1
|
Katayama K, Shiozawa K, Lee JB, Seo N, Kondo H, Saito M, Ishida K, Millar PJ, Banno R, Ogoh S. Influence of sex on sympathetic vasomotor outflow responses to passive leg raising in young individuals. J Physiol Sci 2025; 74:19. [PMID: 39843025 PMCID: PMC10949681 DOI: 10.1186/s12576-024-00909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024]
Abstract
The purpose of this study was to clarify sex differences in the inhibition of sympathetic vasomotor outflow which is caused by the loading of cardiopulmonary baroreceptors. Ten young males and ten age-matched females participated. The participants underwent a passive leg raising (PLR) test wherein they were positioned supine (baseline, 0º), and their lower limbs were lifted passively at 10º, 20º, 30º, and 40º. Each angle lasted for 3 min. Muscle sympathetic nerve activity (MSNA) was recorded via microneurography of the left radial nerve. Baseline MSNA was lower in females compared to males. MSNA burst frequency was decreased during the PLR in both males (- 6.2±0.4 bursts/min at 40º) and females (- 6.5±0.4 bursts/min at 40º), but no significant difference was detected between the two groups (P = 0.61). These results suggest that sex has minimal influence on the inhibition of sympathetic vasomotor outflow during the loading of cardiopulmonary baroreceptors in young individuals.
Collapse
Affiliation(s)
- Keisho Katayama
- Research Center of Health, Physical Fitness and Sports, Nagoya University, 464-8601, Nagoya, Japan; Graduate School of Medicine, Nagoya University, 464-8601, Nagoya, Japan.
| | - Kana Shiozawa
- Graduate School of Medicine, Nagoya University, 464-8601, Nagoya, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Jordan B Lee
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
| | - Natsuki Seo
- Graduate School of Medicine, Nagoya University, 464-8601, Nagoya, Japan
| | - Haruna Kondo
- Graduate School of Medicine, Nagoya University, 464-8601, Nagoya, Japan
| | - Mitsuru Saito
- Applied Physiology Laboratory, Toyota Technological Institute, Nagoya, Japan
| | - Koji Ishida
- Research Center of Health, Physical Fitness and Sports, Nagoya University, 464-8601, Nagoya, Japan; Graduate School of Medicine, Nagoya University, 464-8601, Nagoya, Japan
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Ryoichi Banno
- Research Center of Health, Physical Fitness and Sports, Nagoya University, 464-8601, Nagoya, Japan; Graduate School of Medicine, Nagoya University, 464-8601, Nagoya, Japan
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe, Japan
| |
Collapse
|
2
|
Benbaruj JM, Leahy MG, Jackman R, Rae T, Boushel R, Foster GE, Sheel AW. Sex-based differences in the blood pressure responses to muscle metaboreflex activation are consistent between limb and respiratory muscle. J Appl Physiol (1985) 2024; 137:1220-1230. [PMID: 39262334 DOI: 10.1152/japplphysiol.00187.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
The purpose of this study was to compare sex-based differences in the mean arterial blood pressure (MAP) response to limb and inspiratory metaboreflex activation, during relative and absolute workloads. Healthy males (n = 9) and females (n = 8) completed pulmonary function testing, forearm volume and circumference measurements, and bouts of limb and inspiratory muscle exercise. The exercises performed included bouts of rhythmic handgrip exercise (RHG) and inspiratory pressure threshold loading (PTL) to task failure, performed in a randomized order and separated by 30 minutes of rest. Participants performed both RHG and PTL at predetermined relative (R) and absolute (A) workloads, while cardiopulmonary measurements were recorded continuously. A time-dependent rise in MAP was observed in all participants, regardless of sex, muscle, or workload (P < 0.001). MAP was greater in males than females during all exercise bouts regardless of muscle group or workload (P < 0.001). The change in MAP from baseline was also greater in males (R-RHG: Δ31 ± 12 mmHg; R-PTL: Δ31 ± 9; A-RHG: Δ35 ± 6; and A-PTL: Δ30 ± 7) than females (R-RHG: Δ21 ± 7 mmHg; R-PTL: Δ13 ± 7; A-RHG: Δ21 ± 7; and A-PTL: Δ14 ± 3) (P < 0.001). Results from this study show that when the forearm and diaphragm perform the same relative or absolute work, the blood pressure response is statistically similar, and both responses are greater in males than females. The findings from the present study suggest that the sex-based difference in the response to metaboreflex activation is similar between the limb and respiratory musculature.NEW & NOTEWORTHY With rhythmic handgrip exercise and inspiratory pressure threshold loading there was a time-dependent rise in the blood pressure that was significantly lower in females than males. The blunted blood pressure response in females was present whether handgrip or inspiratory workload was relative or absolute. An attenuated cardiovascular response to high levels of limb or respiratory muscle work may have implications for whole body exercise in health and disease.
