1
|
Zhang S, Lu W, Wei Z, Zhang H. Air Pollution and Cardiac Arrhythmias: From Epidemiological and Clinical Evidences to Cellular Electrophysiological Mechanisms. Front Cardiovasc Med 2021; 8:736151. [PMID: 34778399 PMCID: PMC8581215 DOI: 10.3389/fcvm.2021.736151] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide and kills over 17 million people per year. In the recent decade, growing epidemiological evidence links air pollution and cardiac arrhythmias, suggesting a detrimental influence of air pollution on cardiac electrophysiological functionality. However, the proarrhythmic mechanisms underlying the air pollution-induced cardiac arrhythmias are not fully understood. The purpose of this work is to provide recent advances in air pollution-induced arrhythmias with a comprehensive review of the literature on the common air pollutants and arrhythmias. Six common air pollutants of widespread concern are discussed, namely particulate matter, carbon monoxide, hydrogen sulfide, sulfur dioxide, nitrogen dioxide, and ozone. The epidemiological and clinical reports in recent years are reviewed by pollutant type, and the recently identified mechanisms including both the general pathways and the direct influences of air pollutants on the cellular electrophysiology are summarized. Particularly, this review focuses on the impaired ion channel functionality underlying the air pollution-induced arrhythmias. Alterations of ionic currents directly by the air pollutants, as well as the alterations mediated by intracellular signaling or other more general pathways are reviewed in this work. Finally, areas for future research are suggested to address several remaining scientific questions.
Collapse
Affiliation(s)
- Shugang Zhang
- Computational Cardiology Group, College of Computer Science and Technology, Ocean University of China, Qingdao, China.,Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Weigang Lu
- Computational Cardiology Group, College of Computer Science and Technology, Ocean University of China, Qingdao, China.,Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Zhiqiang Wei
- Computational Cardiology Group, College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
2
|
Kiss D, Horváth B, Hézső T, Dienes C, Kovács Z, Topal L, Szentandrássy N, Almássy J, Prorok J, Virág L, Bányász T, Varró A, Nánási PP, Magyar J. Late Na + Current Is [Ca 2+] i-Dependent in Canine Ventricular Myocytes. Pharmaceuticals (Basel) 2021; 14:ph14111142. [PMID: 34832924 PMCID: PMC8623624 DOI: 10.3390/ph14111142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022] Open
Abstract
Enhancement of the late sodium current (INaL) increases arrhythmia propensity in the heart, whereas suppression of the current is antiarrhythmic. In the present study, we investigated INaL in canine ventricular cardiomyocytes under action potential voltage-clamp conditions using the selective Na+ channel inhibitors GS967 and tetrodotoxin. Both 1 µM GS967 and 10 µM tetrodotoxin dissected largely similar inward currents. The amplitude and integral of the GS967-sensitive current was significantly smaller after the reduction of intracellular Ca2+ concentration ([Ca2+]i) either by superfusion of the cells with 1 µM nisoldipine or by intracellular application of 10 mM BAPTA. Inhibiting calcium/calmodulin-dependent protein kinase II (CaMKII) by KN-93 or the autocamtide-2-related inhibitor peptide similarly reduced the amplitude and integral of INaL. Action potential duration was shortened in a reverse rate-dependent manner and the plateau potential was depressed by GS967. This GS967-induced depression of plateau was reduced by pretreatment of the cells with BAPTA-AM. We conclude that (1) INaL depends on the magnitude of [Ca2+]i in canine ventricular cells, (2) this [Ca2+]i-dependence of INaL is mediated by the Ca2+-dependent activation of CaMKII, and (3) INaL is augmented by the baseline CaMKII activity.
Collapse
Affiliation(s)
- Dénes Kiss
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.K.); (B.H.); (T.H.); (C.D.); (Z.K.); (N.S.); (J.A.); (T.B.); (J.M.)
| | - Balázs Horváth
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.K.); (B.H.); (T.H.); (C.D.); (Z.K.); (N.S.); (J.A.); (T.B.); (J.M.)
- Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Hézső
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.K.); (B.H.); (T.H.); (C.D.); (Z.K.); (N.S.); (J.A.); (T.B.); (J.M.)
| | - Csaba Dienes
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.K.); (B.H.); (T.H.); (C.D.); (Z.K.); (N.S.); (J.A.); (T.B.); (J.M.)
| | - Zsigmond Kovács
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.K.); (B.H.); (T.H.); (C.D.); (Z.K.); (N.S.); (J.A.); (T.B.); (J.M.)
| | - Leila Topal
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary; (L.T.); (J.P.); (L.V.); (A.V.)
| | - Norbert Szentandrássy
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.K.); (B.H.); (T.H.); (C.D.); (Z.K.); (N.S.); (J.A.); (T.B.); (J.M.)
- Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - János Almássy
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.K.); (B.H.); (T.H.); (C.D.); (Z.K.); (N.S.); (J.A.); (T.B.); (J.M.)
| | - János Prorok
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary; (L.T.); (J.P.); (L.V.); (A.V.)
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, 6725 Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary; (L.T.); (J.P.); (L.V.); (A.V.)
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6725 Szeged, Hungary
| | - Tamás Bányász
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.K.); (B.H.); (T.H.); (C.D.); (Z.K.); (N.S.); (J.A.); (T.B.); (J.M.)
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary; (L.T.); (J.P.); (L.V.); (A.V.)
- ELKH-SZTE Research Group for Cardiovascular Pharmacology, Eötvös Loránd Research Network, 6725 Szeged, Hungary
- Department of Pharmacology and Pharmacotherapy, Interdisciplinary Excellence Centre, University of Szeged, 6725 Szeged, Hungary
| | - Péter P. Nánási
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.K.); (B.H.); (T.H.); (C.D.); (Z.K.); (N.S.); (J.A.); (T.B.); (J.M.)
- Department of Dental Physiology and Pharmacology, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-52255575; Fax: +36-52255116
| | - János Magyar
- Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (D.K.); (B.H.); (T.H.); (C.D.); (Z.K.); (N.S.); (J.A.); (T.B.); (J.M.)
- Division of Sport Physiology, Department of Physiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
3
|
Inhibition of Ca 2+-dependent protein kinase C rescues high calcium-induced pro-arrhythmogenic cardiac alternans in rabbit hearts. Pflugers Arch 2021; 473:1315-1327. [PMID: 34145500 DOI: 10.1007/s00424-021-02574-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
Cardiac alternans closely linked to calcium dysregulation is a crucial risk factor for fatal arrhythmia causing especially sudden death. Calcium overload is well-known to activate Ca2+-dependent protein kinase C (PKC); however, the effects of PKC on arrhythmogenic cardiac alternans have not yet been investigated. This study aimed to determine the contributions of PKC activities in cardiac alternans associated with calcium cycling disturbances. In the present study, action potential duration alternans (APD-ALT) induced by high free intracellular calcium ([Ca2+]i) exerted not only in a calcium concentration-dependent manner but also in a frequency-dependent manner. High [Ca2+]i-induced APD-ALT was suppressed by not only BAPTA-AM but also nifedipine. On the other hand, PKC inhibitors BIM and Gö 6976 eliminated high [Ca2+]i-induced APD-ALT, and PKC activator PMA was found to induce APD-ALT at normal [Ca2+]i condition. Furthermore, BIM effectively prevented calcium transient alternans (CaT-ALT) and even CaT disorders caused by calcium overload. Moreover, BIM not only eliminated electrocardiographic T-wave alternans (TWA) caused by calcium dysregulation, but also lowered the incidence of ventricular arrhythmias in isolated hearts. What's more, BIM prevented the expression of PKC α upregulated by calcium overload in high calcium-perfused hearts. We firstly found that pharmacologically inhibiting Ca2+-dependent PKC over-activation suppressed high [Ca2+]i-induced cardiac alternans. This recognition indicates that inhibition of PKC activities may become a therapeutic target for the prevention of pro-arrhythmogenic cardiac alternans associated with calcium dysregulation.
