1
|
Chen JZ, Junker A, Zheng I, Gerardo NM, Vega NM. A strong priority effect in the assembly of a specialized insect-microbe symbiosis. Appl Environ Microbiol 2024; 90:e0081824. [PMID: 39291984 PMCID: PMC11497811 DOI: 10.1128/aem.00818-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
Abstract
Specialized host-microbe symbioses are ecological communities, whose composition is shaped by various processes. Microbial community assembly in these symbioses is determined in part by interactions between taxa that colonize ecological niches available within habitat patches. The outcomes of these interactions, and by extension the trajectory of community assembly, can display priority effects-dependency on the order in which taxa first occupy these niches. The underlying mechanisms of these phenomena vary from system to system and are often not well resolved. Here, we characterize priority effects in colonization of the squash bug (Anasa tristis) by bacterial symbionts from the genus Caballeronia, using pairs of strains that are known to strongly compete during host colonization, as well as strains that are isogenic and thus functionally identical. By introducing symbiont strains into individual bugs in a sequential manner, we show that within-host populations established by the first colonist are extremely resistant to invasion, regardless of strain identity and competitive interactions. By knocking down the population of an initial colonist with antibiotics, we further show that colonization success by the second symbiont is still diminished even when space in the symbiotic organ is available and ostensibly accessible for colonization. We speculate that resident symbionts exclude subsequent infections by manipulating the host environment, partially but not exclusively by eliciting tissue remodeling of the symbiont organ. IMPORTANCE Host-associated microbial communities underpin critical ecosystem processes and human health, and their ability to do so is determined in turn by the various processes that shape their composition. While selection deterministically acts on competing genotypes and species during community assembly, the manner by which selection determines the trajectory of community assembly can differ depending on the sequence by which taxa are established within that community. We document this phenomenon, known as a priority effect, during experimental colonization of a North American insect pest, the squash bug Anasa tristis, by its betaproteobacterial symbionts in the genus Caballeronia. Our study demonstrates how stark, strain-level variation can emerge in specialized host-microbe symbioses simply through differences in the order by which strains colonize the host. Understanding the mechanistic drivers of community structure in host-associated microbiomes can highlight both pitfalls and opportunities for the engineering of these communities and their constituent taxa for societal benefit.
Collapse
Affiliation(s)
- Jason Z. Chen
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Anthony Junker
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Iris Zheng
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | | | - Nic M. Vega
- Department of Biology, Emory University, Atlanta, Georgia, USA
- Department of Physics, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Wang S, Ding X, Yi W, Zhao W, Zhao Q, Zhang H. Comparative mitogenomic analysis of three bugs of the genus Hygia Uhler, 1861 (Hemiptera, Coreidae) and their phylogenetic position. Zookeys 2023; 1179:123-138. [PMID: 37719777 PMCID: PMC10504634 DOI: 10.3897/zookeys.1179.100006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Hygia Uhler, 1861 is the largest genus in the bug family Coreidae. Even though many species of this genus are economically important, the complete mitogenomes of Hygia species have not yet been reported. Therefore, in the present study, the complete mitogenomes of three Hygia species, H.lativentris (Motschulsky, 1866), H.bidentata Ren, 1987, and H.opaca (Uhler, 1860), are sequenced and characterized, and submitted in a phylogenetic analysis of the Coreidae. The results show that mitogenomes of the three species are highly conserved, typically with 37 genes plus its control region. The lengths are 16,313 bp, 17,023 bp, and 17,022 bp, respectively. Most protein-coding genes (PCGs) in all species start with the standard codon ATN and terminate with one of three stop codons: TAA, TAG, or T. The tRNAs secondary structures of all species have a typical clover structure, except for the trnS1 (AGC) in H.bidentata, which lacks dihydrouridine (DHU) arm that forms a simple loop. Variation in the length of the control region led to differences in mitochondrial genome sizes. The maximum-likelihood (ML) and Bayesian-inference (BI) phylogenetic analyses strongly supported the monophyly of Hygia and its position within Coreidae, and the relationships are ((H.bidentata + (H.opaca + (H.lativentris + Hygia sp.))). The results provide further understanding for future phylogenetic studies of Coreidae.
