1
|
Denner J. Zoonosis and xenozoonosis in xenotransplantation: A proposal for a new classification. Zoonoses Public Health 2023; 70:578-579. [PMID: 37432075 DOI: 10.1111/zph.13074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023]
Affiliation(s)
- Joachim Denner
- Institute of Virology, Free University Berlin, Berlin, Germany
| |
Collapse
|
2
|
Konstantinov IE, Cooper DKC, Adachi I, Bacha E, Bleiweis MS, Chinnock R, Cleveland D, Cowan PJ, Fynn-Thompson F, Morales DLS, Mohiuddin MM, Reichart B, Rothblatt M, Roy N, Turek JW, Urschel S, West L, Wolf E. Consensus statement on heart xenotransplantation in children: Toward clinical translation. J Thorac Cardiovasc Surg 2023; 166:960-967. [PMID: 36184321 PMCID: PMC10124772 DOI: 10.1016/j.jtcvs.2022.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
Affiliation(s)
- Igor E Konstantinov
- Royal Children's Hospital, University of Melbourne, Murdoch Children's Research Institute, Melbourne Centre for Cardiovascular Genomics and Regenerative Medicine, Melbourne, Australia.
| | - David K C Cooper
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, Mass
| | - Iki Adachi
- Texas Children's Hospital, Baylor College of Medicine, Houston, Tex
| | - Emile Bacha
- Columbia University Medical Center, Morgan Stanley Children's Hospital, New York, NY
| | | | | | - David Cleveland
- Department of Surgery, University of Alabama, Birmingham, Ala
| | - Peter J Cowan
- Immunology Research Centre, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | | | - David L S Morales
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Muhammad M Mohiuddin
- Program in Cardiac Xenotransplantation, University of Maryland School of Medicine, Baltimore, Md
| | - Bruno Reichart
- Transregional Collaborative Research Center, Walter Brendel Centre of Experimental Medicine, Ludwig Maximilians University, Munich, Germany
| | | | - Nathalie Roy
- Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Joseph W Turek
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Simon Urschel
- Pediatric Cardiac Transplantation Program, Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada
| | - Lori West
- Pediatric Cardiac Transplantation Program, Stollery Children's Hospital, University of Alberta, Edmonton, Alberta, Canada; Canadian Donation and Transplantation Research Program, Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Eckhard Wolf
- Gene Center and Department of Veterinary Sciences, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
3
|
Jhelum H, Grand N, Jacobsen KR, Halecker S, Salerno M, Prate R, Krüger L, Kristiansen Y, Krabben L, Möller L, Laue M, Kaufer B, Kaaber K, Denner J. First virological and pathological study of Göttingen Minipigs with Dippity Pig Syndrome (DPS). PLoS One 2023; 18:e0281521. [PMID: 37319233 PMCID: PMC10270609 DOI: 10.1371/journal.pone.0281521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
Dippity Pig Syndrome (DPS) is a well-known but rare complex of clinical signs affecting minipigs, which has not been thoroughly investigated yet. Clinically affected animals show acute appearance of red, exudating lesions across the spine. The lesions are painful, evidenced by arching of the back (dipping), and the onset of clinical signs is generally sudden. In order to understand the pathogenesis, histological and virological investigations were performed in affected and unaffected Göttingen Minipigs (GöMPs). The following DNA viruses were screened for using PCR-based methods: Porcine cytomegalovirus (PCMV), which is a porcine roseolovirus (PCMV/PRV), porcine lymphotropic herpesviruses (PLHV-1, PLHV-2, PLHV-3), porcine circoviruses (PCV1, PCV2, PCV3, PCV4), porcine parvovirus 1 (PPV1), and Torque Teno sus viruses (TTSuV1, TTSuV2). Screening was also performed for integrated porcine endogenous retroviruses (PERV-A, PERV-B, PERV-C) and recombinant PERV-A/C and their expression as well as for the RNA viruses hepatitis E virus (HEV) and SARS-CoV-2. Eight clinically affected and one unaffected GöMPs were analyzed. Additional unaffected minipigs had been analyzed in the past. The analyzed GöMPs contained PERV-A and PERV-B integrated in the genome, which are present in all pigs and PERV-C, which is present in most, but not all pigs. In one affected GöMPs recombinant PERV-A/C was detected in blood. In this animal a very high expression of PERV mRNA was observed. PCMV/PRV was found in three affected animals, PCV1 was found in three animals with DPS and in the unaffected minipig, and PCV3 was detected in two animals with DPS and in the unaffected minipig. Most importantly, in one animal only PLHV-3 was detected. It was found in the affected and unaffected skin, and in other organs. Unfortunately, PLHV-3 could not be studied in all other affected minipigs. None of the other viruses were detected and using electron microscopy, no virus particles were found in the affected skin. No porcine virus RNA with exception of PERV and astrovirus RNA were detected in the affected skin by next generation sequencing. This data identified some virus infections in GöMPs with DPS and assign a special role to PLHV-3. Since PCMV/PRV, PCV1, PCV3 and PLHV-3 were also found in unaffected animals, a multifactorial cause of DPS is suggested. However, elimination of the viruses from GöMPs may prevent DPS.