Collapse
|
4
|
Ton AT, Nguyen W, Sweat K, Miron Y, Hernandez E, Wong T, Geft V, Macias A, Espinoza A, Truong K, Rasoul L, Stafford A, Cotta T, Mai C, Indersmitten T, Page G, Miller PE, Ghetti A, Abi-Gerges N. Arrhythmogenic and antiarrhythmic actions of late sustained sodium current in the adult human heart. Sci Rep 2021; 11:12014. [PMID: 34103608 PMCID: PMC8187365 DOI: 10.1038/s41598-021-91528-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Late sodium current (late INa) inhibition has been proposed to suppress the incidence of arrhythmias generated by pathological states or induced by drugs. However, the role of late INa in the human heart is still poorly understood. We therefore investigated the role of this conductance in arrhythmias using adult primary cardiomyocytes and tissues from donor hearts. Potentiation of late INa with ATX-II (anemonia sulcata toxin II) and E-4031 (selective blocker of the hERG channel) slowed the kinetics of action potential repolarization, impaired Ca2+ homeostasis, increased contractility, and increased the manifestation of arrhythmia markers. These effects could be reversed by late INa inhibitors, ranolazine and GS-967. We also report that atrial tissues from donor hearts affected by atrial fibrillation exhibit arrhythmia markers in the absence of drug treatment and inhibition of late INa with GS-967 leads to a significant reduction in arrhythmic behaviour. These findings reveal a critical role for the late INa in cardiac arrhythmias and suggest that inhibition of this conductance could provide an effective therapeutic strategy. Finally, this study highlights the utility of human ex-vivo heart models for advancing cardiac translational sciences.
Collapse
Affiliation(s)
- Anh Tuan Ton
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - William Nguyen
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Katrina Sweat
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Yannick Miron
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Eduardo Hernandez
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Tiara Wong
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Valentyna Geft
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Andrew Macias
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Ana Espinoza
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Ky Truong
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Lana Rasoul
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Alexa Stafford
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Tamara Cotta
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Christina Mai
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Tim Indersmitten
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Guy Page
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Paul E Miller
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Andre Ghetti
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA
| | - Najah Abi-Gerges
- AnaBios Corporation, 3030 Bunker Hill St., Suite 312, San Diego, CA, 92109, USA.
| |
Collapse
|
5
|
Liu Z, Hu L, Zhang Z, Song L, Zhang P, Cao Z, Ma J. Isoliensinine Eliminates Afterdepolarizations Through Inhibiting Late Sodium Current and L-Type Calcium Current. Cardiovasc Toxicol 2020; 21:67-78. [PMID: 32770463 DOI: 10.1007/s12012-020-09597-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/01/2020] [Indexed: 12/19/2022]
Abstract
Isoliensinine (IL) extracted from lotus seed has a good therapeutic effect on cardiovascular diseases. However, its effect on ion channels of ventricular myocytes is still unclear. We used whole-cell patch-clamp techniques to detect the effects of IL on transmembrane ion currents and action potential (AP) in isolated rabbit left ventricular myocytes. IL inhibited the transient sodium current (INaT), late sodium current (INaL) enlarged by sea anemone toxin (ATX II) and L-type calcium current (ICaL) in a concentration-dependent manner without affecting inward rectifier potassium current (IK1) and delayed rectifier potassium current (IK). These inhibitory effects are mainly manifested as reduced the AP amplitude (APA) and maximum depolarization velocity (Vmax) and shortened the action potential duration (APD), but had no significant effect on the resting membrane potential (RMP). Moreover, IL significantly eliminated ATX II-induced early afterdepolarizations (EADs) and high extracellular calcium-induced delayed afterdepolarizations (DADs). These results revealed that IL effectively eliminated EADs and DADs through inhibiting INaL and ICaL in ventricular myocytes, which indicates it has potential antiarrhythmic action.
