1
|
Akdıkan M, Kara İ, Çevik Saldıran T. Muscle Tone and Stiffness Comparison in Ambulatory Children With Unilateral Spastic Cerebral Palsy: Implications for Postural Balance and Functional Mobility. Pediatr Exerc Sci 2024:1-11. [PMID: 39724873 DOI: 10.1123/pes.2024-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/08/2024] [Accepted: 10/20/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVES To compare muscle tone and stiffness in ambulatory children with unilateral spastic cerebral palsy (UCP) with typically developing peers and explore their relationship with postural balance and functional mobility. METHODS Forty ambulatory children with UCP and age-matched typically developing peers were assessed for tone and stiffness of lumbar spinal extensors, gastrocnemius, and hamstring muscles using a myotonometer. Functional mobility was evaluated with the 2-Minute Walk Test, and the Timed Up and Go Test, while postural balance was evaluated using the Pediatric Balance Scale and the Trunk Control Measurement Scale (TCMS). RESULTS The gastrocnemius muscle tone and stiffness were higher on the affected side in UCP compared with the less affected side and typically developing peers (P < .05). Lumbar spinal extensor tone correlated with improved Trunk Control Measurement Scale scores (P = .003). The gastrocnemius and hamstring muscles' tone and stiffness did not significantly affect functional mobility measures in UCP (P > .05). CONCLUSIONS Our study highlights the importance of achieving muscle symmetry, particularly in the plantar flexors, for functional mobility in UCP children. While differences in ankle and knee muscle biomechanics were observed, they didn't significantly impact functional mobility or postural balance. Symmetry in lumbar spinal extensor biomechanics correlated with better outcomes, emphasizing the crucial role of trunk control in rehabilitation strategies for ambulatory children with UCP.
Collapse
Affiliation(s)
- Melisa Akdıkan
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Istanbul Okan University, Istanbul,Turkey
| | - İlke Kara
- Department of Physical Therapy and Rehabilitation, Institute of Health Sciences, Dokuz Eylul University, Izmir,Turkey
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Bitlis Eren University, Bitlis,Turkey
| | - Tülay Çevik Saldıran
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Bitlis Eren University, Bitlis,Turkey
| |
Collapse
|
2
|
Chu Kwan W, Partanen A, Narayanan U, Waspe AC, Drake JM. Biomechanical testing of ex vivo porcine tendons following high intensity focused ultrasound thermal ablation. PLoS One 2024; 19:e0302778. [PMID: 38713687 DOI: 10.1371/journal.pone.0302778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/12/2024] [Indexed: 05/09/2024] Open
Abstract
INTRODUCTION Magnetic resonance-guided focused ultrasound (MRgFUS) has been demonstrated to be able to thermally ablate tendons with the aim to non-invasively disrupt tendon contractures in the clinical setting. However, the biomechanical changes of tendons permitting this disrupting is poorly understood. We aim to obtain a dose-dependent biomechanical response of tendons following magnetic resonance-guided focused ultrasound (MRgFUS) thermal ablation. METHODS Ex vivo porcine tendons (n = 72) were embedded in an agar phantom and randomly assigned to 12 groups based on MRgFUS treatment. The treatment time was 10, 20, or 30s, and the applied acoustic power was 25, 50, 75, or 100W. Following each MRgFUS treatment, tendons underwent biomechanical tensile testing on an Instron machine, which calculated stress-strain curves during tendon elongation. Rupture rate, maximum treatment temperature, Young's modulus and ultimate strength were analyzed for each treatment energy. RESULTS The study revealed a dose-dependent response, with tendons rupturing in over 50% of cases when energy delivery exceeded 1000J and 100% disruption at energy levels beyond 2000J. The achieved temperatures during MRgFUS were directly proportional to energy delivery. The highest recorded temperature was 56.8°C ± 9.34 (3000J), while the lowest recorded temperate was 18.6°C ± 0.6 (control). The Young's modulus was highest in the control group (47.3 MPa ± 6.5) and lowest in the 3000J group (13.2 MPa ± 5.9). There was no statistically significant difference in ultimate strength between treatment groups. CONCLUSION This study establishes crucial thresholds for reliable and repeatable disruption of tendons, laying the groundwork for future in vivo optimization. The findings prompt further exploration of MRgFUS as a non-invasive modality for tendon disruption, offering hope for improved outcomes in patients with musculotendinous contractures.
Collapse
Affiliation(s)
| | | | - Unni Narayanan
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Adam C Waspe
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - James M Drake
- The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Walhain F, Declerck M, Chin A Fat R, Bar-On L, Van Campenhout A, Desloovere K. Muscle morphology and architecture of the medial gastrocnemius between typically developing children with different ancestral background. J Anat 2024; 244:107-119. [PMID: 37646379 PMCID: PMC10734657 DOI: 10.1111/joa.13945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023] Open
Abstract
Muscle ultrasonography is frequently used to improve the understanding of musculoskeletal impairments in children with spastic cerebral palsy (SCP). So far, most studies on muscle morphology and architecture have included typically developing children and children with SCP with similar ancestry, being mainly Caucasian. Less is known about differences in muscle morphology between children with different ancestral backgrounds. Therefore, the aim of this study was to compare muscle morphology and architecture of the medial gastrocnemius in typically developing children with African, South Asian and Southeast Asian descent from Suriname. This explorative cohort study identified children as Maroon (Ghana, African descent), Hindustani (India, South Asian) or Javanese (Indonesia, Southeast Asian), aged 5-10 years. Using 3D freehand ultrasound with the subject prone, the following medial gastrocnemius parameters were defined: muscle tendon unit (MTU) length, muscle belly length, tendon length, muscle volume, muscle thickness, anatomical cross-sectional area (ACSA), fascicle length, pennation angle, and physiological cross-sectional area (PCSA). In addition, differences between ancestral groups were assessed for the length of the MTU, muscle, tendon and fascicles in two passive stretch conditions corresponding to an externally applied joint torque of 1Nm and 4Nm. One-way ANOVA with post hoc t-tests were used to investigate differences between the ancestral groups. In total, 100 Hindustani (n = 34), Javanese (n = 34) and Maroon (n = 32) children were included. For statistical analyses, we matched the children by age, which resulted in groups of 25 children per ancestral group (n = 75). There were no differences found in MTU length, muscle belly length, ACSA, PCSA and muscle volume. Tendon length, fascicle length and pennation angle were different between ancestral groups. Compared to Javanese children, tendon length was longer (p = 0.001) and pennation angle (p = 0.001) was larger in Maroon children and fascicle length was shorter in both Maroon and Hindustani children (p < 0.001). While there was a difference found in MTU length at different conditions of passive stretch between ancestries, no differences were found in the muscle, tendon and fascicles. This is the first study that investigated macroscopic morphological and architectural parameters for the medial gastrocnemius in one extended cohort of typically developing children, stratified in three ancestral subgroups. The current results imply that ancestry-specific reference data for children are needed, especially for tendon length, fascicle length and pennation angle when investigating altered muscle morphology in neurological or neuromuscular pathologies, such as SCP. Future studies should report the ancestral background when describing muscle morphology and architecture of children and ancestral specifications should be included in normative databases.