Collapse
Affiliation(s)
- Shijun Wang
- College of Plant Protection, Shanxi Agriculture University, Jinzhong 030800, Shanxi, ChinaShanxi Agriculture UniversityJinzhongChina
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, Shanxi, ChinaXinzhou Teachers UniversityXinzhouChina
| | - Xiaofei Ding
- College of Plant Protection, Shanxi Agriculture University, Jinzhong 030800, Shanxi, ChinaShanxi Agriculture UniversityJinzhongChina
| | - Wenbo Yi
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, Shanxi, ChinaXinzhou Teachers UniversityXinzhouChina
| | - Wanqing Zhao
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, Shanxi, ChinaXinzhou Teachers UniversityXinzhouChina
| | - Qing Zhao
- College of Plant Protection, Shanxi Agriculture University, Jinzhong 030800, Shanxi, ChinaShanxi Agriculture UniversityJinzhongChina
| | - Hufang Zhang
- College of Plant Protection, Shanxi Agriculture University, Jinzhong 030800, Shanxi, ChinaShanxi Agriculture UniversityJinzhongChina
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, Shanxi, ChinaXinzhou Teachers UniversityXinzhouChina
| |
Collapse
|
3
|
Forthman M, Gordon ERL, Kimball RT. Low hybridization temperatures improve target capture success of invertebrate loci: a case study of leaf-footed bugs (Hemiptera: Coreoidea). ROYAL SOCIETY OPEN SCIENCE 2023; 10:230307. [PMID: 37388308 PMCID: PMC10300676 DOI: 10.1098/rsos.230307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/12/2023] [Indexed: 07/01/2023]
Abstract
Target capture is widely used in phylogenomic, ecological and functional genomic studies. Bait sets that allow capture from a diversity of species can be advantageous, but high-sequence divergence from baits can limit yields. Currently, only four experimental comparisons of a critical target capture parameter, hybridization temperature, have been published. These have been in vertebrates, where bait divergences are typically low, and none include invertebrates where bait-target divergences may be higher. Most invertebrate capture studies use a fixed, high hybridization temperature to maximize the proportion of on-target data, but many report low locus recovery. Using leaf-footed bugs (Hemiptera: Coreoidea), we investigate the effect of hybridization temperature on capture success of ultraconserved elements targeted by (i) baits developed from divergent hemipteran genomes and (ii) baits developed from less divergent coreoid transcriptomes. Lower temperatures generally resulted in more contigs and improved recovery of targets despite a lower proportion of on-target reads, lower read depth and more putative paralogues. Hybridization temperatures had less of an effect when using transcriptome-derived baits, which is probably due to lower bait-target divergences and greater bait tiling density. Thus, accommodating low hybridization temperatures during target capture can provide a cost-effective, widely applicable solution to improve invertebrate locus recovery.
Collapse
Affiliation(s)
- Michael Forthman
- California State Collection of Arthropods, Plant Pest Diagnostics Branch, California Department of Food and Agriculture, 3294 Meadowview Road, Sacramento, CA 95832, USA
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA
| | - Eric R. L. Gordon
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75N. Eagleville Road, Unit 3043, Storrs, CT 06269, USA
| | - Rebecca T. Kimball
- Department of Biology, University of Florida, 876 Newell Drive, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Zhang J, Li Z, Lai J, Zhang Z, Zhang F. A novel probe set for the phylogenomics and evolution of RTA spiders. Cladistics 2023; 39:116-128. [PMID: 36719825 DOI: 10.1111/cla.12523] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/10/2022] [Accepted: 12/21/2022] [Indexed: 02/01/2023] Open
Abstract
Spiders are important models for evolutionary studies of web building, sexual selection and adaptive radiation. The recent development of probes for UCE (ultra-conserved element)-based phylogenomic studies has shed light on the phylogeny and evolution of spiders. However, the two available UCE probe sets for spider phylogenomics (Spider and Arachnida probe sets) have relatively low capture efficiency within spiders, and are not optimized for the retrolateral tibial apophysis (RTA) clade, a hyperdiverse lineage that is key to understanding the evolution and diversification of spiders. In this study, we sequenced 15 genomes of species in the RTA clade, and using eight reference genomes, we developed a new UCE probe set (41 845 probes targeting 3802 loci, labelled as the RTA probe set). The performance of the RTA probes in resolving the phylogeny of the RTA clade was compared with the Spider and Arachnida probes through an in-silico test on 19 genomes. We also tested the new probe set empirically on 28 spider species of major spider lineages. The results showed that the RTA probes recovered twice and four times as many loci as the other two probe sets, and the phylogeny from the RTA UCEs provided higher support for certain relationships. This newly developed UCE probe set shows higher capture efficiency empirically and is particularly advantageous for phylogenomic and evolutionary studies of RTA clade and jumping spiders.
