1
|
de Carvalho Faria RV, Duarte MS, de Souza Nogueira J, Gregório BM, Romana-Souza B. Nrf2 activation by hydroxytyrosol and dimethyl fumarate ameliorates skin tissue repair in high-fat diet-fed mice by promoting M2 macrophage polarization and normalizing inflammatory response and oxidative damage. J Biochem Mol Toxicol 2024; 38:e23652. [PMID: 38348708 DOI: 10.1002/jbt.23652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/29/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
Hydroxytyrosol (HT) or dimethyl fumarate (DMF), activators of nuclear factor erythroid 2-related factor 2 (Nrf2), may reduce obesity in high-fat diet (HFD)-fed animals; nevertheless, the role of these activators on skin tissue repair of HFD-fed animals was not reported. This study investigated whether HT or DMF could improve skin wound healing of HFD-fed obese animals. Mice were fed with an HFD, treated with HT or DMF, and full-thickness skin wounds were created. Macrophages isolated from control and obese animals were treated in vitro with HT. DMF, but not HT, reduced the body weight of HFD-fed mice. Collagen deposition and wound closure were improved by HT or DMF in HFD-fed animals. HT or DMF increased anti-inflammatory macrophage phenotype and protein Nrf2 levels in wounds of HFD-fed mice. Lipid peroxidation and protein tumor necrosis factor-α levels were reduced by HT or DMF in wounds of HFD-fed animals. In in vitro, HT stimulated Nrf2 activation in mouse macrophages isolated from obese animals. In conclusion, HT or DMF improves skin wound healing of HFD-fed mice by reducing oxidative damage and inflammatory response. HT or DMF may be used as a therapeutic strategy to improve the skin healing process in individuals with obesity.
Collapse
Affiliation(s)
| | - Matheus Silva Duarte
- Histology and Embryology Department, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jeane de Souza Nogueira
- Laboratory of Histocompatibility and Cryopreservation, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca Martins Gregório
- Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruna Romana-Souza
- Histology and Embryology Department, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Baldeon-Gutierrez R, Ohkura N, Yoshiba K, Yoshiba N, Tohma A, Takeuchi R, Belal RSI, Edanami N, Takahara S, Gomez-Kasimoto S, Ida T, Noiri Y. Wound-healing Processes After Pulpotomy in the Pulp Tissue of Type 1 Diabetes Mellitus Model Rats. J Endod 2024; 50:196-204. [PMID: 37939821 DOI: 10.1016/j.joen.2023.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
INTRODUCTION Patients with type 1 diabetes mellitus (DM1) tend to have delayed wound healing, even in the pulp tissue. We hypothesized that hyperglycemia affects odontoblast-like cell (OLC) differentiation and is involved in macrophage polarization. Accordingly, we evaluated dental pulp stem cell differentiation and macrophage phenotypes after pulpotomy. METHODS After modifying DM1 rat models by streptozotocin, 8-week-old rats' upper left first molars were pulpotomized with mineral trioxide aggregate. Meanwhile, the control group was administered saline. Immunohistochemical localization of nestin, osteopontin, α-smooth muscles (α-SMAs), and CD68 (pan-macrophage marker) was conducted 7 days after pulpotomy. The OLC differentiation stage was determined using double immunofluorescence of nestin and α-SMA. Double immunofluorescence of CD68 and iNOS was counted as M1 macrophages and CD68 and CD206 as M2 macrophages. Proliferating cell nuclear antigen and Thy-1 (CD90) were evaluated by immunofluorescence. RESULTS In DM1 rats, the reparative dentin bridge was not complete; however, the osteopontin-positive area did not differ significantly from that in controls. Proliferating cell nuclear antigen, indicative of cell proliferation, increased in positive cells in DM1 rats compared with controls. Double-positive cells for α-SMA and nestin indicated many immature OLCs in DM1. CD90 was positive only in controls. CD68-positive cells, especially M1 macrophages, were increased in DM1 rats, allowing the inflammatory stage to continue 7 days after pulpotomy. CONCLUSIONS The condition of DM1 model rats can interfere at various stages of the wound healing process, altering OLC differentiation and macrophage polarization. These findings highlight the importance of normal blood glucose concentrations during pulp wound healing.