Collapse
Affiliation(s)
- Fenna Walhain
- Department of Anatomy, Anton de Kom University of Suriname, Paramaribo, Suriname
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Marlies Declerck
- Department of Physical Therapy, Anton de Kom University of Suriname, Paramaribo, Suriname
| | - Ruby Chin A Fat
- Department of Physical Therapy, Anton de Kom University of Suriname, Paramaribo, Suriname
| | - Lynn Bar-On
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Anja Van Campenhout
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Department of Orthopaedic Surgery, University Hospital Leuven, Leuven, Belgium
| | - Kaat Desloovere
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Clinical Motion Analysis Laboratory, University Hospital Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Kaya Keles CS, Ates F. How mechanics of individual muscle-tendon units define knee and ankle joint function in health and cerebral palsy-a narrative review. Front Bioeng Biotechnol 2023; 11:1287385. [PMID: 38116195 PMCID: PMC10728775 DOI: 10.3389/fbioe.2023.1287385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
This study reviews the relationship between muscle-tendon biomechanics and joint function, with a particular focus on how cerebral palsy (CP) affects this relationship. In healthy individuals, muscle size is a critical determinant of strength, with muscle volume, cross-sectional area, and moment arm correlating with knee and ankle joint torque for different isometric/isokinetic contractions. However, in CP, impaired muscle growth contributes to joint pathophysiology even though only a limited number of studies have investigated the impact of deficits in muscle size on pathological joint function. As muscles are the primary factors determining joint torque, in this review two main approaches used for muscle force quantification are discussed. The direct quantification of individual muscle forces from their relevant tendons through intraoperative approaches holds a high potential for characterizing healthy and diseased muscles but poses challenges due to the invasive nature of the technique. On the other hand, musculoskeletal models, using an inverse dynamic approach, can predict muscle forces, but rely on several assumptions and have inherent limitations. Neither technique has become established in routine clinical practice. Nevertheless, identifying the relative contribution of each muscle to the overall joint moment would be key for diagnosis and formulating efficient treatment strategies for patients with CP. This review emphasizes the necessity of implementing the intraoperative approach into general surgical practice, particularly for joint correction operations in diverse patient groups. Obtaining in vivo data directly would enhance musculoskeletal models, providing more accurate force estimations. This integrated approach can improve the clinicians' decision-making process and advance treatment strategies by predicting changes at the muscle and joint levels before interventions, thus, holding the potential to significantly enhance clinical outcomes.
Collapse
|
5
|
Chu Kwan W, den Otter-Moore I, Partanen A, Piorkowska K, Waspe AC, Drake JM. Noninvasive magnetic resonance-guided focused ultrasound for tendon disruption: an in vivo Animal study. Int J Hyperthermia 2023; 40:2260129. [PMID: 37743063 DOI: 10.1080/02656736.2023.2260129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
PURPOSE Surgical resection of the tendon is an effective treatment for severe contracture. Magnetic Resonance-guided Focused Ultrasound (MRgFUS) is a non-invasive ultrasonic therapy which produces a focal increase in temperature, subsequent tissue ablation and disruption. We evaluated MRgFUS as a clinically translatable treatment modality to non-invasively disrupt in vivo porcine tendons. MATERIAL AND METHODS In vivo Achilles tendons (n = 28) from 15-20kg Yorkshire pigs (n = 16) were randomly assigned to 4 treatment groups of 600, 900, 1200 and 1500 J. Pretreatment range of motion (ROM) of the ankle joint was measured with the animal under general anesthesia. Following MRgFUS treatment, success of tendon rupture, ROM increase, temperature, thermal dosage, skin burn, and histology analyses were performed. RESULTS Rupture success was found to be 29%, 86%, 100% and 100% for treatment energies of 600, 900, 1200 and 1500 J respectfully. ROM difference at 90° flexion showed a statistically significant change in ROM between 900 J and 1200 J from 16° to 27°. There was no statistical significance between other groups, but there was an increase in ROM as more energy was delivered in the treatment. For each of the respective treatment groups, the maximal temperatures were 58.4 °C, 63.3 °C, 67.6 °C, and 69.9 °C. The average areas of thermal dose measured were 24.3mm2, 53.2mm2, 77.8mm2 and 91.6mm2. The average areas of skin necrosis were 5.4mm2, 21.8mm2, 37.2mm2, and 91.4mm2. Histologic analysis confirmed tissue ablation and structural collagen fiber disruption. CONCLUSIONS This study demonstrated that MRgFUS is able to disrupt porcine tendons in vivo without skin incisions.