Collapse
Affiliation(s)
- Junxia Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Zhaoyi Li
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Jiaxing Lai
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Zhisheng Zhang
- School of Life Sciences, Southwest University, Chongqing, 400700, China
| | - Feng Zhang
- Key Laboratory of Zoological Systematics and Application of Hebei Province, Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| |
Collapse
|
5
|
Forthman M, Downie C, Miller CW, Kimball RT. Evolution of stridulatory mechanisms: vibroacoustic communication may be common in leaf-footed bugs and allies (Heteroptera: Coreoidea). ROYAL SOCIETY OPEN SCIENCE 2023; 10:221348. [PMID: 37122949 PMCID: PMC10130729 DOI: 10.1098/rsos.221348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/07/2023] [Indexed: 05/03/2023]
Abstract
Intra- and interspecific communication is crucial to fitness via its role in facilitating mating, territoriality and defence. Yet, the evolution of animal communication systems is puzzling-how do they originate and change over time? Studying stridulatory morphology provides a tractable opportunity to deduce the origin and diversification of a communication mechanism. Stridulation occurs when two sclerotized structures rub together to produce vibratory and acoustic (vibroacoustic) signals, such as a cricket 'chirp'. We investigated the evolution of stridulatory mechanisms in the superfamily Coreoidea (Hemiptera: Heteroptera), a group of insects known for elaborate male fighting behaviours and enlarged hindlegs. We surveyed a large sampling of taxa and used a phylogenomic dataset to investigate the evolution of stridulatory mechanisms. We identified four mechanisms, with at least five evolutionary gains. One mechanism, occurring only in male Harmostini (Rhopalidae), is described for the first time. Some stridulatory mechanisms appear to be non-homoplastic apomorphies within Rhopalidae, while others are homoplastic or potentially homoplastic within Coreidae and Alydidae, respectively. We detected no losses of these mechanisms once evolved, suggesting they are adaptive. Our work sets the stage for further behavioural, evolutionary and ecological studies to better understand the context in which these traits evolve and change.
Collapse
Affiliation(s)
- Michael Forthman
- California State Collection of Arthropods, Plant Pest Diagnostics Branch, California Department of Food & Agriculture, 3294 Meadowview Road, Sacramento, CA 95832, USA
- Entomology & Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA
| | | | - Christine W. Miller
- Entomology & Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611, USA
| | - Rebecca T. Kimball
- Department of Biology, University of Florida, 876 Newell Drive, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Tian X, Li Y, Chen Q, Chen Q. Mitogenome of the leaf-footed bug Notobitus montanus (Hemiptera: Coreidae) and a phylogenetic analysis of Coreoidea. PLoS One 2023; 18:e0281597. [PMID: 36763628 PMCID: PMC9916562 DOI: 10.1371/journal.pone.0281597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Notobitus montanus Hsiao, 1963 is a major pest of bamboos. The mitogenome of N. montanus (ON052831) was decoded using next-generation sequencing. The mitogenome, with 42.26% A, 30.54% T, 16.54% C, and 10.65% G, is 16,209 bp in size. Codon usage analysis indicated that high frequently used codons used either A or T at the third position of the codon. Amino acid usage analysis showed that leucine 2, phenylalanine, isoleucine and tyrosine were the most abundant in 31 Coreoidea species. Thirteen protein-coding genes (PCGs) were evolving under purifying selection, nad5 and cox1 had the lowest and strongest purifying selection stress, respectively. Correlation analysis showed that evolutionary rate had positive correlation with A+T content. No tandem repeat was detected in the non-coding region of N. montanus. The phylogenetic tree showed that Alydidae and Coreidae were not monophyletic. However, the topology of phylogenetic trees, based on 13 PCGs, was in accordance with that of tree based on both mitochondrial and nuclear genes but not ultraconserved element loci or combination of 13 PCGs and two rRNAs. It seems that their relationships are complex, which need revaluation and revision. The mitogenomic information of N. montanus could shed light on the evolution of Coreoidea.
