1
|
Hudson E, Arnaert A, Lavoie-Tremblay M. Healthcare professional disclosure of mental illness in the workplace: a rapid scoping review. J Ment Health 2021:1-13. [PMID: 34582294 DOI: 10.1080/09638237.2021.1979485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 07/06/2021] [Accepted: 08/19/2021] [Indexed: 10/24/2022]
Abstract
BACKGROUND Although mental health difficulties are common among healthcare professionals (HCP), little research exists exploring the decision to disclose these difficulties in the healthcare context. AIMS This rapid scoping review aims to explore HCP disclosure of mental health difficulties in the workplace. METHODS The methodological framework was based on rapid and scoping review guidelines. A thematic synthesis approach was used for data analysis. RESULTS Seventeen articles were included. Disclosure was found to be a process that starts with weighing its pros ("personal benefits", "personal beliefs", and "professional responsibility") and cons ("fears related to professional identity", "fears related to employment", "risk of stigmatization", and "personal experiences with mental health difficulties"). A decision-making process then occurs to help HCPs figure out how to disclose. Situations of nonconsensual disclosure can transpire through "third party disclosure" or "inadvertent disclosure". Disclosure results in outcomes including "positive experiences", "negative personal consequences" and "negative consequences related to others". CONCLUSION Disclosure in healthcare and other workplaces is a complex process with few benefits and many potential repercussions. However, there is an opportunity to improve. Recognizing the value of and educating the workforce about HCPs with mental health difficulties will help work environments become safer for disclosure.
Collapse
Affiliation(s)
- Emilie Hudson
- Ingram School of Nursing, McGill University, Montréal, Canada
| | - Antonia Arnaert
- Ingram School of Nursing, McGill University, Montréal, Canada
| | | |
Collapse
|
2
|
Yu Y, Shi Q, Zheng P, Gao L, Li H, Tao P, Gu B, Wang D, Chen H. Assessment of the quality of systematic reviews on COVID-19: A comparative study of previous coronavirus outbreaks. J Med Virol 2020; 92:883-890. [PMID: 32301508 PMCID: PMC7264505 DOI: 10.1002/jmv.25901] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Several systematic reviews (SRs) have been conducted on the COVID-19 outbreak, which together with the SRs on previous coronavirus outbreaks, form important sources of evidence for clinical decision and policy making. Here, we investigated the methodological quality of SRs on COVID-19, severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). Online searches were performed to obtain SRs on COVID-19, SARS, and MERS. The methodological quality of the included SRs was assessed using the AMSTAR-2 tool. Descriptive statistics were used to present the data. In total, of 49 SRs that were finally included in our study, 17, 16, and 16 SRs were specifically on COVID-19, MERS, and SARS, respectively. The growth rate of SRs on COVID-19 was the highest (4.54/month) presently. Of the included SRs, 6, 12, and 31 SRs were of moderate, low, and critically low quality, respectively. SRs on SARS showed the optimum quality among the SRs on the three diseases. Subgroup analyses showed that the SR topic (P < .001), the involvement of a methodologist (P < .001), and funding support (P = .046) were significantly associated with the methodological quality of the SR. According to the adherence scores, adherence to AMSTAR-2 items sequentially decreased in SRs on SARS, MERS, and COVID-19. The methodological quality of most SRs on coronavirus outbreaks is unsatisfactory, and those on COVID-19 have higher risks of poor quality, despite the rapid actions taken to conduct SRs. The quality of SRs should be improved in the future. Readers must exercise caution in accepting and using the results of these SRs.