Collapse
Affiliation(s)
- Jenna M Benbaruj
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Michael G Leahy
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Rachel Jackman
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Thora Rae
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Robert Boushel
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Glen E Foster
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - A William Sheel
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Asirvatham-Jeyaraj N, Anselmo M, Chantigian DP, Larson M, Lee EJ, Keller-Ross ML. Influence of endogenous and exogenous hormones on the cardiovascular response to lower extremity exercise and group III/IV activation in young females. Am J Physiol Regul Integr Comp Physiol 2024; 327:R379-R388. [PMID: 39034814 PMCID: PMC11483072 DOI: 10.1152/ajpregu.00017.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Oral contraceptive (OC) use can increase resting blood pressure (BP) in females as well as contribute to greater activation of group III/IV afferents during upper body exercise. It is unknown, however, whether an exaggerated BP response occurs during lower limb exercise in OC users. We sought to elucidate the group III/IV afferent activity-mediated BP and heart rate responses while performing lower extremity tasks during early and late follicular phases in young, healthy females. Females not taking OCs (NOC: n = 8; age: 25 ± 4 yr) and those taking OCs (OC: n = 10; age: 23 ± 2 yr) completed a continuous knee extension/flexion passive stretch (mechanoreflex) and cycling exercise with subsystolic cuff occlusion (exercise pressor reflex), which was followed by a 2-min postexercise circulatory occlusion (PECO) (metaboreflex). Data collection occurred on two occasions: once during the early follicular phase (days 1-4) and once during the late follicular phase (days 10-14) of their menstrual cycle (NOC) or during the placebo and active pill phases (OC). Resting mean arterial BP and heart rate were not different between phases in NOC and OC participants (P > 0.05). Hemodynamic responses to metaboreflex, mechanoreflex, and collective exercise pressor reflex activation were not different between phases in both groups (P > 0.05). In conclusion, although OCs are known to increase BP at rest, our findings indicate that neither endogenous nor exogenous (OC) sex hormones modulate BP during large, lower limb muscle exercise with or without group III/IV afferent activation in young, healthy females.NEW & NOTEWORTHY Sex differences in the cardiovascular response to exercise have been demonstrated and may be dependent on sex hormone levels. Furthermore, oral contraceptives (OCs) have been shown to exaggerate the blood pressure response to upper extremity exercise. The results of this study indicate that neither endogenous nor exogenous (OC) sex hormones modulate BP during lower extremity dynamic exercise or with group III/IV afferent activation in young, healthy females.
Collapse
Affiliation(s)
- Ninitha Asirvatham-Jeyaraj
- Cardiometabolic and Neuromodulation Research Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Miguel Anselmo
- Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, Minnesota, United States
| | - Daniel P Chantigian
- Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, Minnesota, United States
| | - Mia Larson
- Lillehei Clinical Research Unit, University of Minnesota, Cancer and Cardiovascular Research Center, Minnesota, United States
| | - Emma J Lee
- Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, Minnesota, United States
| | - Manda L Keller-Ross
- Division of Physical Therapy and Rehabilitation Science, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
4
|
Leahy MG, Busch SA, Thrall SF, Hillen SJ, Sheel AW, Foster GE. Reflex sympathetic activation to inspiratory muscle loading is attenuated in females relative to males. Am J Physiol Heart Circ Physiol 2024; 327:H28-H37. [PMID: 38700472 DOI: 10.1152/ajpheart.00133.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Intense inspiratory muscle work can evoke a metabolite-stimulated pressor reflex, commonly referred to as the respiratory muscle metaboreflex. When completing similar relative and absolute levels of inspiratory work, females have an attenuated blood pressure response. We sought to test the hypothesis that the lower blood pressure response to the respiratory muscle metaboreflex in females is associated with a reduced sympathetic response. Healthy young (26 ± 4 yr) males (n = 9) and females (n = 7) completed two experimental days. On day 1, participants completed pulmonary function testing and became familiarized with an inspiratory pressure-threshold loading (PTL) task. On the second day, balloon-tipped catheters were placed in the esophagus and stomach to measure pleural and gastric pressures, and transdiaphragmatic pressure was calculated. A microelectrode was inserted into the fibular nerve to quantify muscle sympathetic nerve activity (MSNA), and participants then completed isocapnic PTL to task failure. There was a significant sex-by-time interaction in the mean arterial pressure (MAP, P = 0.015) and burst frequency (P = 0.039) response to PTL. Males had a greater rise in MAP (Δ21 ± 9 mmHg) than females (Δ13 ± 5 mmHg, P = 0.026). Males also demonstrated a greater rise in MSNA burst frequency (Δ18 ± 7 bursts/min) than females (Δ10 ± 5 bursts/min, P = 0.015). The effect of sex was observed despite females and males completing the same magnitude of diaphragm work throughout the task (P = 0.755). Our findings provide novel evidence that the lower blood pressure response to similar relative and absolute inspiratory muscle work in females is associated with lower sympathetic activation.NEW & NOTEWORTHY The blood pressure response to high levels of inspiratory muscle work is lower in females and occurs alongside a reduced sympathetic response. The reduced blood pressure and sympathetic response occur despite males and females performing similar levels of absolute inspiratory work. Our findings provide evidence that sex differences in the respiratory muscle metaboreflex are, in part, sympathetically mediated.
