1
|
Hara H, Foote JB, Hansen-Estruch C, Bikhet MH, Nguyen HQ, Javed M, Oscherwitz M, Collins DE, Ayares D, Yamamoto T, King TW, Cooper DK. In vitro and in vivo immune assessments of genetically-engineered pig skin grafts in New World (squirrel) monkeys. Xenotransplantation 2023; 30:e12832. [PMID: 37870485 PMCID: PMC10843142 DOI: 10.1111/xen.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
Half a million patients in the USA alone require treatment for burns annually. Following an extensive burn, it may not be possible to provide sufficient autografts in a single setting. Genetic manipulations (GM) of pigs offer the possibility of reducing primate humoral and cellular rejection of pig skin xenografts and thus extending graft survival. We compared the survival of skin grafts from pigs with 9-GM with that of autografts and allografts in squirrel monkeys. Monitoring for rejection was by (1) macroscopic examination, (2) histopathological examination of skin biopsies, and (3) measurement of anti-monkey and anti-pig IgM and IgG antibodies. Autografts (n = 5) survived throughout the 28 days of follow-up without histopathological features of rejection. Median survival of allografts (n = 6) was 14 days and of pig xenografts (n = 12) 21 days. Allotransplantation was associated with an increase in anti-monkey IgM, but the anticipated subsequent rise in IgG had not yet occurred at the time of euthanasia. Pig grafts were associated with increases in anti-pig IgM and IgG. In all cases, histopathologic features of rejection were similar. 9-GM pig skin xenografts survive at least as long as monkey skin allografts (and trended to survive longer), suggesting that they are a realistic clinical option for the temporary treatment of burns. Although monkeys with pig skin grafts developed anti-pig IgM and IgG antibodies, these did not cross-react with monkey antigens, indicating that a primary 9-GM pig skin graft would not be detrimental to a subsequent monkey skin allograft.
Collapse
Affiliation(s)
- Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeremy B. Foote
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Christophe Hansen-Estruch
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohamed H. Bikhet
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Huy Q. Nguyen
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mariyam Javed
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Max Oscherwitz
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dalis E. Collins
- Animal Resources Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Takayuki Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Timothy W. King
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K.C. Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
2
|
Hara H, Yamamoto T, Wei HJ, Cooper DK. What Have We Learned From In Vitro Studies About Pig-to-primate Organ Transplantation? Transplantation 2023; 107:1265-1277. [PMID: 36536507 PMCID: PMC10205677 DOI: 10.1097/tp.0000000000004458] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Natural preformed and de novo antibodies against pig antigens are a major cause of pig xenograft rejection in nonhuman primates (NHPs). In vivo studies in pig-to-NHP models are time consuming. In vitro assays, for example, antibody binding to pig cells, complement-dependent cytotoxicity assays, provide valuable information quickly and inexpensively. Using in vitro assays for several years, it has been documented that (1) during the first year of life, humans and NHPs develop anti-wild-type pig antibodies, but humans develop no or minimal antibody to triple-knockout (TKO) pig cells. (2) Some adult humans have no or minimal antibodies to TKO pig cells and are therefore unlikely to rapidly reject a TKO organ, particularly if the organ also expresses human "protective" proteins. (3) There is good correlation between immunoglobulin (Ig)M (but no t IgG) binding and complement injury. (4) All Old World NHPs develop antibodies to TKO pig cells and are not optimal recipients of TKO organs. (5) galactosyltransferase gene-knockout/β4GalNT2KO pigs are preferred for Old World NHPs. (6) Humans develop anti-pig IgE and IgA antibodies against pig cells, but their role remains uncertain. (7) In a small percentage of allosensitized humans, antibodies that cross-react with swine leukocyte antigens may be detrimental to a pig organ xenograft. (8) Prior sensitization to pig antigens is unlikely to be detrimental to a subsequent allograft. (9) Deletion of expression of Gal and Neu5Gc is associated with a reduction in the T-cell response to pig cells. All of these valuable observations have largely predicted the results of in vivo studies.
