1
|
Luo PX, Serna Godoy A, Zakharenkov HC, Vang N, Wright EC, Balantac TA, Archdeacon SC, Black AM, Lake AA, Ramirez AV, Lozier LE, Perez MD, Bhangal I, Desta NM, Trainor BC. Hypocretin in the nucleus accumbens shell modulates social approach in female but not male California mice. Neuropsychopharmacology 2024; 49:2000-2010. [PMID: 39117901 PMCID: PMC11480414 DOI: 10.1038/s41386-024-01937-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
The hypocretin (Hcrt) system modulates arousal and anxiety-related behaviors and has been considered as a novel treatment target for stress-related affective disorders. We examined the effects of Hcrt acting in the nucleus accumbens shell (NAcSh) and anterodorsal bed nucleus of the stria terminalis (adBNST) on social behavior in male and female California mice (Peromyscus californicus). In female but not male California mice, infusion of Hcrt1 into NAcSh decreased social approach. Weak effects of Hcrt1 on social vigilance were observed in both females and males. No behavioral effects of Hcrt1 infused into the adBNST were observed. Analyses of sequencing data from California mice and Mus musculus NAc showed that Hcrtr2 was more abundant than Hcrtr1, so we infused the selective Hcrt receptor 2 antagonist into the NAcSh, which increased social approach in females previously exposed to social defeat. A calcium imaging study in the NAcSh of females before and after stress exposure showed that neural activity increased immediately following the expression of social avoidance but not during freezing behavior. This observation is consistent with previous studies that identified populations of neurons in the NAc that drive avoidance. Intriguingly, calcium transients were not affected by stress. These data suggest that hypocretin acting in the NAcSh plays a key role in modulating stress-induced social avoidance.
Collapse
Affiliation(s)
- Pei X Luo
- Department of Psychology, University of California, Davis, CA, USA
| | | | | | - Nou Vang
- Department of Psychology, University of California, Davis, CA, USA
| | - Emily C Wright
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | | | | | - Alexis M Black
- Department of Psychology, University of California, Davis, CA, USA
| | - Alyssa A Lake
- Department of Psychology, University of California, Davis, CA, USA
| | - Alison V Ramirez
- Department of Psychology, University of California, Davis, CA, USA
| | - Lauren E Lozier
- Department of Psychology, University of California, Davis, CA, USA
| | - Melvin D Perez
- Department of Psychology, University of California, Davis, CA, USA
| | - Irvin Bhangal
- Department of Psychology, University of California, Davis, CA, USA
| | - Nile M Desta
- Department of Psychology, University of California, Davis, CA, USA
| | - Brian C Trainor
- Department of Psychology, University of California, Davis, CA, USA.
| |
Collapse
|
2
|
Luo PX, Trainor BC. Hypocretin modulation of behavioral coping strategies for social stress. Neuroscience 2024:S0306-4522(24)00614-6. [PMID: 39547335 DOI: 10.1016/j.neuroscience.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Best known for promoting wakefulness and arousal, the neuropeptide hypocretin (Hcrt) also plays an important role in mediating stress responses, including social stress. However, central and systemic manipulation of the Hcrt system has produced diverse behavioral outcomes in animal models. In this review, we first focus on studies where similar manipulations of the Hcrt system led to divergent coping behaviors. We hypothesize that Hcrt differentially facilitates active and passive coping behaviors in response to social stress by acting in different brain regions and on different cell types. We then focus on region and cell type-specific effects of Hcrt in the ventral pallidum, lateral habenula, ventral tegmental area, nucleus accumbens, amygdala, and bed nucleus of the stria terminalis. Overall, the evidence suggests that rather than enhancing or inhibiting behavioral responses to social stress, Hcrt may signal the heightened arousal associated with stressful contexts. The resulting behavioral effects depend on which circuits Hcrt release occurs in and which receptor types are activated. Further study is needed to determine how and why circuit specific activation of Hcrt neurons occurs.