Collapse
Affiliation(s)
| | | | | | | | - Adam C Waspe
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - James M Drake
- The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Kruse A, Habersack A, Weide G, Jaspers RT, Svehlik M, Tilp M. Eight weeks of proprioceptive neuromuscular facilitation stretching and static stretching do not affect muscle-tendon properties, muscle strength, and joint function in children with spastic cerebral palsy. Clin Biomech (Bristol, Avon) 2023; 107:106011. [PMID: 37329655 DOI: 10.1016/j.clinbiomech.2023.106011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/05/2023] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND While the effect of static stretching for individuals with cerebral palsy is questionable, recent results suggest that the combination with activation seems promising to improve muscle-tendon properties and function. Therefore, this study analyzed the effects of 8-week proprioceptive neuromuscular facilitation stretching on the gastrocnemius medialis muscle-tendon properties, muscle strength, and the ankle joint in children with spastic cerebral palsy in comparison to static stretching. METHODS Initially, 24 children with spastic cerebral palsy were randomly assigned to a static stretching (10.7 ± 1.8 years) or proprioceptive neuromuscular facilitation stretching group (10.9 ± 2.6 years). Plantar flexors were manually stretched at home for 300 s and ∼ 250-270 s per day four times a week for eight weeks, respectively. Assessments of ankle joint function (e.g., range of motion), muscle-tendon properties, and isometric muscle strength were conducted using 3D motion capture, 2D ultrasound, dynamometry, and electromyography. A mixed analysis of variance was used for the statistical analysis. FINDINGS Stretching adherence was high in the proprioceptive neuromuscular facilitation stretching (93.1%) and static stretching group (94.4%). No significant changes (p > 0.05) were observed in ankle joint function, muscle-tendon properties, and isometric muscle strength after both interventions. Moreover, no differences (p > 0.05) were found between the stretching techniques. INTERPRETATION The findings support the idea that manual stretching (neither proprioceptive neuromuscular facilitation stretching nor static stretching) performed in isolation for eight weeks may not be appropriate to evoke significant changes in muscle-tendon properties, voluntary muscle strength, or joint function in children with spastic cerebral palsy. CLINICAL TRIAL REGISTRATION NUMBER NCT04570358.
Collapse
Affiliation(s)
- Annika Kruse
- Department of Biomechanics, Training and Movement Science, Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria.
| | - Andreas Habersack
- Department of Biomechanics, Training and Movement Science, Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria; Department of Othopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Guido Weide
- Department of Human Movement Science, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Richard T Jaspers
- Department of Human Movement Science, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Martin Svehlik
- Department of Othopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Markus Tilp
- Department of Biomechanics, Training and Movement Science, Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| |
Collapse
|
7
|
Geusebroek G, van Dieën JH, Hoozemans MJM, Noort W, Houdijk H, Maas H. Constant force muscle stretching induces greater acute deformations and changes in passive mechanical properties compared to constant length stretching. J Biomech 2023; 154:111594. [PMID: 37182406 DOI: 10.1016/j.jbiomech.2023.111594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/27/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023]
Abstract
Stretching is applied to lengthen shortened muscles in pathological conditions such as joint contractures. We investigated (i) the acute effects of different types of stretching, i.e. constant length (CL) and constant force (CF) stretching, on acute deformations and changes in passive mechanical properties of medial gastrocnemius muscle (MG) and (ii) the association of acute muscle-tendon deformations or changes in mechanical properties with the impulse or maximal strain of stretching. Forty-eight hindlimbs from 13 male and 12 female Wistar rats (13 weeks old, respectively 424.6 ± 35.5 and 261.8 ± 15.6 g) were divided into six groups (n = 8 each). The MG was initially stretched to a length at which the force was 75%, 95%, or 115% of the force corresponding to estimated maximal dorsiflexion and held at either CF or CL for 30 min. Before and after the stretching protocol, the MG peak force and peak stiffness were assessed by lengthening the passive muscle to the length corresponding to maximal ankle dorsiflexion. Also, the muscle belly length and tendon length were measured. CF stretching affected peak force, peak stiffness, muscle belly length, and tendon length more than CL stretching (p < 0.01). Impulse was associated only with the decrease in peak force, while maximal strain was associated with the decrease in peak force, peak stiffness, and the increase in muscle belly length. We conclude that CF stretching results in greater acute deformations and changes in mechanical properties than CL stretching, which appears to be dependent predominantly on the differences in imposed maximal strain.
Collapse
Affiliation(s)
- G Geusebroek
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, The Netherlands
| | - J H van Dieën
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, The Netherlands
| | - M J M Hoozemans
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, The Netherlands
| | - W Noort
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, The Netherlands
| | - H Houdijk
- Department of Human Movement Sciences, University Medical Center Groningen, University of Groningen, The Netherlands
| | - H Maas
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, The Netherlands.
| |
Collapse
|
8
|
Boulard C, Gautheron V, Lapole T. Acute passive stretching has no effect on gastrocnemius medialis stiffness in children with unilateral cerebral palsy. Eur J Appl Physiol 2023; 123:467-477. [PMID: 36318307 DOI: 10.1007/s00421-022-05046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/07/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE The aim of this study was to investigate the effects of an acute high-intensity, long-duration passive stretching session of the plantar flexor muscles, on maximal dorsiflexion (DF) angle and passive stiffness at both ankle joint and gastrocnemius medialis (GM) muscle levels in children with unilateral cerebral palsy (CP). METHODS 13 children [mean age: 10 years 6 months, gross motor function classification system (GMFCS): I] with unilateral CP underwent a 5 min passive stretching session at 80% of maximal DF angle. Changes in maximal DF angle, slack angle, passive ankle joint and GM muscle stiffness from PRE- to POST-intervention were determined during passive ankle mobilization performed on a dynamometer coupled with shear wave elastography measurements (i.e., ultrasound) of the GM muscle. RESULTS Maximal DF angle and maximal passive torque were increased by 6.3° (P < 0.001; + 50.4%; 95% CI 59.9, 49.9) and 4.2 Nm (P < 0.01; + 38.9%; 95% CI 47.7, 30.1), respectively. Passive ankle joint stiffness remained unchanged (P = 0.9; 0%; 95% CI 10.6, - 10.6). GM muscle shear modulus was unchanged at maximal DF angle (P = 0.1; + 34.5%; 95% CI 44.7, 24.7) and at maximal common torque (P = 0.5; - 4%; 95% CI - 3.7, - 4.3), while it was decreased at maximal common angle (P = 0.021; - 35%; 95% CI - 11.4, - 58.5). GM slack angle was shifted in a more dorsiflexed position (P = 0.02; + 20.3%; 95% CI 22.6, 18). CONCLUSION Increased maximal DF angle can be obtained in the paretic leg in children with unilateral CP after an acute bout of stretching using controlled parameters without changes in passive stiffness at joint and GM muscle levels. CLINICAL TRIAL NUMBER NCT03714269.