Collapse
Affiliation(s)
- Yang Yu
- The Department of Tumour SurgeryLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical College, Lanzhou UniversityLanzhouChina
| | - Qianling Shi
- The First Clinical Medical College, Lanzhou UniversityLanzhouChina
- Evidence‐Based Medicine Centre, School of Basic Medical SciencesLanzhou UniversityLanzhouChina
| | - Peng Zheng
- The Department of Tumour SurgeryLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical College, Lanzhou UniversityLanzhouChina
| | - Lei Gao
- The Department of Tumour SurgeryLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical College, Lanzhou UniversityLanzhouChina
| | - Haiyuan Li
- The Department of Tumour SurgeryLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical College, Lanzhou UniversityLanzhouChina
| | - Pengxian Tao
- The Department of Tumour SurgeryLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical College, Lanzhou UniversityLanzhouChina
| | - Baohong Gu
- The Department of Tumour SurgeryLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical College, Lanzhou UniversityLanzhouChina
| | - Dengfeng Wang
- The Department of Tumour SurgeryLanzhou University Second HospitalLanzhouChina
- The Second Clinical Medical College, Lanzhou UniversityLanzhouChina
| | - Hao Chen
- The Department of Tumour SurgeryLanzhou University Second HospitalLanzhouChina
| |
Collapse
|
3
|
Ramshaw RE, Letourneau ID, Hong AY, Hon J, Morgan JD, Osborne JCP, Shirude S, Van Kerkhove MD, Hay SI, Pigott DM. A database of geopositioned Middle East Respiratory Syndrome Coronavirus occurrences. Sci Data 2019; 6:318. [PMID: 31836720 PMCID: PMC6911100 DOI: 10.1038/s41597-019-0330-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
As a World Health Organization Research and Development Blueprint priority pathogen, there is a need to better understand the geographic distribution of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and its potential to infect mammals and humans. This database documents cases of MERS-CoV globally, with specific attention paid to zoonotic transmission. An initial literature search was conducted in PubMed, Web of Science, and Scopus; after screening articles according to the inclusion/exclusion criteria, a total of 208 sources were selected for extraction and geo-positioning. Each MERS-CoV occurrence was assigned one of the following classifications based upon published contextual information: index, unspecified, secondary, mammal, environmental, or imported. In total, this database is comprised of 861 unique geo-positioned MERS-CoV occurrences. The purpose of this article is to share a collated MERS-CoV database and extraction protocol that can be utilized in future mapping efforts for both MERS-CoV and other infectious diseases. More broadly, it may also provide useful data for the development of targeted MERS-CoV surveillance, which would prove invaluable in preventing future zoonotic spillover. Measurement(s) | Middle East Respiratory Syndrome • geographic location | Technology Type(s) | digital curation | Factor Type(s) | geographic distribution of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) • year | Sample Characteristic - Organism | Middle East respiratory syndrome-related coronavirus | Sample Characteristic - Location | Earth (planet) |
Machine-accessible metadata file describing the reported data: 10.6084/m9.figshare.11108801
Collapse
Affiliation(s)
- Rebecca E Ramshaw
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Ian D Letourneau
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Amy Y Hong
- Bloomberg School of Public Health, Johns Hopkins University, 615N Wolfe St, Baltimore, MD, 21205, United States
| | - Julia Hon
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Julia D Morgan
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Joshua C P Osborne
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Shreya Shirude
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - Maria D Van Kerkhove
- Department of Infectious Hazards Management, Health Emergencies Programme, World Health Organization, Avenue Appia 20, 1211, Geneva, Switzerland
| | - Simon I Hay
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States.,Department of Health Metrics Sciences, School of Medicine, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States
| | - David M Pigott
- Institute for Health Metrics and Evaluation, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States. .,Department of Health Metrics Sciences, School of Medicine, University of Washington, 2301 5th Ave., Suite 600, Seattle, WA, United States.