Collapse
Affiliation(s)
- Pei X Luo
- Department of Psychology, University of California - Davis, Davis, CA 95616, USA
| | - Brian C Trainor
- Department of Psychology, University of California - Davis, Davis, CA 95616, USA.
| |
Collapse
|
3
|
Zhang J, Jin K, Chen B, Cheng S, Jin J, Yang X, Lu J, Song Q. Sex-dimorphic functions of orexin in neuropsychiatric disorders. Heliyon 2024; 10:e36402. [PMID: 39253145 PMCID: PMC11382083 DOI: 10.1016/j.heliyon.2024.e36402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
The orexin system regulates a variety of physiological functions, including the sleep-wake cycle, addiction, foraging behavior, stress and cognitive functioning. Orexin levels in central and peripheral are related to the pathogenesis of many diseases, most notably the narcolepsy, eating disorders, stress-related psychiatric disorders, and neurodegenerative diseases. Recently, it has been reported that the orexin system is distinctly sexually dimorphic, and is strongly associated with neuropsychiatric disorders. In this review, we analyzed advancements in the sex differences in the orexin system and their connection to psychoneurological conditions. Considering the scarcity of research in this domain, more research is imperative to reveal the underlying mechanisms.
Collapse
Affiliation(s)
- Jinghan Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Kangyu Jin
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
| | - Bing Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
| | - Shangping Cheng
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
| | - Jinfan Jin
- Department of Psychiatry, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China
| | - Xiaolan Yang
- Department of Psychiatry, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China
| | - Jing Lu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, 310003, China
| | - Qinghai Song
- Department of Psychiatry, Lishui Second People's Hospital, Lishui, Zhejiang, 323000, China
| |
Collapse
|
4
|
Wright CJ, Milosavljevic S, Pocivavsek A. The stress of losing sleep: Sex-specific neurobiological outcomes. Neurobiol Stress 2023; 24:100543. [PMID: 37252645 PMCID: PMC10209346 DOI: 10.1016/j.ynstr.2023.100543] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/20/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
Sleep is a vital and evolutionarily conserved process, critical to daily functioning and homeostatic balance. Losing sleep is inherently stressful and leads to numerous detrimental physiological outcomes. Despite sleep disturbances affecting everyone, women and female rodents are often excluded or underrepresented in clinical and pre-clinical studies. Advancing our understanding of the role of biological sex in the responses to sleep loss stands to greatly improve our ability to understand and treat health consequences of insufficient sleep. As such, this review discusses sex differences in response to sleep deprivation, with a focus on the sympathetic nervous system stress response and activation of the hypothalamic-pituitary-adrenal (HPA) axis. We review sex differences in several stress-related consequences of sleep loss, including inflammation, learning and memory deficits, and mood related changes. Focusing on women's health, we discuss the effects of sleep deprivation during the peripartum period. In closing, we present neurobiological mechanisms, including the contribution of sex hormones, orexins, circadian timing systems, and astrocytic neuromodulation, that may underlie potential sex differences in sleep deprivation responses.
Collapse
Affiliation(s)
- Courtney J. Wright
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Snezana Milosavljevic
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Ana Pocivavsek
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
5
|
Sex-dependent role of orexin deficiency in feeding behavior and affective state of mice following intermittent access to a Western diet - Implications for binge-like eating behavior. Physiol Behav 2023; 260:114069. [PMID: 36572152 DOI: 10.1016/j.physbeh.2022.114069] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/02/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Binge eating disorder is a debilitating disease characterized by recurrent episodes of excessive food consumption and associated with psychiatric comorbidities. Despite a growing body of research investigating the neurobiological underpinnings of eating disorders, specific treatments are lacking. Given its fundamental role in feeding behaviors, we investigated the role of the orexin (hypocretin) neuropeptide system in binge-like eating and associated phenotypes. Specifically, we submitted female and male orexin-deficient mice to a paradigm of intermittent access (once weekly for 24 h) to a Western diet (WD) to induce binge-like eating. Additionally, we measured their anxiety-like behavior and plasma corticosterone levels. All mice showed binge-like eating in response to the intermittent WD access, but females did so to a greater extent than males. While orexin deficiency did not affect binge-like eating in this paradigm, we found that female orexin-deficient mice generally weighed more, and they expressed increased hypophagia and stress levels compared to wild-type mice following binge-like eating episodes. These detrimental effects of orexin deficiency were marginal or absent in males. Moreover, male wild-type mice expressed post-binge anxiety, but orexin-deficient mice did not. In conclusion, these results extend our knowledge of orexin's role in dysregulated eating and associated negative affective states, and contribute to the growing body of evidence indicating a sexual dimorphism of the orexin system. Considering that many human disorders, and especially eating disorders, have a strong sex bias, our findings further emphasize the importance of testing both female and male subjects.