Collapse
Affiliation(s)
- Hidetaka Hara
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Takayuki Yamamoto
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - Hong-Jiang Wei
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - David K.C. Cooper
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| |
Collapse
|
3
|
Carrier AN, Verma A, Mohiuddin M, Pascual M, Muller YD, Longchamp A, Bhati C, Buhler LH, Maluf DG, Meier RPH. Xenotransplantation: A New Era. Front Immunol 2022; 13:900594. [PMID: 35757701 PMCID: PMC9218200 DOI: 10.3389/fimmu.2022.900594] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Organ allotransplantation has now reached an impassable ceiling inherent to the limited supply of human donor organs. In the United States, there are currently over 100,000 individuals on the national transplant waiting list awaiting a kidney, heart, and/or liver transplant. This is in contrast with only a fraction of them receiving a living or deceased donor allograft. Given the morbidity, mortality, costs, or absence of supportive treatments, xenotransplant has the potential to address the critical shortage in organ grafts. Last decade research efforts focused on creation of donor organs from pigs with various genes edited out using CRISPR technologies and utilizing non-human primates for trial. Three groups in the United States have recently moved forward with trials in human subjects and obtained initial successful results with pig-to-human heart and kidney xenotransplantation. This review serves as a brief discussion of the recent progress in xenotransplantation research, particularly as it concerns utilization of porcine heart, renal, and liver xenografts in clinical practice.
Collapse
Affiliation(s)
- Amber N Carrier
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Anjali Verma
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Muhammad Mohiuddin
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Manuel Pascual
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Yannick D Muller
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Alban Longchamp
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Chandra Bhati
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Leo H Buhler
- Faculty of Science and Medicine, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Daniel G Maluf
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Raphael P H Meier
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
4
|
Kalsi R, Messner F, Brandacher G. Skin xenotransplantation: technological advances and future directions. Curr Opin Organ Transplant 2020; 25:464-476. [PMID: 32773504 DOI: 10.1097/mot.0000000000000798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW To summarize the evolution of skin xenotransplantation and contextualize technological advances and the status of clinically applicable large animal research as well as prospects for translation of this work as a viable future treatment option. RECENT FINDINGS Porcine xenografts at the start of the millennium were merely biologic dressings subject to rapid rejection. Since then, numerous important advances in swine to nonhuman primate models have yielded xenotransplant products at the point of clinical translation. Critical genetic modifications in swine from a designated pathogen-free donor herd have allowed xenograft survival reaching 30 days without preconditioning or maintenance immunosuppression. Further, xenograft coverage appears not to sensitize the recipient to subsequent allograft placement and vice versa, allowing for temporary coverage times to be doubled using both xeno and allografts. SUMMARY Studies in large animal models have led to significant progress in the creation of living, functional skin xenotransplants with clinically relevant shelf-lives to improve the management of patients with extensive burns.
Collapse
Affiliation(s)
- Richa Kalsi
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine.,Department of General Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - Franka Messner
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine.,Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine
| |
Collapse
|
5
|
Lu T, Yang B, Wang R, Qin C. Xenotransplantation: Current Status in Preclinical Research. Front Immunol 2020; 10:3060. [PMID: 32038617 PMCID: PMC6989439 DOI: 10.3389/fimmu.2019.03060] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
The increasing life expectancy of humans has led to a growing numbers of patients with chronic diseases and end-stage organ failure. Transplantation is an effective approach for the treatment of end-stage organ failure; however, the imbalance between organ supply and the demand for human organs is a bottleneck for clinical transplantation. Therefore, xenotransplantation might be a promising alternative approach to bridge the gap between the supply and demand of organs, tissues, and cells; however, immunological barriers are limiting factors in clinical xenotransplantation. Thanks to advances in gene-editing tools and immunosuppressive therapy as well as the prolonged xenograft survival time in pig-to-non-human primate models, clinical xenotransplantation has become more viable. In this review, we focus on the evolution and current status of xenotransplantation research, including our current understanding of the immunological mechanisms involved in xenograft rejection, genetically modified pigs used for xenotransplantation, and progress that has been made in developing pig-to-pig-to-non-human primate models. Three main types of rejection can occur after xenotransplantation, which we discuss in detail: (1) hyperacute xenograft rejection, (2) acute humoral xenograft rejection, and (3) acute cellular rejection. Furthermore, in studies on immunological rejection, genetically modified pigs have been generated to bridge cross-species molecular incompatibilities; in the last decade, most advances made in the field of xenotransplantation have resulted from the production of genetically engineered pigs; accordingly, we summarize the genetically modified pigs that are currently available for xenotransplantation. Next, we summarize the longest survival time of solid organs in preclinical models in recent years, including heart, liver, kidney, and lung xenotransplantation. Overall, we conclude that recent achievements and the accumulation of experience in xenotransplantation mean that the first-in-human clinical trial could be possible in the near future. Furthermore, we hope that xenotransplantation and various approaches will be able to collectively solve the problem of human organ shortage.