Collapse
Affiliation(s)
- Michael G Leahy
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen A Busch
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott F Thrall
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, British Columbia, Canada
| | - Sam J Hillen
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - A William Sheel
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, British Columbia, Canada
| |
Collapse
|
5
|
Leahy MG, Benbaruj JM, Payne OT, Foster GE, Sheel AW. The human skeletal muscle metaboreflex contribution to cardiorespiratory control in males and females in dynamic exercise. Appl Physiol Nutr Metab 2024; 49:514-525. [PMID: 38079618 DOI: 10.1139/apnm-2023-0387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
There is a significant effect of sex and muscle mass on the cardiorespiratory response to the skeletal muscle metaboreflex during isometric exercise. We therefore tested the hypothesis that sex differences would be present when isolated following dynamic exercise. We also tested the hypothesis that single and double leg post-exercise circulatory occlusion (PECO) following heavy exercise would elicit a cardiorespiratory response proportional to the absolute muscle mass. Healthy (24 ± 4 years) males (n = 10) and females (n = 10) completed pulmonary function and an incremental cycle test to exhaustion. Participants completed two randomized, 6 min bouts of intense cycle exercise (84 ± 7% V̇O2peak). One exercise bout was immediately followed by 3 min PECO (220 mmHg) of the legs while the other exercise bout was followed by passive recovery. Males completed an additional session of testing with single leg PECO. The mean arterial pressure during PECO and control was greater in males compared to females (p = 0.004). The was a significant time by condition by sex interaction in the heart rate response to PECO (p = 0.027). There was also a significant condition by sex interaction in the ventilatory response to PECO (p = 0.026). In males, we observed a dose-dependent cardiovascular, but not ventilatory, response to muscle mass occluded (all p < 0.05). Our findings suggest the metaboreflex contribution to cardiorespiratory control during dynamic exercise is greater in males compared to females. The ventilatory response induced by double-leg occlusion but not single-leg occlusion, suggests that the ventilatory influence of the metaboreflex is less sensitive than the cardiovascular response and may be linked to the greater afferent activation induced by double-leg occlusion.
Collapse
Affiliation(s)
- Michael G Leahy
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Jenna M Benbaruj
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Owen T Payne
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Glen E Foster
- School of Health & Exercise Sciences, University of British Columbia, Kelowna, Canada
| | - A William Sheel
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
6
|
Sakamoto R, Kamoda T, Sato K, Ogoh S, Katayose M, Neki T, Iwamoto E. Acute aerobic exercise enhances cerebrovascular shear-mediated dilation in young adults: the role of cerebral shear. J Appl Physiol (1985) 2024; 136:535-548. [PMID: 38153849 DOI: 10.1152/japplphysiol.00543.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023] Open
Abstract
Exercise-induced increases in shear rate (SR) acutely improve peripheral endothelial function, but the presence of this mechanism in cerebral arteries remains unclear. Thus, we evaluated shear-mediated dilation of the internal carotid artery (ICA), which is an index of cerebrovascular endothelial function, before and after exercise. Shear-mediated dilation was measured with 30 s of hypercapnia in 16 young adults before and 10 min after 30 min of sitting rest (CON) or three cycling exercises on four separate days. The target exercise intensity was 80% of oxygen uptake at the ventilatory threshold. To manipulate the ICA SR during exercise, participants breathed spontaneously (ExSB, SR increase) or hyperventilated without (ExHV, no increase in SR) or with ([Formula: see text], restoration of SR increase) addition of CO2 to inspiratory