Collapse
|
6
|
Matzeu A, Martin-Fardon R. Understanding the Role of Orexin Neuropeptides in Drug Addiction: Preclinical Studies and Translational Value. Front Behav Neurosci 2022; 15:787595. [PMID: 35126069 PMCID: PMC8811192 DOI: 10.3389/fnbeh.2021.787595] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/29/2021] [Indexed: 12/22/2022] Open
Abstract
Orexins (also known as hypocretins) are neuropeptides that participate in the regulation of energy metabolism, homeostasis, sleep, feeding, stress responses, arousal, and reward. Particularly relevant to the scope of the present review is the involvement of the orexin system in brain mechanisms that regulate motivation, especially highly motivated behavior, arousal, and stress, making it an ideal target for studying addiction and discovering treatments. Drug abuse and misuse are thought to induce maladaptive changes in the orexin system, and these changes might promote and maintain uncontrolled drug intake and contribute to relapse. Dysfunctional changes in this neuropeptidergic system that are caused by drug use might also be responsible for alterations of feeding behavior and the sleep-wake cycle that are commonly disrupted in subjects with substance use disorder. Drug addiction has often been associated with an increase in activity of the orexin system, suggesting that orexin receptor antagonists may be a promising pharmacological treatment for substance use disorder. Substantial evidence has shown that single orexin receptor antagonists that are specific to either orexin receptor 1 or 2 can be beneficial against drug intake and relapse. Interest in the efficacy of dual orexin receptor antagonists, which were primarily developed to treat insomnia, has grown in the field of drug addiction. Treatments that target the orexin system may be a promising strategy to reduce drug intake, mitigate relapse vulnerability, and restore “normal” physiological functions, including feeding and sleep. The present review discusses preclinical and clinical evidence of the involvement of orexins in drug addiction and possible beneficial pharmacotherapeutic effects of orexin receptor antagonists to treat substance use disorder.
Collapse
|
7
|
Agee LA, Nemchek V, Malone CA, Lee HJ, Monfils MH. Appetitive Behavior in the Social Transmission of Food Preference Paradigm Predicts Activation of Orexin-A producing Neurons in a Sex-Dependent Manner. Neuroscience 2022; 481:30-46. [PMID: 34843892 PMCID: PMC9246717 DOI: 10.1016/j.neuroscience.2021.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/22/2022]
Abstract
Orexin-producing cells in the lateral hypothalamic area have been shown to be involved in a wide variety of behavioral and cognitive functions, including the recall of appetitive associations and a variety of social behaviors. Here, we investigated the role of orexin in the acquisition and recall of socially transmitted food preferences in the rat. Rats were euthanized following either acquisition, short-term recall, or long-term recall of a socially transmitted food preference and their brains were processed for orexin-A and c-Fos expression. We found that while there were no significant differences in c-Fos expression between control and experimental subjects at any of the tested timepoints, females displayed significantly more activity in both orexinergic and non-orexinergic cells in the lateral hypothalamus. In the infralimbic cortex, we found that social behavior was significantly predictive of c-Fos expression, with social behaviors related to olfactory exploration appearing to be particularly influential. We additionally found that appetitive behavior was significantly predictive of orexin-A activity in a sex-dependent matter, with the total amount eaten correlating negatively with orexin-A/c-Fos colocalization in male rats but not female rats. These findings suggest a potential sex-specific role for the orexin system in balancing the stimulation of feeding behavior with the sleep/wake cycle.