Collapse
Affiliation(s)
- Tianyu Lu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Bochao Yang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Ruolin Wang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.,NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| |
Collapse
|
6
|
Abstract
There is a well-known worldwide shortage of deceased human donor organs for clinical transplantation. The transplantation of organs from genetically engineered pigs may prove an alternative solution. In the past 5 years, there have been sequential advances that have significantly increased pig graft survival in nonhuman primates. This progress has been associated with (1) the availability of increasingly sophisticated genetically engineered pigs; (2) the introduction of novel immunosuppressive agents, particularly those that block the second T-cell signal (costimulation blockade); (3) a better understanding of the inflammatory response to pig xenografts; and (4) increasing experience in the management of nonhuman primates with pig organ or cell grafts. The range of investigations required in experimental studies has increased. The standard immunologic assays are still carried out, but increasingly investigations aimed toward other pathobiologic barriers (e.g., coagulation dysregulation and inflammation) have become more important in determining injury to the graft.Now that prolonged graft survival, extending to months or even years, is increasingly being obtained, the function of the grafts can be more reliably assessed. If the source pigs are bred and housed under biosecure isolation conditions, and weaned early from the sow, most microorganisms can be eradicated from the herd. The potential risk of porcine endogenous retrovirus (PERV) infection remains unknown, but is probably small. Attention is being directed toward the selection of patients for the first clinical trials of xenotransplantation.
Collapse
Affiliation(s)
- David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
7
|
Zhou H, Hara H, Cooper DK. The complex functioning of the complement system in xenotransplantation. Xenotransplantation 2019; 26:e12517. [PMID: 31033064 PMCID: PMC6717021 DOI: 10.1111/xen.12517] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 12/25/2022]
Abstract
The role of complement in xenotransplantation is well-known and is a topic that has been reviewed previously. However, our understanding of the immense complexity of its interaction with other constituents of the innate immune response and of the coagulation, adaptive immune, and inflammatory responses to a xenograft is steadily increasing. In addition, the complement system plays a function in metabolism and homeostasis. New reviews at intervals are therefore clearly warranted. The pathways of complement activation, the function of the complement system, and the interaction between complement and coagulation, inflammation, and the adaptive immune system in relation to xenotransplantation are reviewed. Through several different mechanisms, complement activation is a major factor in contributing to xenograft failure. In the organ-source pig, the detrimental influence of the complement system is seen during organ harvest and preservation, for example, in ischemia-reperfusion injury. In the recipient, the effect of complement can be seen through its interaction with the immune, coagulation, and inflammatory responses. Genetic-engineering and other therapeutic methods by which the xenograft can be protected from the effects of complement activation are discussed. The review provides an updated source of reference to this increasingly complex subject.
Collapse
Affiliation(s)
- Hongmin Zhou
- Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K.C. Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
8
|
Cooper DKC, Hara H, Iwase H, Yamamoto T, Li Q, Ezzelarab M, Federzoni E, Dandro A, Ayares D. Justification of specific genetic modifications in pigs for clinical organ xenotransplantation. Xenotransplantation 2019; 26:e12516. [PMID: 30989742 PMCID: PMC10154075 DOI: 10.1111/xen.12516] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
Abstract
Xenotransplantation research has made considerable progress in recent years, largely through the increasing availability of pigs with multiple genetic modifications. We suggest that a pig with nine genetic modifications (ie, currently available) will provide organs (initially kidneys and hearts) that would function for a clinically valuable period of time, for example, >12 months, after transplantation into patients with end-stage organ failure. The national regulatory authorities, however, will likely require evidence, based on in vitro and/or in vivo experimental data, to justify the inclusion of each individual genetic modification in the pig. We provide data both from our own experience and that of others on the advantages of pigs in which (a) all three known carbohydrate xenoantigens have been deleted (triple-knockout pigs), (b) two human complement-regulatory proteins (CD46, CD55) and two human coagulation-regulatory proteins (thrombomodulin, endothelial cell protein C receptor) are expressed, (c) the anti-apoptotic and "anti-inflammatory" molecule, human hemeoxygenase-1 is expressed, and (d) human CD47 is expressed to suppress elements of the macrophage and T-cell responses. Although many alternative genetic modifications could be made to an organ-source pig, we suggest that the genetic manipulations we identify above will all contribute to the success of the initial clinical pig kidney or heart transplants, and that the beneficial contribution of each individual manipulation is supported by considerable experimental evidence.