air. Shear-mediated dilation was calculated as a percent increase in diameter from baseline. Doppler ultrasound measures ICA velocity and diameter. The CON trial revealed that 30 min of sitting did not alter shear-mediated dilation (4.34 ± 1.37% to 3.44 ± 1.23%, P = 0.052). ICA dilation after exercise compared with preexercise levels increased in the ExSB trial (3.32 ± 1.37% to 4.74 ± 1.84%, P < 0.01), remained unchanged in the ExHV trial (4.07 ± 1.55% to 3.21 ± 1.48%, P = 0.07), but was elevated in the [Formula: see text] trial (3.35 ± 1.15% to 4.33 ± 2.12%, P = 0.04). Our results indicate that exercise-induced increases in cerebral shear may play a crucial role in improving cerebrovascular endothelial function after acute exercise in young adults.NEW & NOTEWORTHY We found that 30-min cycling (target intensity was 80% of the ventilatory threshold) with increasing shear of the internal carotid artery (ICA) enhanced transient hypercapnia-induced shear-mediated dilation of the ICA, reflecting improved cerebrovascular endothelial function. This enhancement of ICA dilation was diminished by suppressing the exercise-induced increase in ICA shear via hyperventilation. Our results indicate that increases in cerebral shear may be a key stimulus for improving cerebrovascular endothelial function after exercise in young adults.
Collapse
Affiliation(s)
- Rintaro Sakamoto
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Tatsuki Kamoda
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Kohei Sato
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe, Japan
| | - Masaki Katayose
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Toru Neki
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Erika Iwamoto
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
7
|
Plouffe AA, Fischer KP, Vranish JR. Acute upper and lower limb hemodynamic responses during single sessions of low- versus high-intensity inspiratory muscle strength training. J Appl Physiol (1985) 2023; 135:995-1000. [PMID: 37732375 DOI: 10.1152/japplphysiol.00558.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/22/2023] Open
Abstract
Inspiratory muscle strength training (IMST) has shown potential to improve both respiratory and cardiovascular function in health and disease. Less is known about acute hemodynamic responses to a single IMST session, therefore we assessed upper and lower limb blood flow via Doppler ultrasound in the brachial and popliteal arteries, respectively. Mean, anterograde, and retrograde blood flow (BF) and shear rate (SR) were assessed relative to baseline during low-intensity (15% maximal inspiratory pressure - PImax) and high-intensity (75% PImax) IMST. During low-intensity IMST, popliteal BF and SR were reduced by ∼10%, and brachial BF and SR were reduced by ∼40%. During high-intensity IMST, popliteal BF and SR were reduced by ∼20%, and brachial BF and SR were reduced by ∼35%. BF and SR responses were not statistically different between low-intensity and high-intensity training for either blood vessel (P > 0.05). In addition, anterograde BF and SR were significantly decreased in the brachial artery for both low-intensity and high-intensity training (P < 0.05), but not the popliteal artery (P > 0.05). Finally, during IMST retrograde BF and SR were significantly increased in both the upper and lower limbs during low-intensity and high-intensity training (P < 0.05). These data provide novel insight into the acute BF and SR responses to a single bout of IMST and may enhance our understanding of the mechanism(s) by which IMST imparts its beneficial chronic effects on cardiovascular function.NEW & NOTEWORTHY Herein, we demonstrate for the first time that upper and lower limb blood flow and shear rate patterns are altered during a single bout of IMST, at low- and high-intensity training. Specifically, anterograde blood flow and shear rate are significantly reduced in the brachial artery, whereas retrograde blood flow is significantly elevated in both the brachial and popliteal arteries. These findings provide insight into the vascular impact of IMST, which may inform future mechanistic studies.