Collapse
Affiliation(s)
- Rosa Baldeon-Gutierrez
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoto Ohkura
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Kunihiko Yoshiba
- Division of Oral Science for Health Promotion, Department of Oral Health and Welfare, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nagako Yoshiba
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Aiko Tohma
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryosuke Takeuchi
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Razi Saifullah Ibn Belal
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naoki Edanami
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shintaro Takahara
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Susan Gomez-Kasimoto
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takako Ida
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuichiro Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
3
|
Song L, Chang X, Hu L, Liu L, Wang G, Huang Y, Xu L, Jin B, Song J, Hu L, Zhang T, Wang Y, Xiao Y, Zhang F, Shi M, Liu L, Chen Q, Guo B, Zhou Y. Accelerating Wound Closure With Metrnl in Normal and Diabetic Mouse Skin. Diabetes 2023; 72:1692-1706. [PMID: 37683051 DOI: 10.2337/db23-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Impaired wound healing and ulcer complications are major causes of morbidity in patients with diabetes. Impaired wound healing is associated with increased inflammation and poor angiogenesis in diabetes patients. Here, we demonstrate that topical administration of a secreted recombinant protein (Meteorin-like [Metrnl]) accelerates wound epithelialization and angiogenesis in mice. We observed a significant increase in Metrnl expression during physiological wound healing; however, its expression remained low during diabetic wound healing. Functionally, the recombinant protein Metrnl significantly accelerated wound closure in normal and diabetic mice models including db/db, high-fat diet/streptozotocin (HFD/STZ), and STZ mice. Mechanistically, keratinocytes secrete quantities of Metrnl to promote angiogenesis; increase endothelial cell proliferation, migration, and tube formation; and enhance macrophage polarization to the M2 type. Meanwhile, M2 macrophages secrete Metrnl to further stimulate angiogenesis. Moreover, the keratinocyte- and macrophage-produced cytokine Metrnl drives postinjury angiogenesis and reepithelialization through activation of AKT phosphorylation (S473) in a KIT receptor tyrosine kinase (c-Kit)-dependent manner. In conclusion, our study suggests that Metrnl has a biological effect in accelerating wound closure through c-Kit-dependent angiogenesis and epithelialization. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Lingyu Song
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xuebing Chang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Laying Hu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lu Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Guifang Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yali Huang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lifen Xu
- Department of Pathology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Bangming Jin
- Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jianying Song
- School of Nursing, Southwest Medical University, Luzhou, Sichuan, China
| | - Lixin Hu
- School of Nursing, Southwest Medical University, Luzhou, Sichuan, China
| | - Tian Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuanyuan Wang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Ying Xiao
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Fan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Mingjun Shi
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Lingling Liu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
| | - Qi Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Bing Guo
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuxia Zhou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Province Talent Base of Research on the Pathogenesis and Drug Prevention and Treatment for Common Major Diseases, Guizhou Medical University, Guiyang, Guizhou, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
4
|
Ashraf A, Ijaz MU, Muzammil S, Nazir MM, Zafar S, Zihad SMNK, Uddin SJ, Hasnain MS, Nayak AK. The role of bixin as antioxidant, anti-inflammatory, anticancer, and skin protecting natural product extracted from Bixa orellana L. Fitoterapia 2023; 169:105612. [PMID: 37454777 DOI: 10.1016/j.fitote.2023.105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Since long, medicinal plants or herbs are being used in different traditional treatment systems as therapeutic agents to treat a variety of illnesses. Bixa orellana L., an medicinal plant (family: Bixaceae), is an Ayurvedic herb used to treat dyslipidemia, diarrhoea, and hepatitis since ancient times. B. orellana L., seeds contain an orange-red coloured component known as bixin (C25H30O4), which constitutes 80% of the extract.Chemically, bixin is a natural apocarotenoid, biosynthesized through the oxidative degradation of C40 carotenoids. Bixin helps to regulate the Nrf2/MyD88/TLR4 and TGF-1/PPAR-/Smad3 pathways, which further give it antifibrosis, antioxidant, and anti-inflammatory properties. This current review article presents a comprehensive review of bixin as an anti-inflammatory, antioxidant, anticancer,and skin protecting natural product. In addition, the biosynthesis and molecular target of bixin, along with bixin extraction techniques, are also presented.
Collapse
Affiliation(s)
- Asma Ashraf
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan.
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad 38040, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University, Faisalabad 38000, Pakistan
| | | | - Saima Zafar
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan
| | - S M Neamul Kabir Zihad
- Department of Pharmacy, State University of Bangladesh, Dhaka 1205, Bangladesh; Pharmacy Discipline, Khulna University, Khulna 9208, Bangladesh
| | | | - Md Saquib Hasnain
- Department of Pharmacy, Palamau Institute of Pharmacy, Chianki, Daltonganj 822102, Jharkhand, India.
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
5
|
Tao Z, Liu L, Wu M, Wang Q, Wang Y, Xiong J, Xue C. Metformin promotes angiogenesis by enhancing VEGFa secretion by adipose-derived stem cells via the autophagy pathway. Regen Biomater 2023; 10:rbad043. [PMID: 37250977 PMCID: PMC10224801 DOI: 10.1093/rb/rbad043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Human adipose tissue-derived stem cell (ADSC) derivatives are cell-free, with low immunogenicity and no potential tumourigenicity, making them ideal for aiding wound healing. However, variable quality has impeded their clinical application. Metformin (MET) is a 5' adenosine monophosphate-activated protein kinase activator associated with autophagic activation. In this study, we assessed the potential applicability and underlying mechanisms of MET-treated ADSC derivatives in enhancing angiogenesis. We employed various scientific techniques to evaluate the influence of MET on ADSC, assess angiogenesis and autophagy in MET-treated ADSC in vitro, and examine whether MET-treated ADSC increase angiogenesis. We found that low MET concentrations exerted no appreciable effect on ADSC proliferation. However, MET was observed to enhance the angiogenic capacity and autophagy of ADSC. MET-induced autophagy was associated with increased vascular endothelial growth factor A production and release, which contributed to promoting the therapeutic efficacy of ADSC. In vivo experiments confirmed that in contrast to untreated ADSC, MET-treated ADSC promoted angiogenesis. Our findings thus indicate that the application of MET-treated ADSC would be an effective approach to accelerate wound healing by promoting angiogenesis at wound sites.
Collapse
Affiliation(s)
| | | | | | - Qianqian Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Special Medical Center, Naval Medical University, Shanghai, China
| | - Yuchong Wang
- Correspondence address. E-mail: (Y.W.); (J.X.); (C.X.)
| | - Jiachao Xiong
- Correspondence address. E-mail: (Y.W.); (J.X.); (C.X.)
| | - Chunyu Xue
- Correspondence address. E-mail: (Y.W.); (J.X.); (C.X.)
| |
Collapse
|
6
|
Wei J, Tian J, Tang C, Fang X, Miao R, Wu H, Wang X, Tong X. The Influence of Different Types of Diabetes on Vascular Complications. J Diabetes Res 2022; 2022:3448618. [PMID: 35242879 PMCID: PMC8888068 DOI: 10.1155/2022/3448618] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 12/12/2022] Open
Abstract
The final outcome of diabetes is chronic complications, of which vascular complications are the most serious, which is the main cause of death for diabetic patients and the direct cause of the increase in the cost of diabetes. Type 1 and type 2 diabetes are the main types of diabetes, and their pathogenesis is completely different. Type 1 diabetes is caused by genetics and immunity to destroy a large number of β cells, and insulin secretion is absolutely insufficient, which is more prone to microvascular complications. Type 2 diabetes is dominated by insulin resistance, leading to atherosclerosis, which is more likely to progress to macrovascular complications. This article explores the pathogenesis of two types of diabetes, analyzes the pathogenesis of different vascular complications, and tries to explain the different trends in the progression of different types of diabetes to vascular complications, in order to better prevent diabetes and its vascular complications.
