|
The Three Pillars of COVID-19 Convalescent Plasma Therapy. Life (Basel) 2021; 11:life11040354. [PMID: 33919577 PMCID: PMC8073137 DOI: 10.3390/life11040354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 12/26/2022] Open
Abstract
The new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has spread rapidly around the world in the last year causing the coronavirus disease 2019 (COVID-19), which still is a severe threat for public health. The therapeutic management of COVID-19 is challenging as, up until now, no specific and efficient pharmacological therapy has been validated. Translating the experience from previous viral epidemics, passive immunotherapy by means of plasma from individuals recovered from COVID-19 has been intensively investigated since the beginning of the pandemic. In this narrative review, we critically analyze the three factors, named “pillars”, that play a key role in determining the clinical effectiveness of this biologic therapy: the convalescent plasma, the disease (COVID-19), and the patients.
Collapse
|