Collapse
Affiliation(s)
- Audrey A Plouffe
- Department of Integrative Physiology and Health Science, Alma College, Alma, Michigan, United States
| | - Kylah P Fischer
- Department of Integrative Physiology and Health Science, Alma College, Alma, Michigan, United States
| | - Jennifer R Vranish
- Department of Integrative Physiology and Health Science, Alma College, Alma, Michigan, United States
| |
Collapse
|
8
|
Lee JB, Thompson KMA, Teixeira AL, Burr JF, Millar PJ. Cardiovascular responses to combined mechanoreflex and metaboreflex activation in healthy adults: effects of sex and low- versus high-hormone phases in females. J Appl Physiol (1985) 2023; 135:1102-1114. [PMID: 37795529 DOI: 10.1152/japplphysiol.00775.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
Abstract
Females generally have smaller blood pressure (BP) responses to isolated muscle mechanoreflex and metaboreflex activation compared with males, which may explain sex differences in BP responses to voluntary exercise. The mechanoreflex may be sensitized during exercise, but whether mechanoreflex-metaboreflex interactions differ by sex or variations in sex hormones remains unknown. Thirty-one young healthy subjects (females, n = 16) performed unilateral passive cycling (mechanoreflex), active cycling (40% peak Watts), postexercise circulatory occlusion (PECO; metaboreflex), and passive cycling combined with PECO (combined mechanoreflex and metaboreflex activation). Beat-to-beat BP, heart rate, inactive leg vascular conductance, and active leg muscle oxygenation were measured. Ten females underwent exploratory testing during low- and high-hormone phases of their self-reported menstrual cycle or oral contraceptive use. Systolic BP and heart rate responses did not differ between sexes during active cycling [Δ30 ± 9 vs. 29 ± 11 mmHg (males vs. females), P = 0.9; Δ33 ± 8 vs. 35 ± 6 beats/min, P = 0.4] or passive cycling with PECO (Δ26 ± 11 vs. 21 ± 10 mmHg, P = 0.3; Δ14 ± 7 vs. 18 ± 15 beats/min, P = 0.3). Passive cycling with PECO revealed additive, not synergistic, effects for systolic BP [males: Δ23 ± 14 vs. 26 ± 11 mmHg (sum of isolated passive cycling and PECO vs. combined activation); females: Δ26 ± 11 vs. 21 ± 12 mmHg, interaction P = 0.05]. Results were consistent in subset analyses with sex differences in active cycling BP (P > 0.1) and exploratory analyses of hormone phase (P > 0.4). Despite a lack of statistical equivalence, no differences in cardiovascular responses were found during combined mechanoreflex-metaboreflex activation between sexes or hormone levels. These results provide preliminary data regarding the involvement of muscle mechanoreflex-metaboreflex interactions in mediating sex differences in voluntary exercise BP responses.NEW & NOTEWORTHY The muscle mechanoreflex may be sensitized by metabolites during exercise. We show that cardiovascular responses to combined mechanoreflex (passive cycling) and metaboreflex (postexercise circulatory occlusion) activation are primarily additive and do not differ between males and females, or across variations in sex hormones in females. Our findings provide new insight into the contributions of muscle mechanoreflex-metaboreflex interactions as a cause for prior reports that females have smaller blood pressure responses to voluntary exercise.
Collapse
Affiliation(s)
- Jordan B Lee
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Kyle M A Thompson
- Human Performance and Health Research Lab, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - André L Teixeira
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jamie F Burr
- Human Performance and Health Research Lab, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Philip J Millar
- Human Cardiovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
9
|
Shiozawa K, Saito M, Lee JB, Kashima H, Endo MY, Ishida K, Millar PJ, Katayama K. Effects of sex and menstrual cycle phase on celiac artery blood flow during dynamic moderate-intensity leg exercise in young individuals. J Appl Physiol (1985) 2023; 135:956-967. [PMID: 37675470 DOI: 10.1152/japplphysiol.00472.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023] Open
Abstract
The purpose of this study was to clarify the effect of sex and menstrual cycle phase on celiac artery blood flow during dynamic exercise in healthy young humans. Eleven healthy young females (21 ± 2 yr, means ± SD) and 10 males (23 ± 3 yr) performed dynamic knee-extension and -flexion exercises at 30% of heart rate reserve for 4 min. The percent changes from baseline (Δ) for mean arterial blood pressure (MAP), mean blood flow (celMBF) in the celiac artery, and celiac vascular conductance (celVC) during exercise were calculated. Arterial blood pressure was measured using an automated sphygmomanometer, and celiac artery blood flow was recorded by Doppler ultrasonography. Female subjects performed the exercise test in the early follicular phase (EF) and in the midluteal phase (ML) of their menstrual cycle. The increase in MAP during exercise was not significantly (P > 0.05) different between sexes or between menstrual cycle phases (ΔMAP, EF in females: +16.6 ± 6.4%, ML in females: +20.2 ± 11.7%, and males: +19.9 ± 12.2%). The celMBF decreased during exercise in each group, but the response was not significantly (P > 0.05) different between sexes or between menstrual cycle phases (ΔcelMBF, EF in females: -24.6 ± 15.5%, ML in females: -25.2 ± 18.7%, and males: -29.2 ± 4.0%). The celVC decreased during dynamic exercise in each group, with no significant (P > 0.05) difference in the responses between sexes or between menstrual cycle phases (ΔcelVC, EF in females: -38.3 ± 15.0%, ML in females: -41.5 ± 19.1%, and males: -43.4 ± 7.2%). These results suggest that sex and menstrual cycle phase have minimal influence on hemodynamic responses in the splanchnic artery during dynamic moderate-intensity exercise in young healthy individuals.NEW & NOTEWORTHY During dynamic exercise, splanchnic organ blood flow is reduced from resting values. Whether sex and menstrual cycle phase influence splanchnic blood flow responses during exercise remains unknown. We show that the decrease in celiac artery blood flow during dynamic leg exercise does not differ between young females and males or between menstrual cycle phases. In young individuals, sex and menstrual cycle have minimal influence on splanchnic artery hemodynamic responses during dynamic moderate-intensity leg exercise.