Collapse
Affiliation(s)
- Hina Jhelum
- Institute of Virology, Free University, Berlin, Germany
| | | | | | | | - Michelle Salerno
- Marshall BioResources, North Rose, New York, NY, United States of America
| | - Robert Prate
- Institute of Virology, Free University, Berlin, Germany
| | | | | | | | - Lars Möller
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens ZBS 4: Advanced Light and Electron Microscopy, Berlin, Germany
| | - Michael Laue
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens ZBS 4: Advanced Light and Electron Microscopy, Berlin, Germany
| | | | | | | |
Collapse
|
4
|
Hansen S, Fischer K, Krabben L, Rinke Carrapeiro A, Klinger B, Schnieke A, Kaufer B, Denner J. Detection of porcine cytomegalovirus, a roseolovirus, in pig ovaries and follicular fluid: implications for somatic cells nuclear transfer, cloning and xenotransplantation. Virol J 2023; 20:15. [PMID: 36707837 PMCID: PMC9881377 DOI: 10.1186/s12985-023-01975-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Porcine cytomegalovirus (PCMV) is a porcine roseolovirus (PCMV/PRV) which is widely distributed in pigs. Transmission of PCMV/PRV in preclinical xenotransplantations was shown to significantly reduce the survival time of the pig transplants in non-human primates. PCMV/PRV was also transmitted in the first transplantation of a pig heart into a human patient. To analyze how PCMV/PRV could be introduced into pig breeds, especially considering cloned transgenic pigs, and subsequently spread in breeding facilities, we screened ovaries and derived materials which are used to perform somatic cell nuclear transfer (SCNT). METHODS DNA was isolated from ovarian tissues, follicular fluids, oocytes with cumulus cells, denuded oocytes and parthenotes. A real-time PCR with PCMV/PRV-specific primers and a probe was performed to detect PCMV/PRV. Furthermore, a Western blot assay using a recombinant fragment of the gB protein of PCMV/PRV was performed to screen for virus-specific antibodies in the follicular fluids. RESULTS PCMV/PRV was found by real-time PCR in ovarian tissues, in the follicular fluid and in oocytes. In parthenotes the virus could not be detected, most-likely due to the low amount of DNA used. By Western blot assay specific antibodies against PCMV/PRV were found in 19 of 20 analyzed follicular fluids. CONCLUSION PCMV/PRV was found in ovarian tissues, in the follicular fluids and also in denuded oocytes, indicating that the virus is present in the animals of which the oocytes were taken from. Despite several washing steps of the denuded oocytes, which are subsequently used for microinjection or SCNT, the virus could still be detected. Therefore, the virus could infect oocytes during genetic modifications or stay attached to the surface of the oocytes, potentially infecting SCNT recipient animals.