Collapse
Affiliation(s)
- Jiahua Wei
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jiaxing Tian
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Cheng Tang
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xinyi Fang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Runyu Miao
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Haoran Wu
- Beijing University of Traditional Chinese Medicine, Beijing 100029, China
| | - Xiuge Wang
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130021, China
| | - Xiaolin Tong
- Changchun University of Chinese Medicine, Changchun 130117, China
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
7
|
Brazel CB, Simon JC, Tuckermann JP, Saalbach A. Inhibition of 11β-HSD1 Expression by Insulin in Skin: Impact for Diabetic Wound Healing. J Clin Med 2020; 9:jcm9123878. [PMID: 33260645 PMCID: PMC7760287 DOI: 10.3390/jcm9123878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 01/20/2023] Open
Abstract
Chronic, non-healing wounds impose a great burden on patients, professionals and health care systems worldwide. Diabetes mellitus (DM) and obesity are globally highly prevalent metabolic disorders and increase the risk for developing chronic wounds. Glucocorticoids (GCs) are endogenous stress hormones that exert profound effects on inflammation and repair systems. 11-beta-hydroxysteroid dehydrogenase 1 (11β-HSD1) is the key enzyme which controls local GC availability in target tissues such as skin. Since treatment with GCs has detrimental side effects on skin integrity, causing atrophy and delayed wound healing, we asked whether the dysregulated expression of 11β-HSD1 and consequently local GC levels in skin contribute to delayed wound healing in obese, diabetic db/db mice. We found increased expression of 11β-HSD1 during disturbed wound healing and in the healthy skin of obese, diabetic db/db mice. Cell analysis revealed increased expression of 11β-HSD1 in fibroblasts, myeloid cells and dermal white adipose tissue from db/db mice, while expression in keratinocytes was unaffected. Among diabetes- and obesity-related factors, insulin and insulin-like growth factor 1 down-regulated 11β-HSD1 expression in fibroblasts and myeloid cells, while glucose, fatty acids, TNF-α and IL-1β did not affect it. Insulin exerted its inhibitory effect on 11β-HSD1 expression by activating PI3-kinase/Akt-signalling. Consequently, the inhibitory effect of insulin is attenuated in fibroblasts from insulin-resistant db/db mice. We conclude that insulin resistance in obesity and diabetes prevents the down-regulation of 11β-HSD1, leading to elevated endogenous GC levels in diabetic skin, which could contribute to impaired wound healing in patients with DM.
Collapse
Affiliation(s)
- Christina B. Brazel
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany; (C.B.B.); (J.C.S.)
| | - Jan C. Simon
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany; (C.B.B.); (J.C.S.)
| | - Jan P. Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, 89081 Ulm, Germany;
- Klinikum der Universität München, Ludwig-Maximilian University of Munich, 80336 Munich, Germany
| | - Anja Saalbach
- Department of Dermatology, Venereology and Allergology, Faculty of Medicine, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany; (C.B.B.); (J.C.S.)
- Correspondence: ; Tel.: +49-341-9725880; Fax: +49-341-9725878
| |
Collapse
|
8
|
Petkovic M, Sørensen AE, Leal EC, Carvalho E, Dalgaard LT. Mechanistic Actions of microRNAs in Diabetic Wound Healing. Cells 2020; 9:E2228. [PMID: 33023156 PMCID: PMC7601058 DOI: 10.3390/cells9102228] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Wound healing is a complex biological process that is impaired under diabetes conditions. Chronic non-healing wounds in diabetes are some of the most expensive healthcare expenditures worldwide. Early diagnosis and efficacious treatment strategies are needed. microRNAs (miRNAs), a class of 18-25 nucleotide long RNAs, are important regulatory molecules involved in gene expression regulation and in the repression of translation, controlling protein expression in health and disease. Recently, miRNAs have emerged as critical players in impaired wound healing and could be targets for potential therapies for non-healing wounds. Here, we review and discuss the mechanistic background of miRNA actions in chronic wounds that can shed the light on their utilization as specific wound healing biomarkers.
Collapse
Affiliation(s)
- Marija Petkovic
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (A.E.S.); (L.T.D.)
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (E.C.L.); (E.C.)
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Anja Elaine Sørensen
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (A.E.S.); (L.T.D.)
| | - Ermelindo Carreira Leal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (E.C.L.); (E.C.)
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (E.C.L.); (E.C.)
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
- Department of Geriatrics, University of Arkansas for Medical Sciences, and Arkansas Children’s Research Institute, Little Rock, AR 72205, USA
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark; (A.E.S.); (L.T.D.)
| |
Collapse
|
9
|
Leonardi BF, Gosmann G, Zimmer AR. Modeling Diet-Induced Metabolic Syndrome in Rodents. Mol Nutr Food Res 2020; 64:e2000249. [PMID: 32978870 DOI: 10.1002/mnfr.202000249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Standardized animal models represent one of the most valuable tools available to understand the mechanism underlying the metabolic syndrome (MetS) and to seek for new therapeutic strategies. However, there is considerable variability in the studies conducted with this essential purpose. This review presents an updated discussion of the most recent studies using diverse experimental conditions to induce MetS in rodents with unbalanced diets, discusses the key findings in metabolic outcomes, and critically evaluates what we have been learned from them and how to advance in the field. The study includes scientific reports sourced from the Web of Science and PubMed databases, published between January 2013 and June 2020, which used hypercaloric diets to induce metabolic disorders, and address the impact of the diet on metabolic parameters. The collected data are used as support to discuss variables such as sex, species, and age of the animals, the most favorable type of diet, and the ideal diet length to generate metabolic changes. The experimental characteristics propose herein improve the performance of a preclinical model that resembles the human MetS and will guide researchers to investigate new therapeutic alternatives with confidence and higher translational validity.