Collapse
Affiliation(s)
- Kana Shiozawa
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Mitsuru Saito
- Applied Physiology Laboratory, Toyota Technological Institute, Nagoya, Japan
| | - Jordan B Lee
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Hideaki Kashima
- Department of Health Science, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Masako Yamaoka Endo
- Department of Health Science, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Koji Ishida
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Canada
| | - Keisho Katayama
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| |
Collapse
|
10
|
Katayama K, Saito M, Ishida K, Shimizu K, Shiozawa K, Mizuno S, Ogoh S. Sympathetic vasomotor outflow during low-intensity leg cycling in healthy older males. Exp Physiol 2022; 107:825-833. [PMID: 35749656 DOI: 10.1113/ep090497] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/21/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Sympathetic vasomotor outflow is reduced during low-intensity dynamic leg exercise in younger individuals: does ageing influence the sympathoinhibitory effect during low-intensity leg cycling? What is the main finding and its importance? Muscle sympathetic nerve activity during low-intensity cycling decreased in older males, as seen in young males. It is possible that cardiopulmonary baroreflex-mediated inhibition of sympathetic vasomotor outflow during dynamic leg exercise is preserved in healthy older males. ABSTRACT Muscle sympathetic nerve activity (MSNA) is reduced during low-intensity dynamic leg exercise in young males. It is suggested that this inhibition is mediated by loading of the cardiopulmonary baroreceptors. The purpose of this study was to clarify the impact of age on MSNA during dynamic leg exercise. Nine younger males (YM, mean ± SD, 20 ± 1 years) and nine older males (OM, 72 ± 3 years) completed the study. The subjects performed two 4-min cycling exercises at 10% of their heart rate reserve using a cycle ergometer in a semirecumbent position (MSNA and estimated central venous pressure (eCVP) trials). MSNA was recorded via microneurography of the left radial nerve. The CVP was estimated based on peripheral venous pressure, which was monitored using a cannula in the right large antecubital vein. The magnitude of the increase in mean arterial blood pressure during leg cycling was larger in OM (+9.3 ± 5.5 mmHg) compared with YM (+2.8 ± 4.7 mmHg). MSNA burst frequency was decreased during cycling in both YM (-8.1 ± 3.8 bursts/min) and OM (-10.6 ± 3.3 bursts/min), but no significant difference was found between the two groups. The eCVP increased during exercise in both groups, and there was no difference in the changes in eCVP between YM (+1.1 ± 0.4 mmHg) and OM (+1.2 ± 0.7 mmHg). These data indicate that inhibition of sympathetic vasomotor outflow during low-intensity cycling appears in OM as seen in YM. It is possible that the muscle pump-induced loading of the cardiopulmonary baroreflex is preserved during cycling in healthy older males.