Collapse
Affiliation(s)
- Clément Boulard
- Univ Lyon, UJM Saint-Etienne, Laboratoire Interuniversitaire de Biologie de La Motricité, EA 7424, 42023, Saint-Etienne, France. .,Department of Pediatrics Physical Medicine and Rehabilitation, Faculty of Medicine, University Hospital of Saint-Etienne, Saint-Etienne, France.
| | - Vincent Gautheron
- Univ Lyon, UJM Saint-Etienne, Laboratoire Interuniversitaire de Biologie de La Motricité, EA 7424, 42023, Saint-Etienne, France
| | - Thomas Lapole
- Univ Lyon, UJM Saint-Etienne, Laboratoire Interuniversitaire de Biologie de La Motricité, EA 7424, 42023, Saint-Etienne, France
| |
Collapse
|
9
|
Botulinum Toxin Intervention in Cerebral Palsy-Induced Spasticity Management: Projected and Contradictory Effects on Skeletal Muscles. Toxins (Basel) 2022; 14:toxins14110772. [PMID: 36356022 PMCID: PMC9692445 DOI: 10.3390/toxins14110772] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/22/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Spasticity, following the neurological disorder of cerebral palsy (CP), describes a pathological condition, the central feature of which is involuntary and prolonged muscle contraction. The persistent resistance of spastic muscles to stretching is often followed by structural and mechanical changes in musculature. This leads to functional limitations at the respective joint. Focal injection of botulinum toxin type-A (BTX-A) is effectively used to manage spasticity and improve the quality of life of the patients. By blocking acetylcholine release at the neuromuscular junction and causing temporary muscle paralysis, BTX-A aims to reduce spasticity and hereby improve joint function. However, recent studies have indicated some contradictory effects such as increased muscle stiffness or a narrower range of active force production. The potential of these toxin- and atrophy-related alterations in worsening the condition of spastic muscles that are already subjected to changes should be further investigated and quantified. By focusing on the effects of BTX-A on muscle biomechanics and overall function in children with CP, this review deals with which of these goals have been achieved and to what extent, and what can await us in the future.
Collapse
|
10
|
Kruse A, Habersack A, Jaspers RT, Schrapf N, Weide G, Svehlik M, Tilp M. Acute Effects of Static and Proprioceptive Neuromuscular Facilitation Stretching of the Plantar Flexors on Ankle Range of Motion and Muscle-Tendon Behavior in Children with Spastic Cerebral Palsy-A Randomized Clinical Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11599. [PMID: 36141875 PMCID: PMC9517397 DOI: 10.3390/ijerph191811599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Stretching is considered a clinically effective way to prevent muscle contracture development in children with spastic cerebral palsy (CP). Therefore, in this study, we assessed the effects of a single session of proprioceptive neuromuscular facilitation (PNF) or static stretching (SS) on ankle joint range of motion (RoM) and gastrocnemius muscle-tendon behavior in children with CP. During the SS (n = 8), the ankle joint was held in maximum dorsiflexion (30 s). During the PNF stretching (n = 10), an isometric contraction (3-5 s) was performed, followed by stretching (~25 s). Ten stretches were applied in total. We collected data via dynamometry, 3D motion capture, 2D ultrasound, and electromyography, before and after the stretching sessions. A mixed ANOVA was used for the statistical analysis. Both ankle RoM and maximum dorsiflexion increased over time (F(1,16) = 7.261, p < 0.05, η² = 0.312; and F(1,16) = 4.900, p < 0.05, η² = 0.234, respectively), without any difference between groups. An interaction effect (F(1,12) = 4.768, p = 0.05, η² = 0.284) was observed for muscle-tendon unit elongation (PNF: -8.8%; SS: +14.6%). These findings suggest a positive acute effect of stretching on ankle function. However, SS acutely increased muscle-tendon unit elongation, while this decreased after PNF stretching, indicating different effects on the spastic muscles. Whether PNF stretching has the potential to cause positive alterations in individuals with CP should be elucidated in future studies.