Collapse
Affiliation(s)
- Zhipei Liu
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Hongshan District, Wuhan, 430065, China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College of Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Liangkun Hu
- Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Zefu Zhang
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Hongshan District, Wuhan, 430065, China.,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College of Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Lv Song
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Hongshan District, Wuhan, 430065, China
| | - Peihua Zhang
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Hongshan District, Wuhan, 430065, China
| | - Zhenzhen Cao
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Hongshan District, Wuhan, 430065, China
| | - Jihua Ma
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Hongshan District, Wuhan, 430065, China. .,Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College of Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
6
|
Liu Z, Jia Y, Song L, Tian Y, Zhang P, Zhang P, Cao Z, Ma J. Antiarrhythmic effect of crotonoside by regulating sodium and calcium channels in rabbit ventricular myocytes. Life Sci 2020; 244:117333. [PMID: 31962132 DOI: 10.1016/j.lfs.2020.117333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/30/2019] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
AIMS Detect the antiarrhythmic effect of crotonoside (Cro). MAIN METHODS We used whole-cell patch-clamp techniques to detect the effects of Cro on action potentials (APs) and transmembrane ion currents in isolated rabbit left ventricular myocytes. We also verified the effect of Cro on ventricular arrhythmias caused by aconitine in vivo. KEY FINDINGS Cro reduced the maximum depolarization velocity (Vmax) of APs and shortened the action potential duration (APD) in a concentration-dependent manner, but it had no significant effect on the resting membrane potential (RMP) or action potential amplitude (APA). It also inhibited the peak sodium current (INa) and L-type calcium current (ICaL) in a concentration-dependent manner with half-maximal inhibitory concentrations (IC50) of 192 μmol/L and 159 μmol/L, respectively. However, Cro had no significant effects on the inward rectifier potassium current (IK1) or rapidly activating delayed rectifier potassium current (IKr). Sea anemone toxin II (ATX II) increased the late sodium current (INaL), but Cro abolished this effect. Moreover, Cro significantly abolished ATX II-induced early afterdepolarizations (EADs) and high extracellular Ca2+ concentration (3.6 mmol/L)-induced delayed afterdepolarizations (DADs). We also verified that Cro effectively delayed the onset time and reduced the incidence of ventricular arrhythmias caused by aconitine in vivo. SIGNIFICANCE These results revealed that Cro effectively inhibits INa, INaL, and ICaL in ventricular myocytes. Cro has antiarrhythmic potential and thus deserves further study.
Collapse
Affiliation(s)
- Zhipei Liu
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College of Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yuzhong Jia
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Wuhan 430065, China
| | - Lv Song
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Wuhan 430065, China
| | - Youjia Tian
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Wuhan 430065, China
| | - Peipei Zhang
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College of Wuhan University of Science and Technology, Wuhan 430065, China
| | - Peihua Zhang
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhenzhen Cao
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jihua Ma
- Cardio-Electrophysiological Research Laboratory, Medical College of Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College of Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
7
|
Chadda KR, Fazmin IT, Ahmad S, Valli H, Edling CE, Huang CLH, Jeevaratnam K. Arrhythmogenic mechanisms of obstructive sleep apnea in heart failure patients. Sleep 2019; 41:5054592. [PMID: 30016501 DOI: 10.1093/sleep/zsy136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 07/13/2018] [Indexed: 01/01/2023] Open
Abstract
Heart failure (HF) affects 23 million people worldwide and results in 300000 annual deaths. It is associated with many comorbidities, such as obstructive sleep apnea (OSA), and risk factors for both conditions overlap. Eleven percent of HF patients have OSA and 7.7% of OSA patients have left ventricular ejection fraction <50% with arrhythmias being a significant comorbidity in HF and OSA patients. Forty percent of HF patients develop atrial fibrillation (AF) and 30%-50% of deaths from cardiac causes in HF patients are from sudden cardiac death. OSA is prevalent in 32%-49% of patients with AF and there is a dose-dependent relationship between OSA severity and resistance to anti-arrhythmic therapies. HF and OSA lead to various downstream arrhythmogenic mechanisms, including metabolic derangement, remodeling, inflammation, and autonomic imbalance. (1) Metabolic derangement and production of reactive oxidative species increase late Na+ currents, decrease outward K+ currents and downregulate connexin-43 and cell-cell coupling. (2) remodeling also features downregulated K+ currents in addition to decreased Na+/K+ ATPase currents, altered Ca2+ homeostasis, and increased density of If current. (3) Chronic inflammation leads to downregulation of both Nav1.5 channels and K+ channels, altered Ca2+ homeostasis and reduced cellular coupling from alterations of connexin expression. (4) Autonomic imbalance causes arrhythmias by evoking triggered activity through increased Ca2+ transients and reduction of excitation wavefront wavelength. Thus, consideration of these multiple pathophysiological pathways (1-4) will enable the development of novel therapeutic strategies that can be targeted against arrhythmias in the context of complex disease, such as the comorbidities of HF and OSA.