Collapse
Affiliation(s)
- Keisho Katayama
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan.,Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Mitsuru Saito
- Applied Physiology Laboratory, Toyota Technological Institute, Nagoya, Japan
| | - Koji Ishida
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan.,Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kaori Shimizu
- Faculty of Human Development, Kokugakuin University, Yokohama, Japan
| | - Kana Shiozawa
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Sahiro Mizuno
- Research and Development, Hosei University, Tokyo, Japan
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe, Japan
| |
Collapse
|
11
|
Shiozawa K, Kashima H, Mizuno S, Ishida K, Katayama K. Blood pressure and celiac artery blood flow responses during increased inspiratory muscle work in healthy males. Exp Physiol 2022; 107:1094-1104. [PMID: 35770992 DOI: 10.1113/ep090504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/23/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Increased work of breathing and the accumulation of metabolites have neural and cardiovascular consequences through a respiratory muscle-induced metaboreflex. The influence of respiratory muscle-induced metaboreflex on splanchnic blood flow in humans remains unknown. What is the main finding and its importance? Celiac artery blood flow decreased gradually during inspiratory resistive breathing, accompanied by a progressive increase in arterial blood pressure. It is possible that respiratory muscle-induced metaboreflex contributes to splanchnic blood flow regulation. ABSTRACT The purpose of this study was to clarify the effect of increasing inspiratory muscle work on celiac artery blood flow. Eleven healthy young males completed the study. The subjects performed voluntary hyperventilation with or without inspiratory resistance (loading or non-loading trial) (tidal volume of 40% of vital capacity and breathing frequency of 20 breaths/min). The loading trial was conducted with inspiratory resistance (40% of maximal inspiratory pressure) and was terminated when the subjects could no longer maintain the target tidal volume or breathing frequency. The non-loading trial was conducted without inspiratory resistance and was the same length as the loading trial. Arterial blood pressure was recorded using finger photoplethysmography, and celiac artery blood flow was measured using Doppler ultrasound. Mean arterial blood pressure (MAP) increased gradually during the loading trial (89.0±10.8 to 103.9±17.3 mmHg, mean ± SD) but not in the non-loading trial (88.7±5.9 to 90.4±9.9 mmHg). Celiac artery blood flow and celiac vascular conductance decreased gradually during the loading trial (601.2±155.7 to 482.6±149.5 mL/min and 6.9±2.2 to 4.8±1.7 mL/min/mmHg, respectively), but were unchanged in the non-loading trial (630.7±157.1 to 635.6±195.7 mL/min and 7.1±1.8 to 7.2±2.9 mL/min/mmHg, respectively). These results show that increasing inspiratory muscle work affects splanchnic blood flow regulation, and we suggest that it is possibly mediated by the inspiratory muscle-induced metaboreflex. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kana Shiozawa
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hideaki Kashima
- Department of Health Sciences, Prefectural University of Hiroshima, Japan
| | - Sahiro Mizuno
- Research and Development, Hosei University, Tokyo, Japan
| | - Koji Ishida
- Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Keisho Katayama
- Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| |
Collapse
|
12
|
Dominelli PB, Molgat-Seon Y. Sex, gender and the pulmonary physiology of exercise. Eur Respir Rev 2022; 31:31/163/210074. [PMID: 35022254 PMCID: PMC9488949 DOI: 10.1183/16000617.0074-2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/09/2021] [Indexed: 01/11/2023] Open
Abstract
In this review, we detail how the pulmonary system's response to exercise is impacted by both sex and gender in healthy humans across the lifespan. First, the rationale for why sex and gender differences should be considered is explored, and then anatomical differences are highlighted, namely that females typically have smaller lungs and airways than males. Thereafter, we describe how these anatomical differences can impact functional aspects such as respiratory muscle energetics and activation, mechanical ventilatory constraints, diaphragm fatigue, and pulmonary gas exchange in healthy adults and children. Finally, we detail how gender can impact the pulmonary response to exercise. Biological sex can influence the pulmonary response to exercise in healthy individuals across the lifespanhttps://bit.ly/3ejMDrv
Collapse
Affiliation(s)
| | - Yannick Molgat-Seon
- Dept of Kinesiology and Applied Health, University of Winnipeg, Winnipeg, MB, Canada.,Centre for Heart and Lung Innovation, Providence Health Care Research Institute, St Paul's Hospital, Vancouver, BC, Canada
| |
Collapse
|
13
|
Katayama K, Dominelli PB, Foster GE, Kipp S, Leahy MG, Ishida K, Sheel AW. Respiratory modulation of sympathetic vasomotor outflow during graded leg cycling. J Appl Physiol (1985) 2021; 131:858-867. [PMID: 34197231 DOI: 10.1152/japplphysiol.00118.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Respiratory modulation of sympathetic vasomotor outflow to skeletal muscles (muscle sympathetic nerve activity; MSNA) occurs in resting humans. Specifically, MSNA is highest at end-expiration and lowest at end-inspiration during quiet, resting breathing. We tested the hypothesis that within-breath modulation of MSNA would be amplified during graded leg cycling. Thirteen (n = 3 females) healthy young (age: 25.2 ± 4.7 yr) individuals completed all testing. MSNA (right median nerve) was measured at rest (baseline) and during semirecumbent cycle exercise at 40%, 60%, and 80% of maximal workload (Wmax). MSNA burst frequency (BF) was 20.0 ± 4.0 bursts/min at baseline and was not different during exercise at 40%Wmax (21.3 ± 3.7 bursts/min; P = 0.292). Thereafter, MSNA BF increased significantly compared with baseline (60%Wmax: 31.6 ± 5.8 bursts/min; P < 0.001, 80%Wmax: 44.7 ± 5.3 bursts/min; P < 0.001). At baseline and all exercise intensities, MSNA BF was lowest at end-inspiration and greatest at mid-to-end expiration. The within-breath change in MSNA BF (ΔMSNA BF; end-expiration minus end-inspiration) gradually increased from baseline to 60%Wmax leg cycling, but no further increase appeared at 80%Wmax exercise. Our results indicate that within-breath modulation of MSNA is amplified from baseline to moderate intensity during dynamic exercise in young healthy individuals, and that no further potentiation occurs at higher exercise intensities. Our findings provide an important extension of our understanding of respiratory influences on sympathetic vasomotor control.NEW & NOTEWORTHY Within-breath modulation of sympathetic vasomotor outflow to skeletal muscle (muscle sympathetic nerve activity; MSNA) occurs in spontaneously breathing humans at rest. It is unknown if respiratory modulation persists during dynamic whole body exercise. We found that MSNA burst frequency was lowest at end-inspiration and highest at mid-to-end expiration during rest and graded leg cycling. Respiratory modulation of sympathetic vasomotor outflow remains intact and is amplified during dynamic whole body exercise.