Collapse
Affiliation(s)
- Bianca F Leonardi
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Grace Gosmann
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Aline R Zimmer
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| |
Collapse
|
10
|
Masson‐Meyers DS, Andrade TAM, Caetano GF, Guimaraes FR, Leite MN, Leite SN, Frade MAC. Experimental models and methods for cutaneous wound healing assessment. Int J Exp Pathol 2020; 101:21-37. [PMID: 32227524 PMCID: PMC7306904 DOI: 10.1111/iep.12346] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/20/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022] Open
Abstract
Wound healing studies are intricate, mainly because of the multifaceted nature of the wound environment and the complexity of the healing process, which integrates a variety of cells and repair phases, including inflammation, proliferation, reepithelialization and remodelling. There are a variety of possible preclinical models, such as in mice, rabbits and pigs, which can be used to mimic acute or impaired for example, diabetic and nutrition-related wounds. These can be induced by many different techniques, with excision or incision being the most common. After determining a suitable model for a study, investigators need to select appropriate and reproducible methods that will allow the monitoring of the wound progression over time. The assessment can be performed by non-invasive protocols such as wound tracing, photographic documentation (including image analysis), biophysical techniques and/or by invasive protocols that will require wound biopsies. In this article, we provide an overview of some of the most often needed and used: (a) preclinical/animal models including incisional, excisional, burn and impaired wounds; (b) methods to evaluate the healing progression such as wound healing rate, wound analysis by image, biophysical assessment, histopathological, immunological and biochemical assays. The aim is to help researchers during the design and execution of their wound healing studies.
Collapse
Affiliation(s)
- Daniela S. Masson‐Meyers
- Marquette University School of DentistryMilwaukeeWisconsinUSA
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
| | - Thiago A. M. Andrade
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
- Graduate Program of Biomedical SciencesUniversity Center of Herminio Ometto Foundation (FHO)ArarasSao PauloBrazil
| | - Guilherme F. Caetano
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
- Graduate Program of Biomedical SciencesUniversity Center of Herminio Ometto Foundation (FHO)ArarasSao PauloBrazil
| | - Francielle R. Guimaraes
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
- University Center of Associated Schools of Education (UNIFAE)São João da Boa VistaSão PauloBrazil
| | - Marcel N. Leite
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
| | - Saulo N. Leite
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
- University Center of the Educational Foundation Guaxupe (UNIFEG)GuaxupeMinas GeraisBrazil
| | - Marco Andrey C. Frade
- Division of DermatologyDepartment of Internal MedicineRibeirao Preto Medical SchoolUniversity of Sao PauloRibeirao PretoSao PauloBrazil
| |
Collapse
|
11
|
Schanuel FS, Saguie BO, Monte-Alto-Costa A. Olive oil promotes wound healing of mice pressure injuries through NOS-2 and Nrf2. Appl Physiol Nutr Metab 2019; 44:1199-1208. [PMID: 30901524 DOI: 10.1139/apnm-2018-0845] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The pressure injury environment is characterized by overproduction of reactive oxygen species and exacerbated inflammation, which impair the healing of these lesions. Mediterranean-like diet may be a good intervention to improve the healing of pressure injury owing to its anti-inflammatory and antioxidant components. Thus, this study evaluated the hypothesis that olive oil, as a main source of lipid in Mediterranean diet, could improve cutaneous wound healing of pressure injury in mice. Male Swiss mice were randomly divided into standard, olive oil, or soybean oil plus olive oil groups and fat represented 10% of total calories in all groups. Four weeks after the beginning of diet administration, 2 cycles of ischemia-reperfusion (IR) by external application of 2 magnets disks were performed in the dorsal skin to induce pressure injury formation. Fourteen days after the end of the second IR cycle, olive oil-based diet reduced neutrophils cells and cyclooxygenase-2 protein expression and increased nitric oxide synthase-2 and protein and lipid oxidation. Olive oil based-diet also increased nuclear factor erythroid 2-related factor 2 protein expression and collagen type I precursor protein expression. In addition, administration of olive oil-based diet promoted wound closure at 7, 10, and 14 days after the end of the second IR cycle. These findings support the hypothesis that olive oil-based diet improves cutaneous wound healing of pressure injury in mice through the reduction of inflammation and stimulation of redox equilibrium.