Collapse
Affiliation(s)
- Xiaoke Tian
- School of Life Sciences, Guizhou Normal University, Gui’an, Guizhou, China
| | - Yongqin Li
- School of Life Sciences, Guizhou Normal University, Gui’an, Guizhou, China
| | - Qin Chen
- School of Life Sciences, Guizhou Normal University, Gui’an, Guizhou, China
| | - Qianquan Chen
- School of Life Sciences, Guizhou Normal University, Gui’an, Guizhou, China
- * E-mail:
| |
Collapse
|
7
|
Genevcius BC, Calandriello DC, Torres TT. Molecular and Developmental Signatures of Genital Size Macro-Evolution in Bugs. Mol Biol Evol 2022; 39:6742344. [PMID: 36181434 PMCID: PMC9585474 DOI: 10.1093/molbev/msac211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Our understanding of the genetic architecture of phenotypic traits has experienced drastic growth over the last years. Nevertheless, the majority of studies associating genotypes and phenotypes have been conducted at the ontogenetic level. Thus, we still have an elusive knowledge of how these genetic-developmental architectures evolve themselves and how their evolution is mirrored in the phenotypic change across evolutionary time. We tackle this gap by reconstructing the evolution of male genital size, one of the most complex traits in insects, together with its underlying genetic architecture. Using the order Hemiptera as a model, spanning over 350 million years of evolution, we estimate the correlation between genitalia and three features: development rate, body size, and rates of DNA substitution in 68 genes associated with genital development. We demonstrate that genital size macro-evolution has been largely dependent on body size and weakly influenced by development rate and phylogenetic history. We further revealed significant correlations between mutation rates and genital size for 19 genes. Interestingly, these genes have diverse functions and participate in distinct signaling pathways, suggesting that genital size is a complex trait whose fast evolution has been enabled by molecular changes associated with diverse morphogenetic processes. Our data further demonstrate that the majority of DNA evolution correlated with the genitalia has been shaped by negative selection or neutral evolution. Thus, in terms of sequence evolution, changes in genital size are predominantly facilitated by relaxation of constraints rather than positive selection, possibly due to the high pleiotropic nature of the morphogenetic genes.
Collapse
Affiliation(s)
| | - Denis C Calandriello
- Department of Genetics and Evolutionary Biology, University of Sao Paulo, Sao Paulo (SP), Brazil
| | - Tatiana T Torres
- Department of Genetics and Evolutionary Biology, University of Sao Paulo, Sao Paulo (SP), Brazil
| |
Collapse
|
8
|
Liu D, Niu M, Lu Y, Wei J, Zhang H. Taxon-specific ultraconserved element probe design for phylogenetic analyses of scale insects (Hemiptera: Sternorrhyncha: Coccoidea). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.984396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Scale insects (Coccoidea) are morphologically specialized members of the order Hemiptera, with 56 families recognized to date. However, the phylogenetic relationships within and among families are poorly resolved. In this study, to further characterize the phylogenetic relationships among scale insects, an ultraconserved element (UCE) probe set was designed specifically for Coccoidea based on three low-coverage whole genome sequences along with three publicly available genomes. An in silico test including eight additional genomes was performed to evaluate the effectiveness of the probe set. Most scale insect lineages were recovered by the phylogenetic analysis. This study recovered the monophyly of neococcoids. The newly developed UCE probe set has the potential to reshape and improve our understanding of the phylogenetic relationships within and among families of scale insects at the genome level.