| |
Collapse
|
4
|
Hao X, Lv Q, Li F, Xu Y, Gao H. The characteristics of hDPP4 transgenic mice subjected to aerosol MERS coronavirus infection via an animal nose-only exposure device. Animal Model Exp Med 2019; 2:269-281. [PMID: 31942559 PMCID: PMC6930991 DOI: 10.1002/ame2.12088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/12/2019] [Accepted: 10/06/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Middle East respiratory syndrome coronavirus (MERS-CoV), which is not fully understood in regard to certain transmission routes and pathogenesis and lacks specific therapeutics and vaccines, poses a global threat to public health. METHODS To simulate the clinical aerosol transmission route, hDPP4 transgenic mice were infected with MERS-CoV by an animal nose-only exposure device and compared with instillation-inoculated mice. The challenged mice were observed for 14 consecutive days and necropsied on days 3, 5, 7, and 9 to analyze viral load, histopathology, viral antigen distribution, and cytokines in tissues. RESULTS MERS-CoV aerosol-infected mice with an incubation period of 5-7 days showed weight loss on days 7-11, obvious lung lesions on day 7, high viral loads in the lungs on days 3-9 and in the brain on days 7-9, and 60% survival. MERS-CoV instillation-inoculated mice exhibited clinical signs on day 1, obvious lung lesions on days 3-5, continuous weight loss, 0% survival by day 5, and high viral loads in the lungs and brain on days 3-5. Viral antigen and high levels of proinflammatory cytokines and chemokines were detected in the aerosol and instillation groups. Disease, lung lesion, and viral replication progressions were slower in the MERS-CoV aerosol-infected mice than in the MERS-CoV instillation-inoculated mice. CONCLUSION hDPP4 transgenic mice were successfully infected with MERS-CoV aerosols via an animal nose-only exposure device, and aerosol- and instillation-infected mice simulated the clinical symptoms of moderate diffuse interstitial pneumonia. However, the transgenic mice exposed to aerosol MERS-CoV developed disease and lung pathology progressions that more closely resembled those observed in humans.
Collapse
Affiliation(s)
- Xin‐yan Hao
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CentrePeking Union Medical College (PUMC)Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectionsBeijingChina
| | - Qi Lv
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CentrePeking Union Medical College (PUMC)Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectionsBeijingChina
| | - Feng‐di Li
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CentrePeking Union Medical College (PUMC)Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectionsBeijingChina
| | - Yan‐feng Xu
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CentrePeking Union Medical College (PUMC)Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectionsBeijingChina
| | - Hong Gao
- Institute of Laboratory Animal SciencesChinese Academy of Medical Sciences (CAMS) & Comparative Medicine CentrePeking Union Medical College (PUMC)Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC)Beijing Key Laboratory for Animal Models of Emerging and Reemerging InfectionsBeijingChina
| |
Collapse
|
5
|
Gardner EG, Kelton D, Poljak Z, von Dobschuetz S, Greer AL. A rapid scoping review of Middle East respiratory syndrome coronavirus in animal hosts. Zoonoses Public Health 2019; 66:35-46. [PMID: 30421581 PMCID: PMC7165840 DOI: 10.1111/zph.12537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/31/2018] [Accepted: 10/11/2018] [Indexed: 12/16/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging zoonotic pathogen discovered in 2012. The purpose of this scoping review was to summarize the empirical evidence for MERS-CoV in animals in order to map knowledge gaps and to extract data for modelling disease transmission in dromedary camels. A review protocol was developed a priori, and a systematic search, data extraction and summary were conducted using the Arksey and O'Malley framework. Ninety-nine publications were identified for full review out of 1,368 unique records. Of these publications, 71 were articles in scientific journals. Ninety of the studies were observational and the remaining nine were experimental. We summarize characteristics of animal studies including study design, study population and outcomes of interest for future transmission modelling in the reservoir population. The majority of field studies reported measures of prevalence, while experimental studies provided estimates of transmission parameters that pertain to the natural course of disease.
Collapse
Affiliation(s)
- Emma G. Gardner
- University of GuelphGuelphOntarioCanada
- Food and Agriculture Organization of the United NationsRomeItaly
| | | | | | | | | |
Collapse
|