Collapse
Affiliation(s)
- Sabrina Hansen
- grid.14095.390000 0000 9116 4836Institute of Virology, Free University Berlin, Berlin, Germany
| | - Konrad Fischer
- grid.6936.a0000000123222966Chair of Animal Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Ludwig Krabben
- grid.14095.390000 0000 9116 4836Institute of Virology, Free University Berlin, Berlin, Germany
| | - Alexander Rinke Carrapeiro
- grid.6936.a0000000123222966Chair of Animal Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Bernhard Klinger
- grid.6936.a0000000123222966Chair of Animal Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Angelika Schnieke
- grid.6936.a0000000123222966Chair of Animal Biotechnology, TUM School of Life Sciences Weihenstephan, Technical University Munich, Freising, Germany
| | - Benedikt Kaufer
- grid.14095.390000 0000 9116 4836Institute of Virology, Free University Berlin, Berlin, Germany
| | - Joachim Denner
- Institute of Virology, Free University Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Hansen S, Menandro ML, Franzo G, Krabben L, Marino SF, Kaufer B, Denner J. Presence of porcine cytomegalovirus, a porcine roseolovirus, in wild boars in Italy and Germany. Arch Virol 2023; 168:55. [PMID: 36609605 PMCID: PMC9825524 DOI: 10.1007/s00705-022-05690-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/27/2022] [Indexed: 01/09/2023]
Abstract
Porcine cytomegalovirus (PCMV), a porcine roseolovirus (PRV) that is closely related to human herpesviruses 6 and 7, is commonly found in commercial pigs. PCMV/PRV is important in xenotransplantation, because in preclinical trials in which pig organs were transplanted into non-human primates, transmission of PCMV/PRV was shown to be associated with significantly reduced survival of the xenotransplants. PCMV/PRV was also transmitted in the first transplantation of a pig heart into a human patient worldwide and apparently contributed to the death of the patient. The prevalence of PCMV/PRV in wild boars is largely unknown. In this study, we screened wild boars from several areas of northern Italy and Germany to test for the presence of PCMV/PRV using PCR-based and Western blot assays. By Western blot analysis, 54% and 82% of Italian and German wild boars, respectively, were found to be PCMV/PRV positive, while 36% and 60%, respectively, tested positive by real-time polymerase chain reaction (PCR). These data indicate that the virus is common in German and Italian wild boars and that the Western blot assay detected a PCMV/PRV infection more often than did real-time PCR. The data also indicate that pigs raised for xenotransplantation should be protected from contact with materials from wild boars and commercial pigs.
Collapse
Affiliation(s)
- Sabrina Hansen
- Institute of Virology, Free University Berlin, 14163, Berlin, Germany
| | - Maria Luisa Menandro
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020, Legnaro, Italy
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, 35020, Legnaro, Italy
| | - Ludwig Krabben
- Institute of Virology, Free University Berlin, 14163, Berlin, Germany
| | - Stephen F Marino
- Parasites in Foodstuffs, Department of Biological Safety, Unit Diagnostics, German Federal Institute for Risk Assessment, 10589, Berlin, Germany
| | - Benedikt Kaufer
- Institute of Virology, Free University Berlin, 14163, Berlin, Germany
| | - Joachim Denner
- Institute of Virology, Free University Berlin, 14163, Berlin, Germany.
| |
Collapse
|
6
|
Bobier C, Rodger D, Hurst DJ, Omelianchuk A. In defense of xenotransplantation research: Because of, not in spite of, animal welfare concerns. Xenotransplantation 2023; 30:e12791. [PMID: 36573621 DOI: 10.1111/xen.12791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/11/2022] [Accepted: 12/12/2022] [Indexed: 12/28/2022]
Abstract
It is envisioned that one day xenotransplantation will bring about a future where transplantable organs can be safely and efficiently grown in transgenic pigs to help meet the global organ shortage. While recent advances have brought this future closer, worries remain about whether it will be beneficial overall. The unique challenges and risks posed to humans that arise from transplanting across the species barrier, in addition to the costs borne by non-human animals, has led some to question the value of xenotransplantation altogether. In response, we defend the value of xenotransplantation research, because it can satisfy stringent welfare conditions on the permissibility of animal research and use. Along the way, we respond to the alleged concerns, and conclude that they do not currently warrant a cessation or a curtailing of xenotransplantation research.