Collapse
Affiliation(s)
- David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Takayuki Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Qi Li
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama.,Second Affiliated Hospital, University of South China, Hengyang City, China
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elena Federzoni
- Exponential Biotherapeutic Engineering, United Therapeutics, LaJolla, California
| | | | | |
Collapse
|
9
|
Smood B, Hara H, Schoel LJ, Cooper DKC. Genetically-engineered pigs as sources for clinical red blood cell transfusion: What pathobiological barriers need to be overcome? Blood Rev 2019; 35:7-17. [PMID: 30711308 DOI: 10.1016/j.blre.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/02/2019] [Accepted: 01/25/2019] [Indexed: 12/27/2022]
Abstract
An alternative to human red blood cells (RBCs) for clinical transfusion would be advantageous, particularly in situations of massive acute blood loss (where availability and compatibility are limited) or chronic hematologic diseases requiring frequent transfusions (resulting in alloimmunization). Ideally, any alternative must be neither immunogenic nor pathogenic, but readily available, inexpensive, and physiologically effective. Pig RBCs (pRBCs) provide a promising alternative due to their several similarities with human RBCs, and our increasing ability to genetically-modify pigs to reduce cellular immunogenicity. We briefly summarize the history of xenotransfusion, the progress that has been made in recent years, and the remaining barriers. These barriers include prevention of (i) human natural antibody binding to pRBCs, (ii) their phagocytosis by macrophages, and (iii) the T cell adaptive immune response (in the absence of exogenous immunosuppressive therapy). Although techniques of genetic engineering have advanced in recent years, novel methods to introduce human transgenes into pRBCs (which do not have nuclei) will need to be developed before clinical trials can be initiated.
Collapse
Affiliation(s)
- Benjamin Smood
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Leah J Schoel
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
10
|
Cooper DK, Ezzelarab M, Iwase H, Hara H. Perspectives on the Optimal Genetically Engineered Pig in 2018 for Initial Clinical Trials of Kidney or Heart Xenotransplantation. Transplantation 2018; 102:1974-1982. [PMID: 30247446 PMCID: PMC6249080 DOI: 10.1097/tp.0000000000002443] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For a clinical trial today, what might realistically be the optimal pig among those currently available? Deletion of expression of the 3 pig carbohydrate antigens, against which humans have natural (preformed) antibodies (triple-knockout pigs), should form the basis of any clinical trial. However, because both complement and coagulation can be activated in the absence of antibody, the expression of human complement- and coagulation-regulatory proteins is likely to be important in protecting the graft further. Any genetic manipulation that might reduce inflammation of the graft, for example, expression of hemeoxygenase-1 or A20, may also be beneficial to the long-term survival of the graft. The transgene for human CD47 is likely to have a suppressive effect on monocyte/macrophage and T-cell activity. Furthermore, deletion of xenoantigen expression and expression of a human complement-regulatory protein are both associated with a reduced T-cell response. Although there are several other genetic manipulations that may reduce the T-cell response further, it seems likely that exogenous immunosuppressive therapy, particularly if it includes costimulation blockade, will be sufficient. We would therefore suggest that, with our present knowledge and capabilities, the optimal pig might be a triple-knockout pig that expressed 1 or more human complement-regulatory proteins, 1 or more human coagulation-regulatory proteins, a human anti-inflammatory transgene, and CD47. Absent or minimal antibody binding is important, but we suggest that the additional insertion of protective human transgenes will be beneficial, and may be essential.