Collapse
Affiliation(s)
- Laura A Agee
- The University of Texas at Austin, Department of Psychology, Austin, TX, USA
| | - Victoria Nemchek
- The University of Texas at Austin, Department of Psychology, Austin, TX, USA
| | - Cassidy A Malone
- The University of Texas at Austin, Department of Psychology, Austin, TX, USA
| | - Hongjoo J Lee
- The University of Texas at Austin, Department of Psychology, Austin, TX, USA; Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Marie-H Monfils
- The University of Texas at Austin, Department of Psychology, Austin, TX, USA; Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
8
|
Lehner M, Skórzewska A, Wisłowska-Stanek A. Sex-Related Predisposition to Post-Traumatic Stress Disorder Development-The Role of Neuropeptides. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:314. [PMID: 35010574 PMCID: PMC8750761 DOI: 10.3390/ijerph19010314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Post-traumatic stress disorder (PTSD) is characterized by re-experiencing a traumatic event, avoidance, negative alterations in cognitions and mood, hyperarousal, and severe functional impairment. Women have a two times higher risk of developing PTSD than men. The neurobiological basis for the sex-specific predisposition to PTSD might be related to differences in the functions of stress-responsive systems due to the interaction between gonadal hormones and stress peptides such as corticotropin-releasing factor (CRF), orexin, oxytocin, and neuropeptide Y. Additionally, in phases where estrogens levels are low, the risk of developing or exacerbating PTSD is higher. Most studies have revealed several essential sex differences in CRF function. They include genetic factors, e.g., the CRF promoter contains estrogen response elements. Importantly, sex-related differences are responsible for different predispositions to PTSD and diverse treatment responses. Fear extinction (the process responsible for the effectiveness of behavioral therapy for PTSD) in women during periods of high endogenous estradiol levels (the primary form of estrogens) is reportedly more effective than in periods of low endogenous estradiol. In this review, we present the roles of selected neuropeptides in the sex-related predisposition to PTSD development.
Collapse
Affiliation(s)
- Małgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland; (M.L.); (A.S.)
| | - Anna Skórzewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland; (M.L.); (A.S.)
| | - Aleksandra Wisłowska-Stanek
- Centre for Preclinical Research and Technology (CEPT), Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 1B Banacha Street, 02-097 Warsaw, Poland
| |
Collapse
|
9
|
A review of sex differences in the mechanisms and drivers of overeating. Front Neuroendocrinol 2021; 63:100941. [PMID: 34454955 DOI: 10.1016/j.yfrne.2021.100941] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/23/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022]
Abstract
Disordered eating is often associated with marked psychological and emotional distress, and severe adverse impact on quality of life. Several factors can influence eating behavior and drive food consumption in excess of energy requirements for homeostasis. It is well established that stress and negative affect contribute to the aetiology of eating disorders and weight gain, and there is substantial evidence suggesting sex differences in sub-clinical and clinical types of overeating. This review will examine how negative affect and stress shape eating behaviors, and how the relationship between the physiological, endocrine, and neural responses to stress and eating behaviors differs between men and women. We will examine several drivers of overeating and explore possible mechanisms underlying sex differences in eating behavior.
Collapse
|
10
|
Yaeger JD, Krupp KT, Gale JJ, Summers CH. Counterbalanced microcircuits for Orx1 and Orx2 regulation of stress reactivity. MEDICINE IN DRUG DISCOVERY 2020. [DOI: 10.1016/j.medidd.2020.100059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
11
|
Faesel N, Kolodziejczyk MH, Koch M, Fendt M. Orexin deficiency affects sociability and the acquisition, expression, and extinction of conditioned social fear. Brain Res 2020; 1751:147199. [PMID: 33160959 DOI: 10.1016/j.brainres.2020.147199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/06/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022]
Abstract
Accumulating evidence indicates that the central orexin (hypocretin) system plays an important role in regulating emotional processes in both humans and rodents. Thus, the orexin system has been repeatedly implicated in the pathophysiology of several neuropsychiatric disorders, such as anxiety disorders. Among others, symptoms like social fear and social withdrawal are frequently observed in these disorders. Based on this, we investigated the role of orexin deficiency in social (fear) behavior. For that, female and male orexin-deficient mice were tested for (1) sociability and social novelty, and (2) acquisition, expression, and extinction of conditioned social fear. We found that female orexin-deficient mice displayed reduced sociability and decreased preference for social novelty compared to their wild-type littermates. These effects of orexin deficiency were not observed in males. Moreover, orexin deficiency facilitated the acquisition and/or expression of conditioned social fear and impaired the extinction of social fear in both sexes. Taken together, our results indicate an important, partly sex-dependent, regulatory role of the orexin system in social (fear) behavior. Our findings support the hypothesis of orexin being an integrator of motivation, affect, and emotion.