Collapse
Affiliation(s)
- Annika Kruse
- Department of Biomechanics, Training and Movement Science, Institute of Human Movement Science, Sport and Health, University of Graz, 8010 Graz, Austria
| | - Andreas Habersack
- Department of Biomechanics, Training and Movement Science, Institute of Human Movement Science, Sport and Health, University of Graz, 8010 Graz, Austria
- Department of Orthopaedics and Trauma, Medical University of Graz, 8036 Graz, Austria
| | - Richard T. Jaspers
- Department of Human Movement Science, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 HZ Amsterdam, The Netherlands
| | - Norbert Schrapf
- Department of Biomechanics, Training and Movement Science, Institute of Human Movement Science, Sport and Health, University of Graz, 8010 Graz, Austria
| | - Guido Weide
- Department of Human Movement Science, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, 1081 HZ Amsterdam, The Netherlands
| | - Martin Svehlik
- Department of Orthopaedics and Trauma, Medical University of Graz, 8036 Graz, Austria
| | - Markus Tilp
- Department of Biomechanics, Training and Movement Science, Institute of Human Movement Science, Sport and Health, University of Graz, 8010 Graz, Austria
| |
Collapse
|
11
|
Yoshimura A, Sekine Y, Furusho A, Yamazaki K, Hirose N. The effects of calf muscle self-massage on ankle joint range of motion and tendon-muscle morphology. J Bodyw Mov Ther 2022; 32:196-200. [DOI: 10.1016/j.jbmt.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 03/06/2022] [Accepted: 05/15/2022] [Indexed: 11/28/2022]
|
12
|
Kinematic and Kinetic Gait Parameters Can Distinguish between Idiopathic and Neurologic Toe-Walking. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020804. [PMID: 35055626 PMCID: PMC8776142 DOI: 10.3390/ijerph19020804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023]
Abstract
The differentiation between mild forms of toe-walking (equinus) in cerebral palsy (CP) and idiopathic toe-walking (ITW) is often clinically challenging. This study aims to define kinematic and kinetic parameters using 3D gait analysis to facilitate and secure the diagnosis of “idiopathic toe-walking”. We conducted a retrospective controlled stratified cohort study. 12 toe-walking subjects per group diagnosed as ITW or CP were included and stratified according to age, gender and maximal dorsiflexion in stance. We collected kinematic and kinetic data using a three-dimensional optical motion analysis system with integrated floor force plates. Pairwise comparison between ITW and CP gait data was performed, and discriminant factor analysis was conducted. Both groups were compared with typically developing peers (TD). We found kinematic and kinetic parameters having a high discriminatory power and sensitivity to distinguish between ITW and CP groups (e.g., knee angle at initial contact (91% sensitivity, 73% specificity) and foot progression angle at midstance (82% sensitivity, 73% specificity)). The strength of this study is a high discriminatory power between ITW and CP toe-walking groups. Described kinematic parameters are easy to examine even without high-tech equipment; therefore, it is directly transferable to everyday praxis.
Collapse
|
13
|
Mechanical properties of ankle joint and gastrocnemius muscle in spastic children with unilateral cerebral palsy measured with shear wave elastography. J Biomech 2021; 124:110502. [PMID: 34126561 DOI: 10.1016/j.jbiomech.2021.110502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/27/2021] [Accepted: 05/02/2021] [Indexed: 11/22/2022]
Abstract
The aim of this study was to describe passive mechanical and morphological properties of the ankle joint and gastrocnemius medialis (GM) muscle in paretic and contralateral legs in highly functional children with unilateral cerebral palsy (UCP) using shear wave elastography (SWE). SWE measurements on the GM muscle were performed in both paretic and contralateral legs during passive ankle dorsiflexion using a dynamometer in 11 children (mean age: 10 years 6 months) with UCP. Torque-angle and shear modulus-angle relationships were fitted using an exponential model to determine passive ankle joint and GM muscle stiffness respectively. Based on shear-modulus-angle relationship, slack angle and shear modulus of GM muscle were compared between legs. GM and Achilles tendon length were determined at rest using ultrasonography. No significant difference was found between legs for passive ankle joint (p = 0.26; 11.2%; 95 %CI: 31.9, -9.4) and GM muscle passive stiffness (p = 0.62; -4.4%; 95 %CI: 14.7, -23.4). GM shear modulus at a common angle was significantly higher on the paretic leg (p = 0.02; +56.5%; 95 %CI: 100.5, 12.6). GM slack angle on the paretic leg was significantly shifted to a more plantarflexed position (p = 0.04; +25.5%; 95 %CI: 49.7, 1.3) and this was associated with a non-significant lower muscle length compared to the contralateral leg (p = 0.05; -4.5%; 95 %CI: -0.4, -8.7). Increased passive tension on the paretic leg when compared to the contralateral one may be explained in large part by muscle shortening. The role of altered mechanical properties remains unknown.
Collapse
|
14
|
Yoshimura A, Sekine Y, Schleip R, Furusyo A, Yamazaki K, Inami T, Murayama M, Hirose N. The acute mechanism of the self-massage-induced effects of using a foam roller. J Bodyw Mov Ther 2021; 27:103-112. [PMID: 34391221 DOI: 10.1016/j.jbmt.2021.02.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 02/09/2021] [Accepted: 02/28/2021] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Maintaining flexibility, often defined as range of motion (ROM), is important. Recently, self-massage using a foam roller (FR) has been used in clinical and/or sports settings to effectively and immediately improve ROM. Many studies have found significant increases in ROM following the FR intervention; however, the mechanism of the effect is unclear. We aimed to clarify this mechanism regarding the ROM effects following the FR intervention by evaluating local tissue and autonomic nervous system responses. METHOD The study employed a crossover design that included a comparison between non-intervention (CON trial: left leg) and intervention (FR trial: right leg) groups. Fourteen volunteers participated. Nine outcomes (passive maximum ankle ROM [ROM with a specified and non-specified passive strength], tissue hardness, skin temperature, water contents, circumference, blood flow velocity, pressure pain threshold, autonomic nervous system, and heart rate) were investigated before (PRE) and 0 min (POST0), 20 min (POST20), 40 min (POST40), and 60 min (POST60) post intervention. RESULTS Skin temperature, impedance, and circumference changed significantly following the intervention, and increased ROM with non-specified strength was observed. DISCUSSION Although we found that the FR intervention influenced skin temperature, impedance, circumference, and ROM, adaptability to the intervention may differ depending on an individual's characteristics. Females and/or individuals with a high body water content could obtain greater positive ROM effects than males and/or individuals with a low body water content. CONCLUSION These findings suggest that the FR intervention may be an effective method to improve ROM, with alterations of skin temperature, impedance, and circumference.