Collapse
Affiliation(s)
- David K.C. Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
11
|
Yamamoto T, Li Q, Hara H, Wang L, Zhou H, Li J, Eckhoff DE, Joseph Tector A, Klein EC, Lovingood R, Ezzelarab M, Ayares D, Wang Y, Cooper DKC, Iwase H. B cell phenotypes in baboons with pig artery patch grafts receiving conventional immunosuppressive therapy. Transpl Immunol 2018; 51:12-20. [PMID: 30092338 PMCID: PMC6249078 DOI: 10.1016/j.trim.2018.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND In the pig-to-baboon artery patch model with no immunosuppressive therapy, a graft from an α1,3-galactosyltransferase gene-knockout (GTKO) pig elicits a significant anti-nonGal IgG response, indicating sensitization to the graft. A costimulation blockade-based regimen, e.g., anti-CD154mAb or anti-CD40mAb, prevents sensitization. However, neither of these agents is currently FDA-approved. The aim of the present study was to determine the efficacy of FDA-approved agents on the T and B cell responses. METHODS Artery patch xenotransplantation in baboons was carried out using GTKO/CD46 pigs with (n = 2) or without (n = 1) the mutant transgene for CIITA-knockdown. Immunosuppressive therapy consisted of induction with ATG and anti-CD20mAb, and maintenance with different combinations of CTLA4-Ig, tacrolimus, and rapamycin. In addition, all 3 baboons received daily corticosteroids, the IL-6R blocker, tocilizumab, at regular intervals, and the TNF-α blocker, etanercept, for the first 2 weeks. Recipient blood was monitored for anti-nonGal antibody levels by flow cytometry (using GTKO/CD46 pig aortic endothelial cells), and mixed lymphocyte reaction (MLR). CD22+B cell profiles (naïve [IgD+/CD27-], non-switched memory [IgD+/CD27+], and switched memory [IgD-/CD27+] B cell subsets) were measured by flow cytometry. At 6 months, the baboons were euthanized and the grafts were examined histologically. RESULTS No elicited anti-pig antibodies developed in any baboon. The frequency of naïve memory B cells increased significantly (from 34% to 90%, p = 0.0015), but there was a significant decrease in switched memory B cells (from 17% to 0.5%, p = 0.015). MLR showed no increase in the proliferative T cell response in those baboons that had received CTLA4-Ig (n = 2). Histological examination showed few or no features of rejection in any graft. CONCLUSIONS The data suggest that immunosuppressive therapy with only FDA-approved agents may be adequate to prevent an adaptive immune response to a genetically-engineered pig graft, particularly if CTLA4-Ig is included in the regimen, in part because the development of donor-specific memory B cells is inhibited.
Collapse
Affiliation(s)
- Takayuki Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Qi Li
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Second Affiliated Hospital, University of South China, Hengyang City, Hunan, China
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Liaoran Wang
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Second Affiliated Hospital, University of South China, Hengyang City, Hunan, China
| | - Hongmin Zhou
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Cardiothoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Li
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA; Second Affiliated Hospital, University of South China, Hengyang City, Hunan, China
| | - Devin E Eckhoff
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - A Joseph Tector
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Edwin C Klein
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ray Lovingood
- Kirklin Clinic Pharmacy, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Yi Wang
- Second Affiliated Hospital, University of South China, Hengyang City, Hunan, China
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
12
|
Yamamoto T, Iwase H, King TW, Hara H, Cooper DKC. Skin xenotransplantation: Historical review and clinical potential. Burns 2018; 44:1738-1749. [PMID: 29602717 DOI: 10.1016/j.burns.2018.02.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/02/2018] [Accepted: 02/27/2018] [Indexed: 12/22/2022]
Abstract
Half a million patients in the USA alone require treatment for burns annually. Following an extensive burn, it may not be possible to provide sufficient autografts in a single setting. Pig skin xenografts may provide temporary coverage. However, preformed xenoreactive antibodies in the human recipient activate complement, and thus result in rapid rejection of the graft. Because burn patients usually have some degree of immune dysfunction and are therefore at increased risk of infection, immunosuppressive therapy is undesirable. Genetic engineering of the pig has increased the survival of pig heart, kidney, islet, and corneal grafts in immunosuppressed non-human primates from minutes to months or occasionally years. We summarize the current status of research into skin xenotransplantation for burns, with special emphasis on developments in genetic engineering of pigs to protect the graft from immunological injury. A genetically-engineered pig skin graft now survives as long as an allograft and, importantly, rejection of a skin xenograft is not detrimental to a subsequent allograft. Nevertheless, currently, systemic immunosuppressive therapy would still be required to inhibit a cellular response, and so we discuss what further genetic manipulations could be carried out to inhibit the cellular response.