Collapse
Affiliation(s)
- Nadine Faesel
- Institute for Pharmacology and Toxicology, Otto von Guericke University Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany; Department of Neuropharmacology, Brain Research Institute, University of Bremen, Hochschulring 18, D-28359 Bremen, Germany.
| | - Malgorzata H Kolodziejczyk
- Institute for Pharmacology and Toxicology, Otto von Guericke University Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany
| | - Michael Koch
- Department of Neuropharmacology, Brain Research Institute, University of Bremen, Hochschulring 18, D-28359 Bremen, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto von Guericke University Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto von Guericke University Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany
| |
Collapse
|
12
|
Daiwile AP, Jayanthi S, Ladenheim B, McCoy MT, Brannock C, Schroeder J, Cadet JL. Sex Differences in Escalated Methamphetamine Self-Administration and Altered Gene Expression Associated With Incubation of Methamphetamine Seeking. Int J Neuropsychopharmacol 2019; 22:710-723. [PMID: 31562746 PMCID: PMC6902093 DOI: 10.1093/ijnp/pyz050] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/11/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Methamphetamine (METH) use disorder is prevalent worldwide. There are reports of sex differences in quantities of drug used and relapses to drug use among individuals with METH use disorder. However, the molecular neurobiology of these potential sex differences remains unknown. METHODS We trained rats to self-administer METH (0. 1 mg/kg/infusion, i.v.) on an fixed-ratio-1 schedule for 20 days using two 3-hour daily METH sessions separated by 30-minute breaks. At the end of self-administration training, rats underwent tests of cue-induced METH seeking on withdrawal days 3 and 30. Twenty-four hours later, nucleus accumbens was dissected and then used to measure neuropeptide mRNA levels. RESULTS Behavioral results show that male rats increased the number of METH infusions earlier during self-administration training and took more METH than females. Both male and female rats could be further divided into 2 phenotypes labeled high and low takers based on the degree of escalation that they exhibited during the course of the METH self-administration experiment. Both males and females exhibited incubation of METH seeking after 30 days of forced withdrawal. Females had higher basal mRNA levels of dynorphin and hypocretin/orexin receptors than males, whereas males expressed higher vasopressin mRNA levels than females under saline and METH conditions. Unexpectedly, only males showed increased expression of nucleus accumbens dynorphin after METH self-administration. Moreover, there were significant correlations between nucleus accumbens Hcrtr1, Hcrtr2, Crhr2, and Avpr1b mRNA levels and cue-induced METH seeking only in female rats. CONCLUSION Our results identify some behavioral and molecular differences between male and female rats that had self-administered METH. Sexual dimorphism in responses to METH exposure should be considered when developing potential therapeutic agents against METH use disorder.
Collapse
Affiliation(s)
- Atul P Daiwile
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD
| | - Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD
| | - Bruce Ladenheim
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD
| | - Michael T McCoy
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD
| | - Christie Brannock
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD
| | - Jennifer Schroeder
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIDA Intramural Research Program, Baltimore, MD,Correspondence: Jean Lud Cadet, MD, Molecular Neuropsychiatry Research Branch, NIDA IRP, 251 Bayview Boulevard, Baltimore, MD 21224 ()
| |
Collapse
|
13
|
Abstract
The neuropeptides orexins are important in regulating the neurobiological systems that respond to stressful stimuli. Furthermore, orexins are known to play a role many of the phenotypes associated with stress-related mental illness such as changes in cognition, sleep-wake states, and appetite. Interestingly, orexins are altered in stress-related psychiatric disorders such as Major Depressive Disorder and Anxiety Disorders. Thus, orexins may be a potential target for treatment of these disorders. In this review, we will focus on what is known about the role of orexins in acute and repeated stress, in stress-induced phenotypes relevant to psychiatric illness in preclinical models, and in stress-related psychiatric illness in humans. We will also briefly discuss how orexins may contribute to sex differences in the stress response and subsequent phenotypes relevant to mental health, as many stress-related psychiatric disorders are twice as prevalent in women.