Collapse
Affiliation(s)
- Fernanda Seabra Schanuel
- Rio de Janeiro State University (UERJ), Histology and Embryology Department - Tissue Repair Laboratory, Av. Marechal Rondon, 381/HLA, RJ 20950-003, Brazil
- Rio de Janeiro State University (UERJ), Histology and Embryology Department - Tissue Repair Laboratory, Av. Marechal Rondon, 381/HLA, RJ 20950-003, Brazil
| | - Bianca Oliveira Saguie
- Rio de Janeiro State University (UERJ), Histology and Embryology Department - Tissue Repair Laboratory, Av. Marechal Rondon, 381/HLA, RJ 20950-003, Brazil
- Rio de Janeiro State University (UERJ), Histology and Embryology Department - Tissue Repair Laboratory, Av. Marechal Rondon, 381/HLA, RJ 20950-003, Brazil
| | - Andréa Monte-Alto-Costa
- Rio de Janeiro State University (UERJ), Histology and Embryology Department - Tissue Repair Laboratory, Av. Marechal Rondon, 381/HLA, RJ 20950-003, Brazil
- Rio de Janeiro State University (UERJ), Histology and Embryology Department - Tissue Repair Laboratory, Av. Marechal Rondon, 381/HLA, RJ 20950-003, Brazil
| |
Collapse
|
12
|
Impaired wound healing in type 1 diabetes is dependent on 5-lipoxygenase products. Sci Rep 2018; 8:14164. [PMID: 30242286 PMCID: PMC6155046 DOI: 10.1038/s41598-018-32589-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/11/2018] [Indexed: 12/26/2022] Open
Abstract
Type 1 diabetes is associated with systemic low grade inflammation (LGI). We have previously shown that LGI in diabetic mice depends on systemic circulation of leukotriene (LTB4) which potentiates the toll-like/IL1β receptors response in macrophages. Impaired wound healing is an important co-morbidity in diabetes, and macrophages play a key role in this process. Here, we investigated the role of leukotrienes on monocytes and macrophages phenotype and in the impaired wound healing in diabetic mice. Type 1 diabetes was induced with streptozotocin in 129SvE wild-type (WT) and leukotrienes-deficient 5LO−/− (5-lipoxygenase knockout) mice. In diabetics, the systemic levels of LTB4, TNF-α, IL-6, IL-10, IL-12 and IFNγ were increased as well as the frequency of pro-inflammatory monocytes (CD11b+Ly6ChighLy6G−) compared to healthy mice. In diabetic 5LO−/− mice, these parameters were similar to those in healthy mice. Resident peritoneal macrophages from diabetic WT mice showed a classically activated M1-like phenotype (high Nos2, Stat and Il12 expression, and nitrite levels). Macrophages from diabetic 5LO−/− mice presented alternatively activated M2-macrophages markers (high Arg1 and Chi3l3 expression and arginase activity) and when stimulated with IL4, enhanced phosphorylated-STAT6. Cutaneous wound healing in diabetic WT mice was impaired, which correlated with the decreased frequency of M2-macrophages (CD45+F4/80+CD206+) in the lesions. In diabetic 5LO−/− mice, the frequency of M2-macrophages in the wound was similar to that in healthy mice, suggesting that the impaired healing of diabetic mice depends on 5LO products. The inhibition of leukotrienes or antagonism of its receptors could be a therapeutic alternative for diabetic patients with impaired healing.
Collapse
|
13
|
Rosa DF, Sarandy MM, Novaes RD, Freitas MB, do Carmo Gouveia Pelúzio M, Gonçalves RV. High-Fat Diet and Alcohol Intake Promotes Inflammation and Impairs Skin Wound Healing in Wistar Rats. Mediators Inflamm 2018; 2018:4658583. [PMID: 30140168 PMCID: PMC6081583 DOI: 10.1155/2018/4658583] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/24/2018] [Accepted: 06/24/2018] [Indexed: 12/12/2022] Open
Abstract
The wound-healing process is complex and remains a challenging process under the influence of several factors, including eating habits. As improper diets may lead to disorders such as dyslipidemia, insulin resistance, and chronic inflammation, potentially affecting the tissue ability to heal, we decided to investigate the effect of a high-fat diet and alcohol intake on the inflammatory process and skin wound healing in Wistar rats. Male rats (n = 30) were individually housed in cages with food and water ad libitum (registration number 213/2014). After anesthesia, at day 40, three circular wounds (12 mm diameter) were made on the back of each animal, which were then randomly assorted into five treatment groups: C1 (control 1)-water via gavage and standard chow diet; C2 (control 2)-water (no gavage) and standard chow diet; AL (alcohol)-water (no gavage) and alcohol (40%) via gavage and standard chow diet; HF (high fat)-water (no gavage) and high-fat diet (50%); and HF + AL (alcohol/high fat)-water (no gavage), alcohol (40%) via gavage, and high-fat diet. Animals were treated for 61 days. Every seven days, the area and the rate of wound contraction were evaluated. Tissue samples were removed for histopathological analysis and biochemical analyses. Our results showed that wound contraction was not complete in the HF + AL rats. Two specific indices of wound-healing impairment (total cell number and levels of the inflammatory cytokine TGF-β) were increased in the HF + AL rats. We also observed decreased type I and III collagen fibers in the HF, AL, and HF + AL groups and increased oxidative stress markers in the same groups. We suggest that a high-fat diet combined with alcohol intake contributed to delayed skin wound healing through increase of the inflammatory phase and promoting oxidative stress, which may have led to morphological alterations and impaired matrix remodeling.
Collapse
Affiliation(s)
| | | | - Rômulo Dias Novaes
- 3Institute of Biomedical Sciences, Department of Structural Biology, Federal University of Alfenas, Alfenas, MG, Brazil
| | | | | | | |
Collapse
|
14
|
Rosa DF, Sarandy MM, Novaes RD, da Matta SLP, Gonçalves RV. Effect of a high-fat diet and alcohol on cutaneous repair: A systematic review of murine experimental models. PLoS One 2017; 12:e0176240. [PMID: 28493875 PMCID: PMC5426595 DOI: 10.1371/journal.pone.0176240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 03/07/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic alcohol intake associated with an inappropriate diet can cause lesions in multiple organs and tissues and complicate the tissue repair process. In a systematic review, we analyzed the relevance of alcohol and high fat consumption to cutaneous and repair, compared the main methodologies used and the most important parameters tested. Preclinical investigations with murine models were assessed to analyze whether the current evidence support clinical trials. METHODS The studies were selected from MEDLINE/PubMed and Scopus databases, according to Fig 1. All 15 identified articles had their data extracted. The reporting bias was investigated according to the ARRIVE (Animal Research: Reporting of in Vivo Experiments) strategy. RESULTS In general, animals offered a high-fat diet and alcohol showed decreased cutaneous wound closure, delayed skin contraction, chronic inflammation and incomplete re-epithelialization. CONCLUSION In further studies, standardized experimental design is needed to establish comparable study groups and advance the overall knowledge background, facilitating data translatability from animal models to human clinical conditions.