Collapse
Affiliation(s)
- Takayuki Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Timothy W King
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
13
|
Wright K, Dziuk R, Mital P, Kaur G, Dufour JM. Xenotransplanted Pig Sertoli Cells Inhibit Both the Alternative and Classical Pathways of Complement-Mediated Cell Lysis While Pig Islets Are Killed. Cell Transplant 2018; 25:2027-2040. [PMID: 27305664 DOI: 10.3727/096368916x692032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Xenotransplantation has vast clinical potential but is limited by the potent immune responses generated against xenogeneic tissue. Immune-privileged Sertoli cells (SCs) survive xenotransplantation long term (≥90 days) without immunosuppression, making SCs an ideal model to identify xenograft survival mechanisms. Xenograft rejection includes the binding of natural and induced antibodies and the activation of the complement cascade. Using an in vitro cytotoxicity assay, wherein cells were cultured with human serum and complement, we demonstrated that neonatal pig SCs (NPSCs) are resistant to complement-mediated cell lysis and express complement inhibitory factors, membrane cofactor protein (MCP; CD46), and decay- accelerating factor (DAF; CD55) at significantly higher levels than neonatal pig islets (NPIs), which served as non-immune-privileged controls. After xenotransplantation into naive Lewis rats, NPSCs survived throughout the study, while NPIs were rejected within 9 days. Serum antibodies, and antibody and complement deposition within the grafts were analyzed. Compared to preformed circulating anti-pig IgM antibodies, no significant increase in IgM production against NPSCs or NPIs was observed, while IgM deposition was detected from day 6 onward in both sets of grafts. A late serum IgG response was detected in NPSC (days 13 and 20) and NPI (day 20) recipients. Consistently, IgG deposition was first detected at days 9 and 13 in NPSC and NPI grafts, respectively. Interestingly, C3 was deposited at days 1 and 3 in NPI grafts and only at day 1 in NPSC grafts, while membrane attack complex (MAC) deposition was only detected in NPI grafts (at days 1-4). Collectively, these data suggest NPSCs actively inhibit both the alternative and classical pathways of complement-mediated cell lysis, while the alternative pathway plays a role in rejecting NPIs. Ultimately, inhibiting the alternative pathway along with transplanting xenogeneic tissue from transgenic pigs (expressing human complement inhibitory factors) could prolong the survival of xenogeneic cells without immunosuppression.
Collapse
Affiliation(s)
- Kandis Wright
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Rachel Dziuk
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Payal Mital
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Gurvinder Kaur
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jannette M Dufour
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
14
|
Cooper DKC, Ezzelarab MB, Hara H. Low anti-pig antibody levels are key to the success of solid organ xenotransplantation: But is this sufficient? Xenotransplantation 2017; 24. [PMID: 29067714 DOI: 10.1111/xen.12360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/09/2017] [Accepted: 09/26/2017] [Indexed: 12/15/2022]
Affiliation(s)
- David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohamed B Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
15
|
Chan JL, Singh AK, Corcoran PC, Thomas ML, Lewis BG, Ayares DL, Vaught T, Horvath KA, Mohiuddin MM. Encouraging experience using multi-transgenic xenografts in a pig-to-baboon cardiac xenotransplantation model. Xenotransplantation 2017; 24. [PMID: 28940570 DOI: 10.1111/xen.12330] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/05/2017] [Accepted: 07/15/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Innovations in transgenic technology have facilitated improved xenograft survival. Additional gene expression appears to be necessary to overcome the remaining immune and biologic incompatibilities. We report for the first time the novel use of six-gene modifications within a pig-to-baboon cardiac xenotransplantation model. METHODS Baboons (8-15 kg) underwent heterotopic cardiac transplantation using xenografts obtained from genetically engineered pigs. Along with previously described modifications (GTKO, hCD46), additional expression of human transgenes for thromboregulation (endothelial protein C receptor, tissue factor pathway inhibitor, thrombomodulin), complement inhibition (decay accelerating factor), and cellular immune suppression (hCD39, hCD47) was used. Immunosuppression consisted of targeted T-cell and B-cell depletion and conventional anti-rejection agents. RESULTS Heterotopic cardiac transplantations were performed without complication. Flow cytometry and immunohistochemistry on donor biopsies confirmed transgenic phenotype. In contrast to the prior three-gene generation, significant coagulopathy or consumptive thrombocytopenia has not been observed in the six-gene cohort. As a result, these recipients have experienced decreased bleeding-related complications. Pro-inflammatory responses also appear to be mitigated based on cytokine analysis. Baboons survived the critical 30-day post-operative period when mortality has historically been highest, with no evidence of graft rejection. CONCLUSIONS The inclusion of additional human genes in genetically engineered pigs appears to confer superior xenograft outcomes. Introduction of these genes has not been associated with adverse outcomes. This multifactorial approach to genetic engineering furthers the prospect of long-term cardiac xenograft survival and subsequent clinical application.