Collapse
|
9
|
Dong X, Wang K, Tang Z, Zhang Y, Yi W, Xue H, Zheng C, Bu W. Phylogeny of Coreoidea based on mitochondrial genomes show the paraphyly of Coreidae and Alydidae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21878. [PMID: 35181948 DOI: 10.1002/arch.21878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Coreoidea (Insecta: Hemiptera: Heteroptera) is a widely distributed and agriculturally important bugs. However, the phylogeny of Coreoidea lacked consensus on higher-level relationships and several studies by comparative morphological characters and molecular data suggested the non-monophyly of two families: Coreidae and Alydidae. The mitochondrial genome (mitogenome) has long been thought to be a significant marker to understand phylogenetic relationships, but the mitogenome in Alydidae is scarce to date. In the present study, we gathered the mitogenomes of 28 species from four families of Coreoidea excluding Hyocephalidae (Alydidae, Coreidae, Rhopalidae, and Stenocephalidae), including four newly sequenced mitogenomes of Alydidae, and conducted mitogenomic organization and phylogenetic studies. We used maximum likelihood and Bayesian inference methods to infer the higher-level phylogeny from the perspective of mitogenomes, primarily to investigate the phylogenetic relationship betweeen Coreidae and Alydidae. We add evidence that neither Alydidae nor Coreidae are monophyletic based on mitogenomes. Newly sequenced mitogenomes of Alydidae have traditional gene structure and gene rearrangement was not found. Alydinae was always recovered as closely related to Pseudophloeinae of the coreid subfamily with high support. The placement of the coreid subfamily Hydarinae and alydid subfamily Micrelytrinae are unstable depending on approach used. In terms of the length and nucleotide composition of the protein coding genes in mitogenomes, Pseudophloeinae and Hydarinae of coreid were more similar to Alydidae. The unsettled classification issues of Coreidae and Alydidae by mitogenomes were demonstrated in this work, indicating that further study is needed.
Collapse
Affiliation(s)
- Xue Dong
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Kaibin Wang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Zechen Tang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yaoyao Zhang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenbo Yi
- Department of Biology, Xinzhou Teachers University, Xinzhou, Shanxi, China
| | - Huaijun Xue
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenguang Zheng
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
10
|
Ye F, Kment P, Rédei D, Luo JY, Wang YH, Kuechler SM, Zhang WW, Chen PP, Wu HY, Wu YZ, Sun XY, Ding L, Wang YR, Xie Q. Diversification of the phytophagous lineages of true bugs (Insecta: Hemiptera: Heteroptera) shortly after that of the flowering plants. Cladistics 2022; 38:403-428. [PMID: 35349192 DOI: 10.1111/cla.12501] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/20/2022] Open
Abstract
More than 95% of phytophagous true bug (Hemiptera: Heteroptera) species belong to four superfamilies: Miroidea (Cimicomorpha), Pentatomoidea, Coreoidea, and Lygaeoidea (all Pentatomomorpha). These iconic groups of highly diverse, overwhelmingly phytophagous insects include several economically prominent agricultural and silvicultural pest species, though their evolutionary history has not yet been well resolved. In particular, superfamily- and family-level phylogenetic relationships of these four lineages have remained controversial, and the divergence times of some crucial nodes for phytophagous true bugs have hitherto been little known, which hampers a better understanding of the evolutionary processes and patterns of phytophagous insects. In the present study, we used 150 species and concatenated nuclear and mitochondrial protein-coding genes and rRNA genes to infer the phylogenetic relationships within the Terheteroptera (Cimicomorpha + Pentatomomorpha) and estimated their divergence times. Our results support the monophyly of Cimicomorpha, Pentatomomorpha, Miroidea, Pentatomoidea, Pyrrhocoroidea, Coreoidea, and Lygaeoidea. The phylogenetic relationships across phytophagous lineages are largely congruent at deep nodes across the analyses based on different datasets and tree-reconstructing methods with just a few exceptions. Estimated divergence times and ancestral state reconstructions for feeding habit indicate that phytophagous true bugs explosively radiated in the Early Cretaceous-shortly after the angiosperm radiation-with the subsequent diversification of the most speciose clades (Mirinae, Pentatomidae, Coreinae, and Rhyparochromidae) in the Late Cretaceous.