Collapse
|
14
|
Grafe LA, Bhatnagar S. The contribution of orexins to sex differences in the stress response. Brain Res 2018; 1731:145893. [PMID: 30081036 DOI: 10.1016/j.brainres.2018.07.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/22/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023]
Abstract
Women are twice as likely as men to suffer from stress-related psychiatric disorders, such as post-traumatic stress disorder (PTSD) and Major Depressive Disorder (MDD), however, the biological basis of these sex differences is not fully understood. Interestingly, orexins are known to be dysregulated in these disorders. This review first discusses the important role of orexins regulating the response to stress. Next, we review the evidence for sex differences in the orexin system, in which the majority of both preclinical and clinical studies have reported higher orexin system expression in females. Finally, we discuss the functional consequences of these sex differences in orexin expression. Most importantly, the preclinical literature reveals that higher orexin system activity in females contributes to exaggerated neuroendocrine and behavioral responses to stress. In sum, the available data suggests that orexins may be important in the etiology of stress-related psychiatric disorders that present differently in men and women. Thus, targeting orexins could potentially ameliorate many phenotypes of stress-related illness in a sex-specific way.
Collapse
Affiliation(s)
- Laura A Grafe
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Seema Bhatnagar
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
15
|
Prodel E, Barbosa TC, Nóbrega AC, Vianna LC. Cardiovascular response to trigeminal nerve stimulation at rest and during exercise in humans: does sex matter? Am J Physiol Regul Integr Comp Physiol 2018; 315:R68-R75. [DOI: 10.1152/ajpregu.00406.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We sought to investigate the possibility that there are sex differences in the cardiovascular responses to trigeminal nerve stimulation (TGS) with cold exposure to the face at rest and during dynamic exercise. In 9 healthy men (age: 28 ± 3 yr; height: 178 ± 1 cm; weight: 77 ± 8 kg) and 13 women (age 26 ± 5 yr; height 164 ± 3 cm; weight 63 ± 7 kg) beat-to-beat heart rate (HR) and blood pressure were recorded. Mean arterial pressure (MAP), stroke volume (SV), cardiac index (CI), and total vascular resistance index (TVRI) were calculated. TGS was applied for 3 min at rest and in-between 10-min steady-state cycling exercise at a HR of 110 beats/min, the measurements were obtained during the last minute of each period. At rest, TGS increased MAP (men: Δ18 ± 8 mmHg; women: Δ23 ± 8 mmHg; means ± SD), TVRI (men: Δ1.1 ± 0.6 mmHg·l−1·min·m−2; women: Δ1.2 ± 1.2 mmHg·l−1·min·m−2) and SV (men: Δ19 ± 15 ml; women: Δ16 ± 11 ml) in both groups. CI increased with TGS in women but not in men. However, men presented a bradycardic response to TGS (Δ−11 ± 8 beats/min) that was not significant in women compared with baseline. Cycling exercise increased HR, MAP, SV, and CI and decreased TVRI in men and women. TGS during exercise further increased MAP in men and women and did not change CI in either group. SV and TVRI increased with TGS during exercise only in women. TGS during exercise evoked bradycardia in men (Δ−7 ± 9 beats/min), whereas HR was unchanged in women. Our findings indicate sex differences in TGS-related cardiovascular responses at rest and during exercise.