Collapse
Affiliation(s)
- Akane Yoshimura
- Graduate School of Sport Sciences, Waseda University, Japan.
| | - Yuta Sekine
- Faculty of Modern Life, Teikyo Heisei University, Japan.
| | - Robert Schleip
- Department of Sport and Health Sciences, Technical University of Munich, Germany.
| | - Atsuya Furusyo
- Graduate School of Sport Sciences, Waseda University, Japan.
| | - Kazuya Yamazaki
- Graduate School of Sport Sciences, Waseda University, Japan.
| | - Takayuki Inami
- Institute of Physical Education, Keio University, Japan.
| | | | - Norikazu Hirose
- Faculty of Sport Sciences, Waseda University, 3-4-1, Higashifushimi, Nishitokyo City, Tokyo, 2020021, Japan.
| |
Collapse
|
15
|
Walhain F, Desloovere K, Declerck M, Van Campenhout A, Bar-On L. Interventions and lower-limb macroscopic muscle morphology in children with spastic cerebral palsy: a scoping review. Dev Med Child Neurol 2021; 63:274-286. [PMID: 32876960 DOI: 10.1111/dmcn.14652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2020] [Indexed: 12/24/2022]
Abstract
AIM To identify and map studies that have assessed the effect of interventions on lower-limb macroscopic muscle-tendon morphology in children with spastic cerebral palsy (CP). METHOD We conducted a literature search of studies that included pre- and post-treatment measurements of lower-limb macroscopic muscle-tendon morphology in children with spastic CP. Study quality was evaluated and significant intervention effects and effect sizes were extracted. RESULTS Twenty-eight articles were identified. They covered seven different interventions including stretching, botulinum neurotoxin A (BoNT-A), strengthening, electrical stimulation, whole-body vibration, balance training, and orthopaedic surgery. Study quality ranged from poor (14 out of 28 studies) to good (2 out of 28). Study samples were small (n=4-32) and studies were variable regarding which muscles and macroscopic morphological parameters were assessed. Inconsistent effects after intervention (thickness and cross-sectional area for strengthening, volume for BoNT-A), no effect (belly length for stretching), and small effect sizes were reported. INTERPRETATION Intervention studies reporting macroscopic muscle-tendon remodelling after interventions are limited and heterogeneous, making it difficult to generalize results. Studies that include control groups and standardized assessment protocols are needed to improve study quality and data synthesis. Lack or inconclusive effects at the macroscopic level could indicate that the effects of interventions should also be evaluated at the microscopic level. WHAT THIS PAPER ADDS Muscle-targeted interventions to remodel muscle morphology are not well understood. Studies reporting macroscopic muscle remodelling following interventions are limited and heterogeneous. Passive stretching may preserve but does not increase muscle length. The effects of isolated botulinum neurotoxin A injections on muscle volume are inconsistent. Isolated strengthening shows no consistent increase in muscle volume or thickness.
Collapse
Affiliation(s)
- Fenna Walhain
- Department of Anatomy, Anton de Kom University of Suriname, Paramaribo, Suriname
- Department of Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Kaat Desloovere
- Department of Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
- Clinical Motion Analysis Laboratory, University Hospital Leuven, Leuven, Belgium
| | - Marlies Declerck
- Department of Physical Therapy, Anton de Kom University of Suriname, Paramaribo, Suriname
| | - Anja Van Campenhout
- Department of Development and Regeneration, University Hospital Leuven, Leuven, Belgium
| | - Lynn Bar-On
- Department of Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
- Department of Rehabilitation Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Williams SA, Stott NS, Valentine J, Elliott C, Reid SL. Measuring skeletal muscle morphology and architecture with imaging modalities in children with cerebral palsy: a scoping review. Dev Med Child Neurol 2021; 63:263-273. [PMID: 33107594 DOI: 10.1111/dmcn.14714] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/22/2022]
Abstract
AIM To investigate the use of ultrasound and magnetic resonance imaging (MRI) methodologies to assess muscle morphology and architecture in children with cerebral palsy (CP). METHOD A scoping review was conducted with systematic searches of Medline, Embase, Scopus, Web of Science, PubMed, and PsycInfo for all original articles published up to January 2019 utilizing ultrasound and/or MRI to determine morphological and architectural properties of lower limb skeletal muscle in children with CP. RESULTS Eighty papers used ultrasound (n=44), three-dimensional ultrasound (n=16), or MRI (n=20) to measure at least one muscle parameter in children and adolescents with CP. Most research investigated single muscles, predominantly the medial gastrocnemius muscle, included children classified in Gross Motor Function Classification System levels I (n=62) and II (n=65), and assessed fascicle length (n=35) and/or muscle volume (n=35). Only 21 papers reported reliability of imaging techniques. Forty-six papers assessed measures of Impairment (n=39), Activity (n=24), and Participation (n=3). INTERPRETATION Current research study design, variation in methodology, and preferences towards investigation of isolated muscles may oversimplify the complexities of CP muscle but provide a foundation for the understanding of the changes in muscle parameters in children with CP. WHAT THIS PAPER ADDS Current evidence is biased towards the medial gastrocnemius muscle and more functionally able children with cerebral palsy (CP). Variations in imaging techniques and joint positioning limit comparisons between studies. Clinimetric testing of parameters of CP muscle is not always considered. Assessment of parameter(s) of muscle with measures of participation is sparse.