Collapse
Affiliation(s)
- Fei Ye
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,Department of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Petr Kment
- Department of Entomology, National Museum, Praha, Czech Republic
| | | | - Jiu-Yang Luo
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,Department of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yan-Hui Wang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,Department of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Stefan M Kuechler
- Department of Animal Ecology II, University of Bayreuth, Bayreuth, Germany
| | | | - Ping-Ping Chen
- Netherlands Centre of Biodiversity Naturalis, Leiden, Netherlands
| | - Hao-Yang Wu
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,Department of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | | | - Xiao-Ya Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin, China
| | - Lu Ding
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,Department of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yue-Ran Wang
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,Department of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qiang Xie
- State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou, China.,Department of Ecology and Evolution, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Phylogenomic analysis with improved taxon sampling corroborates an Alydidae + Hydarinae + Pseudophloeinae clade (Heteroptera: Coreoidea: Alydidae, Coreidae). ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00548-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Zhao W, Liu D, Jia Q, Wu X, Zhang H. Characterization of the complete mitochondrial genome of Myrmuslateralis (Heteroptera, Rhopalidae) and its implication for phylogenetic analyses. Zookeys 2021; 1070:13-30. [PMID: 34819768 PMCID: PMC8599289 DOI: 10.3897/zookeys.1070.72742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
Mitochondrial genomes (mitogenomes) are widely used in research studies on phylogenetic relationships and evolutionary history. Here, we sequenced and analyzed the mitogenome of the scentless plant bug Myrmuslateralis Hsiao, 1964 (Heteroptera, Rhopalidae). The complete 17,309 bp genome encoded 37 genes, including 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and a control region. The mitogenome revealed a high A+T content (75.8%), a positive AT-skew (0.092), and a negative GC-skew (-0.165). All 13 PCGs were found to start with ATN codons, except for cox1, in which TTG was the start codon. The Ka/Ks ratios of 13 PCGs were all lower than 1, indicating that purifying selection evolved in these genes. All tRNAs could be folded into the typical cloverleaf secondary structure, except for trnS1 and trnV, which lack dihydrouridine arms. Phylogenetic trees were constructed and analyzed based on the PCG+rRNA from 38 mitogenomes, using maximum likelihood and Bayesian inference methods, showed that M.lateralis and Chorosomamacilentum Stål, 1858 grouped together in the tribe Chorosomatini. In addition, Coreoidea and Pyrrhocoroidea were sister groups among the superfamilies of Trichophora, and Rhopalidae was a sister group to Alydidae + Coreidae.
Collapse
Affiliation(s)
- Wanqing Zhao
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, Shanxi, ChinaXinzhou Teachers UniversityXinzhouChina
| | - Dajun Liu
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, Shanxi, ChinaXinzhou Teachers UniversityXinzhouChina
| | - Qian Jia
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, Shanxi, ChinaXinzhou Teachers UniversityXinzhouChina
| | - Xin Wu
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, Shanxi, ChinaXinzhou Teachers UniversityXinzhouChina
| | - Hufang Zhang
- Department of Biology, Xinzhou Teachers University, Xinzhou 034000, Shanxi, ChinaXinzhou Teachers UniversityXinzhouChina
| |
Collapse
|
13
|
Miller CD, Forthman M, Miller CW, Kimball RT. Extracting ‘legacy loci’ from an invertebrate sequence capture data set. ZOOL SCR 2021. [DOI: 10.1111/zsc.12513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Caroline D. Miller
- Department of Entomology & Nematology University of Florida Gainesville FL USA
| | - Michael Forthman
- Department of Entomology & Nematology University of Florida Gainesville FL USA
- California State Collection of Arthropods Plant Pest Diagnostics Branch California Department of Food & Agriculture Sacramento CA USA
| | - Christine W. Miller
- Department of Entomology & Nematology University of Florida Gainesville FL USA
| | | |
Collapse
|
14
|
Hemala V, Kment P, Tihlaříková E, Neděla V, Malenovský I. External structures of the metathoracic scent gland efferent system in the true bug superfamily Pyrrhocoroidea (Hemiptera: Heteroptera: Pentatomomorpha). ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 63:101058. [PMID: 34034200 DOI: 10.1016/j.asd.2021.101058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Pyrrhocoroidea represents an important group of true bugs (Insecta: Hemiptera: Heteroptera) which includes fire bugs, cotton stainers and other taxa widely used in experimental studies or known as pests. However, the morphology and phylogeny of Pyrrhocoroidea have been only poorly studied so far. Here, structures of the external scent efferent system of the metathoracic scent glands are examined in 64 out of 71 currently valid genera of Pyrrhocoroidea and scanning electron micrographs are provided for most taxa. Several characters are revealed which define each of the three higher taxa within Pyrrhocoroidea: Larginae (small auriculate peritreme lacking manubrium and median furrow; metathoracic spiracle never surrounded by evaporatorium), Physopeltinae (large, widely open ostiole; large peritremal disc with manubrium [new term], lacking median furrow; mace-like mycoid filter processes of equal shape and size on both anterior and posterior margins of metathoracic spiracle), and Pyrrhocoridae (elongate auriculate peritreme with deep median furrow). Within Pyrrhocoridae, three main types (A, B and C) of the external scent efferent system are distinguished, differring in the amount of reductions. The findings are interpreted in the context of phylogenetic hypotheses available for Pyrrhocoroidea and their close relatives, Coreoidea and Lygaeoidea. An updated identification key to the families and subfamilies of Pyrrhocoroidea applicable for both sexes is provided.