Collapse
Affiliation(s)
- Daiane Figueiredo Rosa
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Rômulo Dias Novaes
- Department of Cell, Tissue and Developmental Biology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | | |
Collapse
|
15
|
Pinzón-García AD, Cassini-Vieira P, Ribeiro CC, de Matos Jensen CE, Barcelos LS, Cortes ME, Sinisterra RD. Efficient cutaneous wound healing using bixin-loaded PCL nanofibers in diabetic mice. J Biomed Mater Res B Appl Biomater 2016; 105:1938-1949. [DOI: 10.1002/jbm.b.33724] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/30/2016] [Accepted: 05/13/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Ana Delia Pinzón-García
- Chemistry Department; Institute of Exact Sciences, Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - Puebla Cassini-Vieira
- Department of Physiology and Biophysics; Institute of Biological Sciences, Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - Cyntia Cabral Ribeiro
- Chemistry Department; Institute of Exact Sciences, Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | | | - Luciola Silva Barcelos
- Department of Physiology and Biophysics; Institute of Biological Sciences, Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - Maria Esperanza Cortes
- Department of Restorative Dentistry, Faculty of Dentristry; Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| | - Ruben Dario Sinisterra
- Chemistry Department; Institute of Exact Sciences, Universidade Federal de Minas Gerais; Belo Horizonte Minas Gerais Brazil
| |
Collapse
|
16
|
Moura J, Rodrigues J, Gonçalves M, Amaral C, Lima M, Carvalho E. Impaired T-cell differentiation in diabetic foot ulceration. Cell Mol Immunol 2016; 14:758-769. [PMID: 26996067 DOI: 10.1038/cmi.2015.116] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/28/2015] [Accepted: 12/28/2015] [Indexed: 12/31/2022] Open
Abstract
Foot ulceration is one of the most debilitating complications associated with diabetes, but its cause remains poorly understood. Several studies have been undertaken to understand healing kinetics or find possible therapies to enhance healing. However, few studies have been directed at understanding the immunological alterations that could influence wound healing in diabetes. In this study, we analysed the T-cell receptor (TCR) repertoire diversity in TCR-αβ+ T cells. We also analysed the distribution and phenotype of T cells obtained from the peripheral blood of healthy controls and diabetic individuals with or without foot ulcers. Our results showed that diabetic individuals, especially those with foot ulcers, have a significantly lower naive T-cell number and a poorer TCR-Vβ repertoire diversity. We also showed that the reduced TCR-Vβ repertoire diversity in diabetic individuals was mainly owing to the accumulation of effector T cells, the major source of tumour necrosis factor-α production, which was even more pronounced in patients with acute foot ulceration. Moreover, the expression of several inflammatory chemokine receptors was significantly reduced in diabetic patients. In conclusion, effector T-cell accumulation and TCR repertoire diversity reduction appear to precede the development of foot ulcers. This finding may open new immunological therapeutic possibilities and provide a new prognostic tool in diabetic wound care.
Collapse
Affiliation(s)
- João Moura
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517 Coimbra, Portugal
| | - João Rodrigues
- Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), 4099-001 Porto, Portugal.,Unidade Multidisciplinar de Investigação Biomédica (UMIB/ICBAS/UP), Porto, Portugal
| | - Marta Gonçalves
- Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), 4099-001 Porto, Portugal.,Unidade Multidisciplinar de Investigação Biomédica (UMIB/ICBAS/UP), Porto, Portugal
| | - Cláudia Amaral
- Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), 4099-001 Porto, Portugal
| | - Margarida Lima
- Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), 4099-001 Porto, Portugal.,Unidade Multidisciplinar de Investigação Biomédica (UMIB/ICBAS/UP), Porto, Portugal.,These authors contributed equally to this work
| | - Eugénia Carvalho
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517 Coimbra, Portugal.,Department of Geriatrics, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72202, USA.,Arkansas Children's Hospital Research Institute (ACHRI), Little Rock, AR 72202, USA.,These authors contributed equally to this work
| |
Collapse
|
17
|
Ogai K, Matsumoto M, Aoki M, Minematsu T, Kitamura K, Kobayashi M, Sanada H, Sugama J. Increased level of tumour necrosis factor-alpha (TNF-α) on the skin of Japanese obese males: measured by quantitative skin blotting. Int J Cosmet Sci 2016; 38:462-9. [DOI: 10.1111/ics.12312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/07/2016] [Indexed: 12/11/2022]
Affiliation(s)
- K. Ogai
- Wellness Promotion Science Center; Institute of Medical; Pharmaceutical and Health Sciences; Kanazawa University; 5-11-80 Kodatsuno Kanazawa Ishikawa 9200942 Japan
| | - M. Matsumoto
- Wellness Promotion Science Center; Institute of Medical; Pharmaceutical and Health Sciences; Kanazawa University; 5-11-80 Kodatsuno Kanazawa Ishikawa 9200942 Japan
- Division of Health Science; Department of Clinical Nursing; Graduate School of Medicine; Kanazawa University; 5-11-80 Kodatsuno Kanazawa Ishikawa 9200942 Japan