Collapse
Affiliation(s)
- Eliza Prodel
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Thales C. Barbosa
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Antonio C. Nóbrega
- Laboratory of Exercise Sciences, Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Lauro C. Vianna
- NeuroVASQ–Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasilia, Federal District, Brazil
| |
Collapse
|
16
|
Anwer M, Bolkvadze T, Ndode-Ekane XE, Puhakka N, Rauramaa T, Leinonen V, van Vliet EA, Swaab DF, Haapasalo A, Leskelä S, Bister N, Malm T, Carlson S, Aronica E, Pitkänen A. Sushi repeat-containing protein X-linked 2: A novel phylogenetically conserved hypothalamo-pituitary protein. J Comp Neurol 2018; 526:1806-1819. [PMID: 29663392 DOI: 10.1002/cne.24449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/21/2022]
Abstract
Sushi repeat-containing protein X-linked 2 (SRPX2) is a novel protein associated with language development, synaptic plasticity, tissue remodeling, and angiogenesis. We investigated the expression and spatial localization of SRPX2 in normal mouse, rat, monkey, and human brain using in situ hybridization and immunohistochemistry. Antibody specificity was determined using in vitro siRNA based silencing of SRPX2. Cell type-specific expression was verified by double-labeling with oxytocin or vasopressin. Western blot was used to detect SRPX2 protein in rat and human plasma and cerebrospinal fluid. Unexpectedly, SRPX2 mRNA expression levels were strikingly higher in the hypothalamus as compared to the cortex. All SRPX2 immunoreactive (ir) neurons were localized in the hypothalamic paraventricular, periventricular, and supraoptic nuclei in mouse, rat, monkey, and human brain. SRPX2 colocalized with vasopressin or oxytocin in paraventricular and supraoptic neurons. Hypothalamic SRPX2-ir positive neurons gave origin to dense projections traveling ventrally and caudally toward the hypophysis. Intense axonal varicosities and terminal arborizations were identified in the rat and human neurohypophysis. SRPX2-ir cells were also found in the adenohypophysis. Light SRPX2-ir projections were observed in the dorsal and ventral raphe, locus coeruleus, and the nucleus of the solitary tract in mouse, rat and monkey. SRPX2 protein was also detected in plasma and CSF. Our data revealed intense phylogenetically conserved expression of SRPX2 protein in distinct hypothalamic nuclei and the hypophysis, suggesting its active role in the hypothalamo-pituitary axis. The presence of SRPX2 protein in the plasma and CSF suggests that some of its functions depend on secretion into body fluids.
Collapse
Affiliation(s)
- Mehwish Anwer
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tamuna Bolkvadze
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Noora Puhakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tuomas Rauramaa
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Ville Leinonen
- Department of Neurosurgery, Kuopio University Hospital, Kuopio, Finland
| | - Erwin A van Vliet
- Department of (Neuro) Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, KNAW, Amsterdam, The Netherlands
| | - Annakaisa Haapasalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Stina Leskelä
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nea Bister
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Synnöve Carlson
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
17
|
Cardiac Autonomic Neuropathy as a Result of Mild Hypercaloric Challenge in Absence of Signs of Diabetes: Modulation by Antidiabetic Drugs. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9389784. [PMID: 29643979 PMCID: PMC5831709 DOI: 10.1155/2018/9389784] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022]
Abstract
Cardiac autonomic neuropathy (CAN) is an early cardiovascular complication of diabetes occurring before metabolic derangement is evident. The cause of CAN remains elusive and cannot be directly linked to hyperglycemia. Recent clinical data report cardioprotective effects of some antidiabetic drugs independent of their hypoglycemic action. Here, we used a rat model receiving limited daily increase in calories from fat (HC diet) to assess whether mild metabolic challenge led to CAN in absence of interfering effects of hyperglycemia, glucose intolerance, or obesity. Rats receiving HC diet for 12 weeks showed reduction in baroreceptor sensitivity and heart rate variability despite lack of change in baseline hemodynamic and cardiovascular structural parameters. Impairment of cardiac autonomic control was accompanied with perivascular adipose inflammation observed as an increased inflammatory cytokine expression, together with increased cardiac oxidative stress, and signaling derangement characteristic of diabetic cardiomyopathy. Two-week treatment with metformin or pioglitazone rectified the autonomic derangement and corrected the molecular changes. Switching rats to normal chow but not to isocaloric amounts of HC for two weeks reversed CAN. As such, we conclude that adipose inflammation due to increased fat intake might underlie development of CAN and, hence, the beneficial effects of metformin and pioglitazone.
Collapse
|
18
|
Yosten GLC, Samson WK. Sexual dimorphism, plasticity and genomic diversity of the paraventricular nucleus. Exp Physiol 2017; 102:1372. [PMID: 29090528 DOI: 10.1113/ep086584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gina L C Yosten
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St Louis, MO, 63104, USA
| | - Willis K Samson
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St Louis, MO, 63104, USA
| |
Collapse
|