Collapse
Affiliation(s)
- Vladimír Hemala
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Petr Kment
- Department of Entomology, National Museum, Cirkusová 1740, 193 00, Prague, Horní Počernice, Czech Republic.
| | - Eva Tihlaříková
- Institute of Scientific Instruments, Czech Academy of Sciences, Královopolská 147, 612 64, Brno, Czech Republic.
| | - Vilém Neděla
- Institute of Scientific Instruments, Czech Academy of Sciences, Královopolská 147, 612 64, Brno, Czech Republic.
| | - Igor Malenovský
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| |
Collapse
|
15
|
Cumming RT, Tirant SL. Drawing the Excalibur bug from the stone: adding credibility to the double-edged sword hypothesis of coreid evolution (Hemiptera, Coreidae). Zookeys 2021; 1043:117-131. [PMID: 34163298 PMCID: PMC8217075 DOI: 10.3897/zookeys.1043.67730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/22/2021] [Indexed: 12/02/2022] Open
Abstract
A new genus and species of exaggerated antennae Coreidae is described from Myanmar amber of the Late Cretaceous (Cenomanian stage). Ferriantennaexcaliburgen. et sp. nov. appears related to another Cretaceous coreid with exaggerated antennae, Magnusantenna Du & Chen, 2021, but can be differentiated by the fourth antennal segment which is short and paddle-like, the undulating shape of the pronotum and mesonotum, and the shorter and thicker legs. The new coreid, with elaborately formed antennae and simple hind legs instead of the typical extant coreid morphology with simple antennae and elaborately formed hind legs, begs the question: why were the elaborate features of the antennae lost in favor of ornate hind legs? Features that are large and showy are at higher risk of being attacked by predators or stuck in a poor molt and subjected to autotomy and are therefore lost at a higher rate than simple appendages. We hypothesize that because elaborate antennae play an additional significant sensory role compared to elaborate hind legs, that evolutionarily it is more costly to have elaborate antennae versus elaborate hind legs. Thus, through the millenia, as coreid evolution experimented with elaborate/ornate features, those on the antennae were likely selected against in favor of ornate hind legs.