Collapse
Affiliation(s)
- Christopher Bobier
- Department of Theology and Philosophy, Hendrickson Institute for Ethical Leadership, St. Mary's University of Minnesota, Winona, Minnesota, USA
| | - Daniel Rodger
- Operating Department Practice, Institute of Health and Social Care, School of Allied and Community Health, London South Bank University, London, UK.,Department of Psychological Sciences, Birkbeck, University of London, London, UK
| | - Daniel J Hurst
- Department of Family Medicine Rowan University School of Osteopathic Medicine Stratford, New Jersey, USA
| | - Adam Omelianchuk
- The Center for Medical Ethics and Health Policy at Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
7
|
Halecker S, Hansen S, Krabben L, Ebner F, Kaufer B, Denner J. How, where and when to screen for porcine cytomegalovirus (PCMV) in donor pigs for xenotransplantation. Sci Rep 2022; 12:21545. [PMID: 36513687 PMCID: PMC9747970 DOI: 10.1038/s41598-022-25624-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Porcine cytomegalovirus (PCMV), that is actually a porcine roseolovirus (PRV), is a common herpesvirus in domestic pigs and wild boars. In xenotransplantation, PCMV/PRV has been shown to significantly reduce the survival time of pig kidneys and hearts in preclinical trials with different non-human primates. Furthermore, PCMV/PRV has been transmitted in the first pig to human heart xenotransplantation and contributed to the death of the patient. Although transmitted to the recipient, there is no evidence that PCMV/PRV can infect primate cells including human cells. PCMV/PRV is closely related to the human herpesviruses 6 and 7, and only distantly related to the human CMV (HCMV). Antiviral drugs used for the treatment of HCMV are less effective against PCMV/PRV. However, there are well described strategies to eliminate the virus from pig facilities. In order to detect the virus and to eliminate it, highly sensitive detection methods and the knowledge of how, where and when to screen the donor pigs is required. Here, a comparative testing of organs from pigs of different ages using polymerase chain reaction (PCR)-based and immunological methods was performed. Testing young piglets, PCMV/PRV was detected effectively by PCR in blood, bronchoalveolar lavage fluid, tonsils and heart. In adult animals, detection by PCR was not successful in most cases, because the virus load was below the detection limit or the virus was in its latent stage. Therefore, detection of antibodies against selected recombinant proteins corresponding to epitopes detected by nearly all infected animals in a Western blot assay is advantageous. By contrast, immunological testing is not beneficial in young animals as piglets might have PCMV/PRV-specific antibodies obtained from their infected mother via the colostrum. Using a thoughtful combination of PCR-based and immunological methods, detection of PCMV/PRV in donor pigs for xenotransplantation is feasible and a controlled elimination of the virus by early weaning or other methods is possible.
Collapse
Affiliation(s)
- S Halecker
- Institute of Virology, Free University, Berlin, Germany
| | - S Hansen
- Institute of Virology, Free University, Berlin, Germany
| | - L Krabben
- Institute of Virology, Free University, Berlin, Germany
| | - F Ebner
- Institute of Immunology, Free University, Berlin, Germany
| | - B Kaufer
- Institute of Virology, Free University, Berlin, Germany
| | - J Denner
- Institute of Virology, Free University, Berlin, Germany.
| |
Collapse
|
8
|
Denner J, Schuurman HJ. Early testing of porcine organ xenotransplantation products in humans: Microbial safety as illustrated for porcine cytomegalovirus. Xenotransplantation 2022; 29:e12783. [PMID: 36336900 DOI: 10.1111/xen.12783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Joachim Denner
- Institute of Virology, Free University Berlin, Berlin, Germany
| | | |
Collapse
|
9
|
Niemann H. Xenotransplantate vom Schwein – ist das Ende des Organmangels
in Sicht? TRANSFUSIONSMEDIZIN 2022. [DOI: 10.1055/a-1814-8440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
ZusammenfassungUnter „Xenotransplantation“ wird die Übertragung von
funktionsfähigen Zellen, Geweben oder Organen zwischen verschiedenen
Spezies verstanden, insbesondere von Schweinen auf den Menschen. In den meisten
Industrieländern klafft eine große Lücke zwischen der
Anzahl geeigneter Spenderorgane und der Anzahl benötigter Transplantate.