Collapse
Affiliation(s)
- Sîan A Williams
- School of Physiotherapy and Exercise Science, Curtin University, Perth, Western Australia, Australia
- Department of Surgery, The University of Auckland, Auckland, New Zealand
| | - N Susan Stott
- Department of Surgery, The University of Auckland, Auckland, New Zealand
- Starship Child Health, Auckland, New Zealand
| | - Jane Valentine
- Kids Rehab WA, Perth Children's Hospital, Perth, Western Australia, Australia
- School of Paediatrics and Child Health, The University of Western Australia, Perth, Western Australia, Australia
| | - Catherine Elliott
- Kids Rehab WA, Perth Children's Hospital, Perth, Western Australia, Australia
- School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Perth, Western Australia, Australia
| | - Siobhán L Reid
- School of Sport Science, Exercise and Health, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
17
|
Effects of Self-Massage Using a Foam Roller on Ankle Range of Motion and Gastrocnemius Fascicle Length and Muscle Hardness: A Pilot Study. J Sport Rehabil 2020; 29:1171-1178. [DOI: 10.1123/jsr.2019-0281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/13/2019] [Accepted: 01/02/2020] [Indexed: 11/18/2022]
Abstract
Context: Several studies have reported that self-massage using a foam roller (FR) increased joint range of motion (ROM) immediately. However, the mechanism of increasing ROM by the FR intervention has not been elucidated. Objective: To clarify the mechanism by investigating properties and morphological changes of muscles targeted by the FR intervention. Design: An interventional study. Setting: An athletic training laboratory. Participants: Ten male college volunteers with no injuries in their lower limbs (mean [SD]: age 23.8 [3.2] y, height 173.2 [4.9] cm, weight 69.5 [8.6] kg). Intervention: The FR intervention on the right plantar flexors for 3 minutes. Main Outcome Measures: Maximum ankle ROM, muscle hardness, and fascicle length of the gastrocnemius muscle at the neutral (0°), maximum dorsiflexion, and maximum plantar flexion positions. All measurements were conducted before (PRE) and after (POST) the FR intervention. Results: Dorsiflexion ROM increased significantly at POST (PRE: 13.6° [8.0°], POST: 16.6° [8.4°]; P < .001), although plantar flexion ROM did not change significantly between PRE and POST (PRE: 40.0° [6.1°], POST: 41.1° [4.9°]). There was no significant difference in muscle hardness and fascicle length between PRE and POST in any of the angles. Conclusions: Dorsiflexion ROM increased significantly by the FR intervention in the present study; however, muscle hardness and fascicle length did not change. FR may affect not only the muscle but also the fascia, tendon, and muscle-tendon unit. The FR protocol of the present study can be applied in clinical situations, because it was found to be effective to increase ROM.
Collapse
|
18
|
Nardello F, Bombieri F, Monte A. Leverage mechanical alterations during walking at self-selected speed in patients with Parkinson's disease. Gait Posture 2020; 79:175-182. [PMID: 32422557 DOI: 10.1016/j.gaitpost.2020.04.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 12/30/2019] [Accepted: 04/29/2020] [Indexed: 02/02/2023]
Abstract
Individuals with Parkinson's disease (PD) show poor walking performance compared to healthy adults. Leverage changes may provide insight into this walking abnormality, since they have important effects on both biomechanical and physiological variables. Hence, we investigated the differences in internal and external moment arms at the knee and ankle joints, as well as the effective mechanical advantage during walking at self-selected speed. Furthermore, the effects on walking of a simultaneous cognitive task were analysed. Kinetic (resultant ground reaction force and joint moments), kinematic (movement speed) and mechanical leverage (internal and external moment arms) parameters of 10 mild-to-moderate PD patients and 10 age-matched controls were measured in single and dual task condition. Finally, effective mechanical advantage was calculated as the ratio between internal and external moment arm for each joint. PD patients had a slower walking and showed larger and lower values of knee and ankle joint moments, respectively. No difference in force among groups was recorded. External moment arms were larger (in both joints) for PD, whereas slight changes were observed for internal moment arms. Consequently, effective mechanical advantage values seemed to be lower for PD. Surprisingly, leverage difference among groups was reduced during the dual task condition, resulting in a "more effective" walking strategy for PD. These findings suggest that during single task PD patients have several leverage disadvantages, which could affect the joint assessment. On the contrary, during dual task they reduced these mechanical negative effects by positively obtaining normal values of effective mechanical advantage.
Collapse
Affiliation(s)
- F Nardello
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - F Bombieri
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - A Monte
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
19
|
Kalkman BM, Bar-On L, O'Brien TD, Maganaris CN. Stretching Interventions in Children With Cerebral Palsy: Why Are They Ineffective in Improving Muscle Function and How Can We Better Their Outcome? Front Physiol 2020; 11:131. [PMID: 32153428 PMCID: PMC7047287 DOI: 10.3389/fphys.2020.00131] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/06/2020] [Indexed: 12/27/2022] Open
Abstract
Hyper-resistance at the joint is one of the most common symptoms in children with cerebral palsy (CP). Alterations to the structure and mechanical properties of the musculoskeletal system, such as a decreased muscle length and an increased joint stiffness are typically managed conservatively, by means of physiotherapy involving stretching exercises. However, the effectiveness of stretching-based interventions for improving function is poor. This may be due to the behavior of a spastic muscle during stretch, which is poorly understood. The main aim of this paper is to provide a mechanistic explanation as to why the effectiveness of stretching is limited in children with CP and consider clinically relevant means by which this shortcoming can be tackled. To do this, we review the current literature regarding muscle and tendon plasticity in response to stretching in children with CP. First, we discuss how muscle and tendon interact based on their morphology and mechanical properties to provide a certain range of motion at the joint. We then consider the effect of traditional stretching exercises on these muscle and tendon properties. Finally, we examine possible strategies to increase the effectiveness of stretching therapies and we highlight areas of further research that have the potential to improve the outcome of non-invasive interventions in children with cerebral palsy.