Collapse
Affiliation(s)
- Karan R Chadda
- Faculty of Health and Medical Science, University of Surrey, Guildford, United Kingdom.,Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Ibrahim T Fazmin
- Faculty of Health and Medical Science, University of Surrey, Guildford, United Kingdom.,Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Shiraz Ahmad
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Haseeb Valli
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Charlotte E Edling
- Faculty of Health and Medical Science, University of Surrey, Guildford, United Kingdom
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, United Kingdom.,Department of Biochemistry, Hopkins Building, University of Cambridge, Cambridge, United Kingdom
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Science, University of Surrey, Guildford, United Kingdom.,Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, United Kingdom
| |
Collapse
|
8
|
Increase in CO 2 levels by upregulating late sodium current is proarrhythmic in the heart. Heart Rhythm 2019; 16:1098-1106. [PMID: 30710739 DOI: 10.1016/j.hrthm.2019.01.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Increased CO2 levels in the general circulation and/or in the myocardium are common under pathologic conditions. OBJECTIVE The purpose of this study was to test the hypothesis that an increase in CO2 levels, and not just the subsequent extra- or intracellular acidosis, would augment late sodium current (INa,L) and contribute to arrhythmogenesis in hearts with reduced repolarization reserve. METHODS Monophasic action potential durations at 90% completion of repolarization (MAPD90) from isolated rabbit hearts, INa,L, and extra- (pHo) and intracellular pH (pHi) values from cardiomyocytes using the whole-cell patch-clamp techniques and 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein, acetoxymethyl ester (BCECF-AM), respectively, were measured. RESULTS Increasing CO2 levels from 5% to 10% and 20% and administration of 1 nM sea anemone toxin (ATX)-II increased INa,L and prolonged both epicardial and endocardial MAPD90 (n = 7 and 10, respectively) without causing arrhythmic activities. Compared to 5% CO2, 10% and 20% CO2 decreased pHo and pHi in hearts treated with 1 nM ATX-II, caused greater prolongation of MAPD90, and elicited ventricular tachycardias. Increasing CO2 levels from 5% to 10% and 20% with pHo maintained at 7.4 produced smaller changes in pHi (P <.05) but similar increases in INa,L, prolongation of MAPD90, and incidence of ventricular tachycardias (n = 8). Inhibition of INa,L reversed the increase in INa,L, suppressed MAPD90 prolongations, and ventricular tachycardias induced by 20% CO2. Increased phospho-calmodulin-dependent protein kinase II-δ (CaMKIIδ) and phospho-NaV1.5 protein levels in hearts treated with 20% CO2 was attenuated by eleclazine. CONCLUSION Increased CO2 levels enhance INa,L and are proarrhythmic factors in hearts with reduced repolarization reserve, possibly via mechanisms related to phosphorylation of CaMKIIδ and NaV1.5.
Collapse
|
9
|
Yamanishi T, Koizumi H, Navarro MA, Milescu LS, Smith JC. Kinetic properties of persistent Na + current orchestrate oscillatory bursting in respiratory neurons. J Gen Physiol 2018; 150:1523-1540. [PMID: 30301870 PMCID: PMC6219691 DOI: 10.1085/jgp.201812100] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/14/2018] [Accepted: 09/19/2018] [Indexed: 01/08/2023] Open
Abstract
The rhythmic pattern of breathing depends on the pre-Bötzinger complex (preBötC) in the brainstem, a vital circuit that contains a population of neurons with intrinsic oscillatory bursting behavior. Here, we investigate the specific kinetic properties that enable voltage-gated sodium channels to establish oscillatory bursting in preBötC inspiratory neurons, which exhibit an unusually large persistent Na+ current (INaP). We first characterize the kinetics of INaP in neonatal rat brainstem slices in vitro, using whole-cell patch-clamp and computational modeling, and then test the contribution of INaP to rhythmic bursting in live neurons, using the dynamic clamp technique. We provide evidence that subthreshold activation, persistence at suprathreshold potentials, slow inactivation, and slow recovery from inactivation are kinetic features of INaP that regulate all aspects of intrinsic rhythmic bursting in preBötC neurons. The slow and cumulative inactivation of INaP during the burst active phase controls burst duration and termination, while the slow recovery from inactivation controls the duration of the interburst interval. To demonstrate this mechanism, we develop a Markov state model of INaP that explains a comprehensive set of voltage clamp data. By adding or subtracting a computer-generated INaP from a live neuron via dynamic clamp, we are able to convert nonbursters into intrinsic bursters, and vice versa. As a control, we test a model with inactivation features removed. Adding noninactivating INaP into nonbursters results in a pattern of random transitions between sustained firing and quiescence. The relative amplitude of INaP is the key factor that separates intrinsic bursters from nonbursters and can change the fraction of intrinsic bursters in the preBötC. INaP could thus be an important target for regulating network rhythmogenic properties.