Weltweit können nur etwa 10% des Organbedarfs durch Spenden
gedeckt werden. Eine erfolgreiche Xenotransplantation könnte diesen
Mangel mildern oder sogar weitgehend vermeiden. Das Schwein wird aus
verschiedenen Erwägungen heraus als am besten geeignete Spenderspezies
angesehen. Bei einer Übertragung porziner Organe auf Primaten treten
verschiedene immunologisch bedingte Abstoßungsreaktionen auf, die das
übertragene Organ innerhalb kurzer Zeit zerstören
können, wie die HAR (hyperakute Abstoßung), die AVR (akute
vaskuläre Abstoßung) und die spätere zelluläre
Abstoßung. Diese Abstoßungsreaktionen müssen durch
genetische Modifikationen im Schwein und eine geeignete immunsuppressive
Behandlung des Empfängers kontrolliert werden. Dazu müssen Tiere
mit mehrfachen genetischen Veränderungen produziert und im Hinblick auf
ihre Eignung für eine erfolgreiche Xenotransplantation geprüft
werden. Inzwischen können die HAR und auch die AVR durch Knockouts von
antigenen Oberflächenepitopen (z. B. αGal
[Galaktose-α1,3-Galaktose]) und transgene Expression humaner Gene mit
antiinflammatorischer, antiapoptotischer oder antikoagulativer Wirkung
zuverlässig kontrolliert werden. Nach orthotopen Transplantationen in
nicht humane Primaten konnten inzwischen mit Schweineherzen
Überlebensraten von bis zu 264 Tagen und mit porzinen Nieren von 435
Tagen erzielt werden. Eine Übertragung pathogener Erreger auf den
Empfänger kann bei Einhaltung einschlägiger
Hygienemaßnahmen ausgeschlossen werden. PERV (porzine endogene
Retroviren) können durch RNA-(Ribonukleinsäure-)Interferenz oder
Gen-Knockout ausgeschaltet werden. Sie stellen damit kein
Übertragungsrisiko für den Empfänger mehr dar. Anfang
2022 wurde in Baltimore (USA) ein Schweineherz mit 10 genetischen Modifikationen
auf einen Patienten mit schwerem Herzleiden übertragen, mit dem der
Empfänger 2 Monate offenbar ohne größere Probleme lebte.
Es wird erwartet, dass Xenotransplantate vom Schwein in absehbarer Zeit zur
klinischen Anwendungsreife kommen werden. Dazu werden klinische Versuche zur
systematischen Erfassung aller Auswirkungen solcher Transplantate auf den
Patienten sowie geeignete rechtliche und finanzielle Rahmenbedingungen
benötigt.
Collapse
|
10
|
Deng J, Yang L, Wang Z, Ouyang H, Yu H, Yuan H, Pang D. Advance of genetically modified pigs in xeno-transplantation. Front Cell Dev Biol 2022; 10:1033197. [PMID: 36299485 PMCID: PMC9590650 DOI: 10.3389/fcell.2022.1033197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
As the standard of living improves, chronic diseases and end-stage organ failure have been a regular occurrence in human beings. Organ transplantation has become one of the hopes in the fight against chronic diseases and end-stage organ failure. However, organs available for transplantation are far from sufficient to meet the demand, leading to a major organ shortage crisis. To solve this problem, researchers have turned to pigs as their target since pigs have many advantages as xenograft donors. Pigs are considered the ideal organ donor for human xenotransplantation, but direct transplantation of porcine organs to humans faces many obstacles, such as hyperacute rejection, acute humoral xenograft rejection, coagulation dysregulation, inflammatory response, coagulation dysregulation, and endogenous porcine retroviral infection. Many transgenic strategies have been developed to overcome these obstacles. This review provides an overview of current advances in genetically modified pigs for xenotransplantation. Future genetic engineering-based delivery of safe and effective organs and tissues for xenotransplantation remains our goal.