| | - M. Aoki
- Division of Health Science; Department of Clinical Nursing; Graduate School of Medicine; Kanazawa University; 5-11-80 Kodatsuno Kanazawa Ishikawa 9200942 Japan
| | - T. Minematsu
- Department of Gerontological Nursing/Wound Care Management; Graduate School of Medicine; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 1130033 Japan
| | - K. Kitamura
- Department of Clinical Laboratory Science; Graduate School of Medical Science; Kanazawa University; 5-11-80 Kodatsuno Kanazawa Ishikawa 9200942 Japan
| | - M. Kobayashi
- Wellness Promotion Science Center; Institute of Medical; Pharmaceutical and Health Sciences; Kanazawa University; 5-11-80 Kodatsuno Kanazawa Ishikawa 9200942 Japan
| | - H. Sanada
- Department of Gerontological Nursing/Wound Care Management; Graduate School of Medicine; The University of Tokyo; 7-3-1 Hongo Bunkyo-ku Tokyo 1130033 Japan
| | - J. Sugama
- Wellness Promotion Science Center; Institute of Medical; Pharmaceutical and Health Sciences; Kanazawa University; 5-11-80 Kodatsuno Kanazawa Ishikawa 9200942 Japan
- Division of Health Science; Department of Clinical Nursing; Graduate School of Medicine; Kanazawa University; 5-11-80 Kodatsuno Kanazawa Ishikawa 9200942 Japan
| |
Collapse
|
18
|
Khamaisi M, Katagiri S, Keenan H, Park K, Maeda Y, Li Q, Qi W, Thomou T, Eschuk D, Tellechea A, Veves A, Huang C, Orgill DP, Wagers A, King GL. PKCδ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts. J Clin Invest 2016; 126:837-53. [PMID: 26808499 DOI: 10.1172/jci82788] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022] Open
Abstract
Abnormal fibroblast function underlies poor wound healing in patients with diabetes; however, the mechanisms that impair wound healing are poorly defined. Here, we evaluated fibroblasts from individuals who had type 1 diabetes (T1D) for 50 years or more (Medalists, n = 26) and from age-matched controls (n = 7). Compared with those from controls, Medalist fibroblasts demonstrated a reduced migration response to insulin, lower VEGF expression, and less phosphorylated AKT (p-AKT), but not p-ERK, activation. Medalist fibroblasts were also functionally less effective at wound closure in nude mice. Activation of the δ isoform of protein kinase C (PKCδ) was increased in postmortem fibroblasts from Medalists, fibroblasts from living T1D subjects, biopsies of active wounds of living T1D subjects, and granulation tissues from mice with streptozotocin-induced diabetes. Diabetes-induced PKCD mRNA expression was related to a 2-fold increase in the mRNA half-life. Pharmacologic inhibition and siRNA-mediated knockdown of PKCδ or expression of a dominant-negative isoform restored insulin signaling of p-AKT and VEGF expression in vitro and improved wound healing in vivo. Additionally, increasing PKCδ expression in control fibroblasts produced the same abnormalities as those seen in Medalist fibroblasts. Our results indicate that persistent PKCδ elevation in fibroblasts from diabetic patients inhibits insulin signaling and function to impair wound healing and suggest PKCδ inhibition as a potential therapy to improve wound healing in diabetic patients.
Collapse
|
19
|
Combined nitric oxide-releasing poly(vinyl alcohol) film/F127 hydrogel for accelerating wound healing. Colloids Surf B Biointerfaces 2015; 130:182-91. [DOI: 10.1016/j.colsurfb.2015.04.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 02/07/2023]
|
20
|
Szczęsny W, Szczepanek J, Tretyn A, Dąbrowiecki S, Szmytkowski J, Polak J. An analysis of the expression of collagen I and III genes in the fascia of obese patients. J Surg Res 2015; 195:475-80. [DOI: 10.1016/j.jss.2015.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 12/22/2014] [Accepted: 01/07/2015] [Indexed: 12/20/2022]
|
21
|
Phototherapy improves wound healing in rats subjected to high-fat diet. Lasers Med Sci 2015; 30:1481-8. [PMID: 25862476 DOI: 10.1007/s10103-015-1745-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 03/18/2015] [Indexed: 12/25/2022]
Abstract
This study aimed to compare the phototherapy effects on wound healing in rats submitted to normal and high-fat diets. Thirty-six rats received normal lipidic diet (NL) and 36 high lipidic (HL) diet for 45 days. The nutritional status was measured by body mass, blood glucose, total cholesterol, and triglycerides levels. Four experimental groups were performed according light (L) therapy applied "on" or "off" (660 nm, 100 mW, 70 J/cm(2), 2 J) on 1.5-mm-punched dorsum skin wounds as NLL+, NLL-, HLL+, and HLL-. The wound healing rate (WHR) and oxidative stress markers were analyzed on 2nd, 7th, and 14th days. Despite no difference among body mass, the HL rats presented higher blood glucose, total cholesterol, and triglycerides levels than NL rats. Respectively, on the 2nd and 14th days, the HLL+ group presented the highest WHRs (0.38 ± 0.16/0.97 ± 0.02) among all groups, while the HLL- (-0.002 ± 0.12/0.81 ± 12.1) the lowest WHRs. Hydroxyproline level was lower in HLL- (6.41 ± 1.09 μg/mg) than HLL+ (7.71 ± 0.61 μg/mg) and also NLL+ (9.33 ± 0.84 μg/mg). HLL+ presented oxidative stress markers similar to normal control group (NLL-) during follow up and highest antioxidant defense on 7th day. The results showed phototherapy accelerated the cutaneous wound healing by modulating oxidative stress in rats with metabolic disorders under a high-fat diet.