Collapse
Affiliation(s)
- Tadashi Yamanishi
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD.,The First Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hidehiko Koizumi
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Marco A Navarro
- Division of Biological Sciences, University of Missouri, Columbia, MO
| | - Lorin S Milescu
- Division of Biological Sciences, University of Missouri, Columbia, MO
| | - Jeffrey C Smith
- Cellular and Systems Neurobiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
10
|
Hegyi B, Bányász T, Izu LT, Belardinelli L, Bers DM, Chen-Izu Y. β-adrenergic regulation of late Na + current during cardiac action potential is mediated by both PKA and CaMKII. J Mol Cell Cardiol 2018; 123:168-179. [PMID: 30240676 DOI: 10.1016/j.yjmcc.2018.09.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/28/2018] [Accepted: 09/16/2018] [Indexed: 12/12/2022]
Abstract
Late Na+ current (INaL) significantly contributes to shaping cardiac action potentials (APs) and increased INaL is associated with cardiac arrhythmias. β-adrenergic receptor (βAR) stimulation and its downstream signaling via protein kinase A (PKA) and Ca2+/calmodulin-dependent protein kinase II (CaMKII) pathways are known to regulate INaL. However, it remains unclear how each of these pathways regulates INaL during the AP under physiological conditions. Here we performed AP-clamp experiments in rabbit ventricular myocytes to delineate the impact of each signaling pathway on INaL at different AP phases to understand the arrhythmogenic potential. During the physiological AP (2 Hz, 37 °C) we found that INaL had a basal level current independent of PKA, but partially dependent on CaMKII. βAR activation (10 nM isoproterenol, ISO) further enhanced INaL via both PKA and CaMKII pathways. However, PKA predominantly increased INaL early during the AP plateau, whereas CaMKII mainly increased INaL later in the plateau and during rapid repolarization. We also tested the role of key signaling pathways through exchange protein activated by cAMP (Epac), nitric oxide synthase (NOS) and reactive oxygen species (ROS). Direct Epac stimulation enhanced INaL similar to the βAR-induced CaMKII effect, while NOS inhibition prevented the βAR-induced CaMKII-dependent INaL enhancement. ROS generated by NADPH oxidase 2 (NOX2) also contributed to the ISO-induced INaL activation early in the AP. Taken together, our data reveal differential modulations of INaL by PKA and CaMKII signaling pathways at different AP phases. This nuanced and comprehensive view on the changes in INaL during AP deepens our understanding of the important role of INaL in reshaping the cardiac AP and arrhythmogenic potential under elevated sympathetic stimulation, which is relevant for designing therapeutic treatment of arrhythmias under pathological conditions.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California, Davis, CA, USA.
| | - Tamás Bányász
- Department of Pharmacology, University of California, Davis, CA, USA; Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Leighton T Izu
- Department of Pharmacology, University of California, Davis, CA, USA
| | | | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Ye Chen-Izu
- Department of Pharmacology, University of California, Davis, CA, USA; Department of Biomedical Engineering, University of California, Davis, CA, USA; Department of Internal Medicine/Cardiology, University of California, Davis, CA, USA.
| |
Collapse
|
11
|
Late sodium current associated cardiac electrophysiological and mechanical dysfunction. Pflugers Arch 2017; 470:461-469. [DOI: 10.1007/s00424-017-2079-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/27/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022]
|