Collapse
Affiliation(s)
- Jiacheng Deng
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lin Yang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Ziru Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Hongsheng Ouyang
- College of Animal Sciences, Jilin University, Changchun, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Chongqing Jitang Biotechnology Research Institute, Chongqing, China
| | - Hao Yu
- College of Animal Sciences, Jilin University, Changchun, China
| | - Hongming Yuan
- College of Animal Sciences, Jilin University, Changchun, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Chongqing Jitang Biotechnology Research Institute, Chongqing, China
- *Correspondence: Hongming Yuan, ; Daxin Pang,
| | - Daxin Pang
- College of Animal Sciences, Jilin University, Changchun, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Chongqing Jitang Biotechnology Research Institute, Chongqing, China
- *Correspondence: Hongming Yuan, ; Daxin Pang,
| |
Collapse
|
11
|
Singh AK, Griffith BP, Goerlich CE, Ayares D, Mohiuddin MM. The road to the first FDA-approved genetically engineered pig heart transplantation into human. Xenotransplantation 2022; 29:e12776. [PMID: 36125166 PMCID: PMC9547852 DOI: 10.1111/xen.12776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022]
Abstract
We have been testing genetically engineered (GE) pig hearts and optimizing immunosuppression (IS) in non-human primates (NHPs) since 2005. We demonstrate how we translated this preclinical investigation into a US Food and Drug Administration (FDA)-approved clinical cardiac xenotransplantation. First, genetically engineered (GE) pig hearts were transplanted into the abdomen of NHP along with IS, which included anti-CD20 and anti-CD40-based co-stimulation blockade antibodies. We reported 945 days of survival of three gene GE pig hearts in NHPs. Building on this proof-of-concept, we tested 3-10 gene-modified GE pig hearts (in order to improve the immunocompatibility of the xenograft further) in a life-supporting orthotopic model, but had limited success due to perioperative cardiac xenograft dysfunction (PCXD). With novel non-ischemic continuous perfusion preservation (NICP), using the XVIVO Heart solution (XHS), life-supporting survival was extended to 9 months. We approached the FDA under an application for "Expanded Access" (EA), to transplant a GE pig heart in a patient with end-stage non-ischemic cardiomyopathy. He was without other therapeutic options and dependent on VA-ECMO. A team of FDA reviewers reviewed our preclinical research experience and data and allowed us to proceed. This clinical cardiac xenotransplantation was performed, and the patient survived for 60 days, demonstrating the translational preclinical investigation of cardiac xenotransplantation from bench to bedside. The ultimate etiology of graft failure is currently a topic of investigation and lessons learned will progress the field forward.
Collapse
Affiliation(s)
- Avneesh K Singh
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
12
|
Denner J. Virus Safety of Xenotransplantation. Viruses 2022; 14:1926. [PMID: 36146732 PMCID: PMC9503113 DOI: 10.3390/v14091926] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 01/06/2023] Open
Abstract
The practice of xenotransplantation using pig islet cells or organs is under development to alleviate the shortage of human donor islet cells or organs for the treatment of diabetes or organ failure. Multiple genetically modified pigs were generated to prevent rejection. Xenotransplantation may be associated with the transmission of potentially zoonotic porcine viruses. In order to prevent this, we developed highly sensitive PCR-based, immunologicals and other methods for the detection of numerous xenotransplantation-relevant viruses. These methods were used for the screening of donor pigs and xenotransplant recipients. Of special interest are the porcine endogenous retroviruses (PERVs) that are integrated in the genome of all pigs, which are able to infect human cells, and that cannot be eliminated by methods that other viruses can. We showed, using droplet digital PCR, that the number of PERV proviruses is different in different pigs (usually around 60). Furthermore, the copy number is different in different organs of a single pig, indicating that PERVs are active in the living animals. We showed that in the first clinical trials treating diabetic patients with pig islet cells, no porcine viruses were transmitted. However, in preclinical trials transplanting pig hearts orthotopically into baboons, porcine cytomegalovirus (PCMV), a porcine roseolovirus (PCMV/PRV), and porcine circovirus 3 (PCV3), but no PERVs, were transmitted. PCMV/PRV transmission resulted in a significant reduction of the survival time of the xenotransplant. PCMV/PRV was also transmitted in the first pig heart transplantation to a human patient and possibly contributed to the death of the patient. Transmission means that the virus was detected in the recipient, however it remains unclear whether it can infect primate cells, including human cells. We showed previously that PCMV/PRV can be eliminated from donor pigs by early weaning. PERVs were also not transmitted by inoculation of human cell-adapted PERV into small animals, rhesus monkey, baboons and cynomolgus monkeys, even when pharmaceutical immunosuppression was applied. Since PERVs were not transmitted in clinical, preclinical, or infection experiments, it remains unclear whether they should be inactivated in the pig genome by CRISPR/Cas. In summary, by using our sensitive methods, the safety of xenotransplantation can be ensured.
Collapse
Affiliation(s)
- Joachim Denner
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| |
Collapse
|