Collapse
Affiliation(s)
- Joshua L Chan
- Cardiothoracic Surgery Research Program/National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Avneesh K Singh
- Cardiothoracic Surgery Research Program/National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Philip C Corcoran
- Cardiothoracic Surgery Research Program/National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marvin L Thomas
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, USA
| | - Billeta Gt Lewis
- Division of Veterinary Resources, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Keith A Horvath
- Cardiothoracic Surgery Research Program/National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Muhammad M Mohiuddin
- Cardiothoracic Surgery Research Program/National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Cooper DK, Matsumoto S, Abalovich A, Itoh T, Mourad NI, Gianello PR, Wolf E, Cozzi E. Progress in Clinical Encapsulated Islet Xenotransplantation. Transplantation 2016; 100:2301-2308. [PMID: 27482959 PMCID: PMC5077652 DOI: 10.1097/tp.0000000000001371] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
At the 2015 combined congress of the Cell Transplant Society, International Pancreas and Islet Transplant Association, and International Xenotransplantation Association, a symposium was held to discuss recent progress in pig islet xenotransplantation. The presentations focused on 5 major topics - (1) the results of 2 recent clinical trials of encapsulated pig islet transplantation, (2) the inflammatory response to encapsulated pig islets, (3) methods to improve the secretion of insulin by pig islets, (4) genetic modifications to the islet-source pigs aimed to protect the islets from the primate immune and/or inflammatory responses, and (5) regulatory aspects of clinical pig islet xenotransplantation. Trials of microencapsulated porcine islet transplantation to treat unstable type 1 diabetic patients have been associated with encouraging preliminary results. Further advances to improve efficacy may include (1) transplantation into a site other than the peritoneal cavity, which might result in better access to blood, oxygen, and nutrients; (2) the development of a more biocompatible capsule and/or the minimization of a foreign body reaction; (3) pig genetic modification to induce a greater secretion of insulin by the islets, and/or to reduce the immune response to islets released from damaged capsules; and (4) reduction of the inflammatory response to the capsules/islets by improvements in the structure of the capsules and/or in genetic engineering of the pigs and/or in some form of drug therapy. Ethical and regulatory frameworks for islet xenotransplantation are already available in several countries, and there is now a wider international perception of the importance of developing an internationally harmonized ethical and regulatory framework.
Collapse
Affiliation(s)
- David K.C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shinichi Matsumoto
- Otsuka Pharmaceutical Factory, Tateiwa, Muya-cho, Naruto Tokushima, Japan
| | | | - Takeshi Itoh
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka City, Fukuoka, Japan
| | - Nizar I. Mourad
- Laboratory of Surgery and Transplantation, Catholic University of Louvain, Brussels, Belgium
| | - Pierre R Gianello
- Laboratory of Surgery and Transplantation, Catholic University of Louvain, Brussels, Belgium
| | - Eckhard Wolf
- Gene Center, LMU Munich and German Center for Diabetes Research (DZD), Munich, Germany
| | - Emanuele Cozzi
- Transplantation Immunology Unit, Padua University Hospital, and the Consortium for Research in Organ Transplantation (CORIT), Padua, Italy
| |
Collapse
|
17
|
Murthy R, Bajona P, Bhama JK, Cooper DK. Heart Xenotransplantation: Historical Background, Experimental Progress, and Clinical Prospects. Ann Thorac Surg 2016; 101:1605-13. [DOI: 10.1016/j.athoracsur.2015.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/14/2015] [Accepted: 10/01/2015] [Indexed: 12/29/2022]
|
18
|
Lee W, Hara H, Ezzelarab MB, Iwase H, Bottino R, Long C, Ramsoondar J, Ayares D, Cooper DKC. Initial in vitro studies on tissues and cells from GTKO/CD46/NeuGcKO pigs. Xenotransplantation 2016; 23:137-50. [PMID: 26988899 DOI: 10.1111/xen.12229] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/15/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND The impact that the absence of expression of NeuGc in pigs might have on pig organ or cell transplantation in humans has been studied in vitro, but only using red blood cells (pRBCs) and peripheral blood mononuclear cells (pPBMCs) as the target cells for immune assays. We have extended this work in various in vitro models and now report our initial results. METHODS The models we have used involve GTKO/hCD46 and GTKO/hCD46/NeuGcKO pig aortas and corneas, and pRBCs, pPBMCs, aortic endothelial cells (pAECs), corneal endothelial cells (pCECs), and isolated pancreatic islets. We have investigated the effect of the absence of NeuGc expression on (i) human IgM and IgG binding, (ii) the T-cell proliferative response, (iii) human platelet aggregation, and (iv) in an in vitro assay of the instant blood-mediated inflammatory reaction (IBMIR) following exposure of pig islets to human blood/serum. RESULTS The lack of expression of NeuGc on some pig tissues (aortas, corneas) and cells (RBCs, PBMCs, AECs) significantly reduces the extent of human antibody binding. In contrast, the absence of NeuGc expression on some pig tissues (CECs, isolated islet cells) does not reduce human antibody binding, possibly due to their relatively low NeuGc expression level. The strength of the human T-cell proliferative response may also be marginally reduced, but is already weak to GTKO/hCD46 pAECs and islet cells. We also demonstrate that the absence of NeuGc expression on GTKO/hCD46 pAECs does not reduce human platelet aggregation, and nor does it significantly modify the IBMIR to pig islets. CONCLUSION The absence of NeuGc on some solid organs from GTKO/hCD46/NeuGcKO pigs should reduce the human antibody response after clinical transplantation when compared to GTKO/hCD46 pig organs. However, the clinical benefit of using certain tissue (e.g., cornea, islets) from GTKO/hCD46/NeuGcKO pigs is questionable.