Collapse
Affiliation(s)
- Royce T Cumming
- Montreal Insectarium, 4581 rue Sherbrooke est, Montréal , H1X 2B2, Québec, Canada Montreal Insectarium Montréal Canada.,Richard Gilder Graduate School, American Museum of Natural History, New York, NY 10024, USA American Museum of Natural History New York United States of America.,Biology, Graduate Center, City University of New York, NY, USA City University of New York New York United States of America
| | - Stéphane Le Tirant
- Montreal Insectarium, 4581 rue Sherbrooke est, Montréal , H1X 2B2, Québec, Canada Montreal Insectarium Montréal Canada
| |
Collapse
|
16
|
Emberts Z, Wiens JJ. Do sexually selected weapons drive diversification? Evolution 2021; 75:2411-2424. [PMID: 33738793 DOI: 10.1111/evo.14212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/16/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022]
Abstract
Sexual selection is often thought to promote speciation. This expectation is largely driven by the fact that sexually selected traits can influence mating patterns and contribute to reproductive isolation. Indeed, some comparative studies have shown that clades with sexually selected traits have increased rates of speciation and diversification. However, these studies have almost exclusively focused on one mechanism of sexual selection: female choice. Another widespread mechanism is male-male competition. Few empirical studies (if any) have investigated the role of this alternative mechanism in driving diversification. Nevertheless, recent reviews have suggested that male-male competition can increase speciation rates. Here, we investigated whether traits associated with precopulatory male-male competition (i.e., sexually selected weapons) have promoted speciation and diversification in insects. We focused on three clades with both weapons and suitable phylogenies: leaf-footed and broad-headed bugs (Coreidae+Alydidae; ∼2850 species), stick insects and relatives (Phasmatodea; ∼3284 species), and scarab beetles (Scarabaeoidea; ∼39,717 species). We found no evidence that weapon-bearing lineages in these clades have higher rates of speciation or diversification than their weaponless relatives. Thus, our results suggest that precopulatory male-male competition may not have strong, general effects on speciation and diversification in insects, a group encompassing ∼60% of all described species.
Collapse
Affiliation(s)
- Zachary Emberts
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721
| |
Collapse
|
17
|
Emberts Z, St Mary CM, Howard CC, Forthman M, Bateman PW, Somjee U, Hwang WS, Li D, Kimball RT, Miller CW. The evolution of autotomy in leaf-footed bugs. Evolution 2020; 74:897-910. [PMID: 32267543 PMCID: PMC7317576 DOI: 10.1111/evo.13948] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/24/2020] [Indexed: 01/04/2023]
Abstract
Sacrificing body parts is one of many behaviors that animals use to escape predation. This trait, termed autotomy, is classically associated with lizards. However, several other taxa also autotomize, and this trait has independently evolved multiple times throughout Animalia. Despite having multiple origins and being an iconic antipredatory trait, much remains unknown about the evolution of autotomy. Here, we combine morphological, behavioral, and genomic data to investigate the evolution of autotomy within leaf-footed bugs and allies (Insecta: Hemiptera: Coreidae + Alydidae). We found that the ancestor of leaf-footed bugs autotomized and did so slowly; rapid autotomy (<2 min) then arose multiple times. The ancestor likely used slow autotomy to reduce the cost of injury or to escape nonpredatory entrapment but could not use autotomy to escape predation. This result suggests that autotomy to escape predation is a co-opted benefit (i.e., exaptation), revealing one way that sacrificing a limb to escape predation may arise. In addition to identifying the origins of rapid autotomy, we also show that across species variation in the rates of autotomy can be explained by body size, distance from the equator, and enlargement of the autotomizable appendage.
Collapse
Affiliation(s)
- Zachary Emberts
- Department of Biology, University of Florida, Gainesville, Florida, 32611
| | - Colette M St Mary
- Department of Biology, University of Florida, Gainesville, Florida, 32611
| | - Cody Coyotee Howard
- Department of Biology, University of Florida, Gainesville, Florida, 32611.,Florida Museum of Natural History, University of Florida, Gainesville, Florida, 32611
| | - Michael Forthman
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, 32611
| | - Philip W Bateman
- Behavioural Ecology Lab, School of Molecular and Life Sciences, Curtin University, Perth, WA, 6845, Australia
| | - Ummat Somjee
- Smithsonian Tropical Research Institute, Balboa, Panama
| | - Wei Song Hwang
- Lee Kong Chian Natural History Museum, National University of Singapore, Singapore, 117377, Singapore
| | - Daiqin Li
- Department of Biological Science, National University of Singapore, Singapore, 117543, Singapore
| | - Rebecca T Kimball
- Department of Biology, University of Florida, Gainesville, Florida, 32611
| | - Christine W Miller
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, 32611
| |
Collapse
|
18
|
The comparative morphology of adult pregenital abdominal ventrites and trichobothria in Pyrrhocoroidea (Hemiptera: Heteroptera: Pentatomomorpha). ZOOL ANZ 2020. [DOI: 10.1016/j.jcz.2019.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|