Collapse
Affiliation(s)
- Barbara M Kalkman
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Lynn Bar-On
- Department of Rehabilitation Medicine, VC University Medical Center Amsterdam, Amsterdam, Netherlands
| | - Thomas D O'Brien
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Constantinos N Maganaris
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
20
|
Weide G, Sloot L, Oudenhoven L, Jaspers RT, Harlaar J, Buizer AI, Bar‐On L. Comprehensive evaluation of gait, spasticity, and muscle morphology: A case report of a child with spastic paresis treated with Botulinum NeuroToxin‐A, serial casting, and physiotherapy. Clin Case Rep 2019; 7:1637-1646. [PMID: 31534717 PMCID: PMC6745351 DOI: 10.1002/ccr3.2227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 04/14/2019] [Accepted: 05/03/2019] [Indexed: 12/03/2022] Open
Abstract
Comprehensive instrumented muscle and joint assessments should be considered when prescribing Botulinum NeuroToxin‐A (BoNT‐A) treatment in spastic paresis. In a child with spastic paresis, comprehensive evaluation following treatment with BoNT‐A, serial casting, and physiotherapy showed that short‐term improvements in gait occurred without changes in muscle morphology. Rather, foot flexibility increased.
Collapse
Affiliation(s)
- Guido Weide
- Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences Amsterdam UMC, location VUmc Amsterdam The Netherlands
| | - Lizeth Sloot
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences Amsterdam UMC, location VUmc Amsterdam The Netherlands
| | - Laura Oudenhoven
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences Amsterdam UMC, location VUmc Amsterdam The Netherlands
| | - Richard T. Jaspers
- Laboratory for Myology, Department of Human Movement Sciences, Amsterdam Movement Sciences Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Jaap Harlaar
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences Amsterdam UMC, location VUmc Amsterdam The Netherlands
- Department of Biomechanical Engineering Delft University of Technology Delft The Netherlands
| | - Annemieke I. Buizer
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences Amsterdam UMC, location VUmc Amsterdam The Netherlands
| | - Lynn Bar‐On
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences Amsterdam UMC, location VUmc Amsterdam The Netherlands
- Department of Rehabilitation Sciences KU Leuven Leuven Belgium
| |
Collapse
|
21
|
What causes increased passive stiffness of plantarflexor muscle–tendon unit in children with spastic cerebral palsy? Eur J Appl Physiol 2019; 119:2151-2165. [DOI: 10.1007/s00421-019-04208-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/06/2019] [Indexed: 01/31/2023]
|
22
|
Kalkman BM, Holmes G, Bar-On L, Maganaris CN, Barton GJ, Bass A, Wright DM, Walton R, O'Brien TD. Resistance Training Combined With Stretching Increases Tendon Stiffness and Is More Effective Than Stretching Alone in Children With Cerebral Palsy: A Randomized Controlled Trial. Front Pediatr 2019; 7:333. [PMID: 31456995 PMCID: PMC6700382 DOI: 10.3389/fped.2019.00333] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022] Open
Abstract
Aim: Stretching is often used to increase/maintain muscle length and improve joint range of motion (ROM) in children with cerebral palsy (CP). However, outcomes at the muscle (remodeling) and resulting function appear to be highly variable and often unsatisfactory. During passive joint rotation, the Achilles tendon lengthens more than the in-series medial gastrocnemius muscle in children with CP, which might explain the limited effectiveness of stretching interventions. We aimed to ascertain whether increasing tendon stiffness, by performing resistance training, improves the effectiveness of passive stretching, indicated by an increase in medial gastrocnemius fascicle length. Methods: Sixteen children with CP (Age median [IQR]: 9.6 [8.6, 10.5]) completed the study. Children were randomly assigned to a combined intervention of stretching and strengthening of the calf muscles (n = 9) or a control (stretching-only) group (n = 7). Medial gastrocnemius fascicle length at a resting ankle angle, lengthening during passive joint rotations, and tendon stiffness were assessed by combining dynamometry and ultrasound imaging. The study was registered on clinicaltrials.gov (NCT02766491). Results: Resting fascicle length and tendon stiffness increased more in the intervention group compared to the control group (median [95% CI] increase fascicle length: 2.2 [1.3, 4.3] mm; stiffness: 13.6 [9.9, 17.7] N/mm) Maximum dorsiflexion angle increased equally in both groups. Conclusion: This study provides proof of principle that a combined resistance and stretching intervention can increase tendon stiffness and muscle fascicle length in children with CP. This demonstrates that remodeling of muscle structure is possible with non-invasive interventions in spastic CP.
Collapse
Affiliation(s)
- Barbara M Kalkman
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Gill Holmes
- Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Lynn Bar-On
- Department of Rehabilitation Medicine, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Rehabilitation Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Constantinos N Maganaris
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Gabor J Barton
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Alfie Bass
- Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - David M Wright
- Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Roger Walton
- Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Thomas D O'Brien
- Research Institute for Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
23
|
Kalkman BM, Bar-On L, Cenni F, Maganaris CN, Bass A, Holmes G, Desloovere K, Barton GJ, O'Brien TD. Muscle and tendon lengthening behaviour of the medial gastrocnemius during ankle joint rotation in children with cerebral palsy. Exp Physiol 2018; 103:1367-1376. [DOI: 10.1113/ep087053] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/08/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Barbara M. Kalkman
- Research Institute for Sport and Exercise Sciences; Liverpool John Moores University; Liverpool UK
- Department of Mechanical Engineering; University of Sheffield; Sheffield UK
| | - Lynn Bar-On
- Department of Rehabilitation Sciences; KU Leuven; Leuven Belgium
- Amsterdam UMC; Vrije Universiteit Amsterdam; Department of Rehabilitation Medicine; Amsterdam Movement Sciences; Amsterdam Netherlands
| | - Francesco Cenni
- Department of Mechanical Engineering; KU Leuven; Leuven Belgium
| | | | - Alfie Bass
- Alder Hey Children's NHS Foundation Trust; Liverpool UK
| | - Gill Holmes
- Alder Hey Children's NHS Foundation Trust; Liverpool UK
| | - Kaat Desloovere
- Department of Rehabilitation Sciences; KU Leuven; Leuven Belgium
| | - Gabor J. Barton
- Research Institute for Sport and Exercise Sciences; Liverpool John Moores University; Liverpool UK
| | - Thomas D. O'Brien
- Research Institute for Sport and Exercise Sciences; Liverpool John Moores University; Liverpool UK
| |
Collapse
|