Collapse
Affiliation(s)
- Whayoung Lee
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed B Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hayato Iwase
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rita Bottino
- Institute of Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, USA
| | - Cassandra Long
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Burlak C. Xenotransplantation literature update, November-December 2015. Xenotransplantation 2016; 23:77-9. [PMID: 26850936 DOI: 10.1111/xen.12221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 01/10/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Christopher Burlak
- Department of Surgery, Schultz Diabetes Institute, University of Minnesota School of Medicine, Minneapolis, MN, USA
| |
Collapse
|
20
|
Cooper DKC, Ezzelarab MB, Hara H, Iwase H, Lee W, Wijkstrom M, Bottino R. The pathobiology of pig-to-primate xenotransplantation: a historical review. Xenotransplantation 2016; 23:83-105. [PMID: 26813438 DOI: 10.1111/xen.12219] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/22/2015] [Indexed: 12/16/2022]
Abstract
The immunologic barriers to successful xenotransplantation are related to the presence of natural anti-pig antibodies in humans and non-human primates that bind to antigens expressed on the transplanted pig organ (the most important of which is galactose-α1,3-galactose [Gal]), and activate the complement cascade, which results in rapid destruction of the graft, a process known as hyperacute rejection. High levels of elicited anti-pig IgG may develop if the adaptive immune response is not prevented by adequate immunosuppressive therapy, resulting in activation and injury of the vascular endothelium. The transplantation of organs and cells from pigs that do not express the important Gal antigen (α1,3-galactosyltransferase gene-knockout [GTKO] pigs) and express one or more human complement-regulatory proteins (hCRP, e.g., CD46, CD55), when combined with an effective costimulation blockade-based immunosuppressive regimen, prevents early antibody-mediated and cellular rejection. However, low levels of anti-non-Gal antibody and innate immune cells and/or platelets may initiate the development of a thrombotic microangiopathy in the graft that may be associated with a consumptive coagulopathy in the recipient. This pathogenic process is accentuated by the dysregulation of the coagulation-anticoagulation systems between pigs and primates. The expression in GTKO/hCRP pigs of a human coagulation-regulatory protein, for example, thrombomodulin, is increasingly being associated with prolonged pig graft survival in non-human primates. Initial clinical trials of islet and corneal xenotransplantation are already underway, and trials of pig kidney or heart transplantation are anticipated within the next few years.
Collapse
Affiliation(s)
- David K C Cooper
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed B Ezzelarab
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hayato Iwase
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Whayoung Lee
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Wijkstrom
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rita Bottino
- Institute for Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Cooper DK, Ekser B, Ramsoondar J, Phelps C, Ayares D. The role of genetically engineered pigs in xenotransplantation research. J Pathol 2016; 238:288-99. [PMID: 26365762 PMCID: PMC4689670 DOI: 10.1002/path.4635] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/22/2015] [Accepted: 09/06/2015] [Indexed: 12/12/2022]
Abstract
There is a critical shortage in the number of deceased human organs that become available for the purposes of clinical transplantation. This problem might be resolved by the transplantation of organs from pigs genetically engineered to protect them from the human immune response. The pathobiological barriers to successful pig organ transplantation in primates include activation of the innate and adaptive immune systems, coagulation dysregulation and inflammation. Genetic engineering of the pig as an organ source has increased the survival of the transplanted pig heart, kidney, islet and corneal graft in non-human primates (NHPs) from minutes to months or occasionally years. Genetic engineering may also contribute to any physiological barriers that might be identified, as well as to reducing the risks of transfer of a potentially infectious micro-organism with the organ. There are now an estimated 40 or more genetic alterations that have been carried out in pigs, with some pigs expressing five or six manipulations. With the new technology now available, it will become increasingly common for a pig to express even more genetic manipulations, and these could be tested in the pig-to-NHP models to assess their efficacy and benefit. It is therefore likely that clinical trials of pig kidney, heart and islet transplantation will become feasible in the near future.
Collapse
Affiliation(s)
- David K.C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | | | | | | |
Collapse
|