Collapse
|
22
|
Ogai K, Matsumoto M, Minematsu T, Kitamura K, Kobayashi M, Sugama J, Sanada H. Development of an improved method for quantitative analysis of skin blotting: increasing reliability and applicability for skin assessment. Int J Cosmet Sci 2015; 37:425-32. [DOI: 10.1111/ics.12217] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/07/2015] [Indexed: 01/08/2023]
Affiliation(s)
- K. Ogai
- Wellness Promotion Science Center; Institute of Medical, Pharmaceutical and Health Sciences; Kanazawa University; Kanazawa Ishikawa Japan
| | - M. Matsumoto
- Division of Health Science; Department of Clinical Nursing; Graduate School of Medicine; Kanazawa University; Kanazawa Ishikawa Japan
| | - T. Minematsu
- Department of Gerontological Nursing/Wound Care Management; Graduate School of Medicine; The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - K. Kitamura
- Department of Clinical Laboratory Science; Graduate School of Medical Science; Kanazawa University; Kanazawa Ishikawa Japan
| | - M. Kobayashi
- Wellness Promotion Science Center; Institute of Medical, Pharmaceutical and Health Sciences; Kanazawa University; Kanazawa Ishikawa Japan
| | - J. Sugama
- Wellness Promotion Science Center; Institute of Medical, Pharmaceutical and Health Sciences; Kanazawa University; Kanazawa Ishikawa Japan
- Division of Health Science; Department of Clinical Nursing; Graduate School of Medicine; Kanazawa University; Kanazawa Ishikawa Japan
| | - H. Sanada
- Department of Gerontological Nursing/Wound Care Management; Graduate School of Medicine; The University of Tokyo; Bunkyo-ku Tokyo Japan
| |
Collapse
|
23
|
Lee CH, Chang SH, Chen WJ, Hung KC, Lin YH, Liu SJ, Hsieh MJ, Pang JHS, Juang JH. Augmentation of diabetic wound healing and enhancement of collagen content using nanofibrous glucophage-loaded collagen/PLGA scaffold membranes. J Colloid Interface Sci 2015; 439:88-97. [DOI: 10.1016/j.jcis.2014.10.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 10/24/2022]
|
24
|
Barreto SC, Hopkins CA, Bhowmick M, Ray A. Extracellular matrix in obesity – cancer interactions. Horm Mol Biol Clin Investig 2015; 22:63-77. [DOI: 10.1515/hmbci-2015-0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 03/09/2015] [Indexed: 01/21/2023]
Abstract
AbstractObesity or overweight is a risk factor for several health disorders such as type 2 diabetes, hypertension, and certain cancers. Furthermore, obesity affects almost all body systems including the extracellular matrix (ECM) by generating a pro-inflammatory environment, which are associated with abnormal secretions of several cytokines or hormonal substances, for example, insulin-like growth factors (IGFs), leptin, and sex hormones. These chemical mediators most likely have a great impact on the ECM. Accumulating evidence suggests that both obesity and ECM can influence tumor growth and progression through a number of chemical mediators. Conversely, cells in the connective tissue, namely fibroblasts and macrophages, support and aggravate the inflammatory situation in obesity by releasing several cytokines or growth factors such as vascular endothelial growth factor, epidermal growth factor, and transforming growth factor-beta (TGF-β). A wide range of functions are performed by TGF-β in normal health and pathological conditions including tumorigenesis. Breast cancer in postmenopausal women is a classic example of obesity-related cancer wherein several of these conditions, for example, higher levels of pro-inflammatory cytokines, impairment in the regulation of estrogen and growth factors, and dysregulation of different ECM components may favor the neoplastic process. Aberrant expressions of ECM components such as matrix metalloproteinases or matricellular proteins in both obesity and cancer have been reported by many studies. Nonstructural matricellular proteins, viz., thrombospondins, secreted protein acidic and rich in cysteine (SPARC), and Cyr61-CTGF-Nov (CCN), which function as modulators of cell-ECM interactions, exhibit protean behavior in cancer. Precise understanding of ECM biology can provide potential therapeutic targets to combat obesity-related pathologies.
Collapse
|
25
|
Mesenchymal stromal cells enhance wound healing by ameliorating impaired metabolism in diabetic mice. Cytotherapy 2014; 16:1467-1475. [DOI: 10.1016/j.jcyt.2014.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/14/2014] [Accepted: 05/18/2014] [Indexed: 01/09/2023]
|
26
|
Lee CH, Hsieh MJ, Chang SH, Lin YH, Liu SJ, Lin TY, Hung KC, Pang JHS, Juang JH. Enhancement of diabetic wound repair using biodegradable nanofibrous metformin-eluting membranes: in vitro and in vivo. ACS APPLIED MATERIALS & INTERFACES 2014; 6:3979-3986. [PMID: 24568239 DOI: 10.1021/am405329g] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This work developed biodegradable nanofibrous drug-eluting membranes that provided sustained release of metformin for repairing wounds associated with diabetes. To prepare the biodegradable membranes, poly-d-l-lactide-glycolide (PLGA) and metformin were first dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and were spun into nanofibrous membranes by electrospinning. An elution method and an HPLC assay were utilized to characterize the in vivo and in vitro release rates of the pharmaceuticals from the membranes. The biodegradable nanofibrous membranes released high concentrations of metformin for more than three weeks. Moreover, nanofibrous metformin-eluting PLGA membranes were more hydrophilic and had a greater water-containing capacity than virgin PLGA fibers. The membranes also improved wound healing and re-epithelialization in diabetic rats relative to the control. The experimental results in this work suggest that nanofibrous metformin-eluting membranes were functionally active in the treatment of diabetic wounds and very effective as accelerators in the early stage of healing of such wounds.
Collapse
Affiliation(s)
- Cheng-Hung Lee
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital-Linkou, Chang Gung University College of Medicine , Tao-Yuan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kutner A, Friedman A. Nitric oxide nanoparticles for wound healing: future directions to overcome challenges. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17469872.2013.837670] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|