Collapse
Affiliation(s)
- Keisho Katayama
- Research Center of Health, Physical Fitness and Sports, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Paolo B Dominelli
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Glen E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Shalaya Kipp
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael G Leahy
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Koji Ishida
- Research Center of Health, Physical Fitness and Sports, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Andrew William Sheel
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Archiza B, Leahy MG, Kipp S, Sheel AW. An integrative approach to the pulmonary physiology of exercise: when does biological sex matter? Eur J Appl Physiol 2021; 121:2377-2391. [PMID: 33903937 DOI: 10.1007/s00421-021-04690-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/12/2021] [Indexed: 11/30/2022]
Abstract
Historically, many studies investigating the pulmonary physiology of exercise (and biomedical research in general) were performed exclusively or predominantly with male research participants. This has led to an incomplete understanding of the pulmonary response to exercise. More recently, important sex-based differences with respect to the human respiratory system have been identified. The purpose of this review is to summarize current findings related to sex-based differences in the pulmonary physiology of exercise. To that end, we will discuss how morphological sex-based differences of the respiratory system affect the respiratory response to exercise. Moreover, we will discuss sex-based differences of the physiological integrative responses to exercise, and how all these differences can influence the regulation of breathing. We end with a brief discussion of pregnancy and menopause and the accompanying ventilatory changes observed during exercise.
Collapse
Affiliation(s)
- Bruno Archiza
- School of Kinesiology, University of British Columbia, 2553 Wesbrook Mall, Vancouver, BC, V6T 0B8, Canada.
| | - Michael G Leahy
- School of Kinesiology, University of British Columbia, 2553 Wesbrook Mall, Vancouver, BC, V6T 0B8, Canada
| | - Shalaya Kipp
- School of Kinesiology, University of British Columbia, 2553 Wesbrook Mall, Vancouver, BC, V6T 0B8, Canada
| | - A William Sheel
- School of Kinesiology, University of British Columbia, 2553 Wesbrook Mall, Vancouver, BC, V6T 0B8, Canada
| |
Collapse
|
15
|
DeLucia CM, DeBonis DR, Schwyhart SM, Bailey EF. Acute cardiovascular responses to a single bout of high intensity inspiratory muscle strength training in healthy young adults. J Appl Physiol (1985) 2021; 130:1114-1121. [PMID: 33600284 DOI: 10.1152/japplphysiol.01015.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
High intensity, low volume inspiratory muscle strength training (IMST) has favorable effects on casual systolic blood pressure and systemic vascular resistance. However, the acute effects of IMST on heart rate (HR), blood pressure (BP), and sympathetic regulation of vascular resistance and the trajectory of post exercise recovery are not known. We recruited 14 young adults (7 women/7 men, age: 22 ± 2 years) to perform a single bout of high intensity IMST (inspiratory resistance set at 75% of maximal inspiratory pressure) importantly, female and male subjects were matched in regard to the target inspiratory pressure and target inspiratory muscle work per breath. We recorded HR, beat-to-beat changes in BP and postganglionic, muscle sympathetic nerve activities (MSNA) continuously throughout baseline, a single bout of IMST (comprising five sets of 6 inspiratory efforts) and in recovery. We show that one bout of IMST does not effect a change in BP, however, it effects a significant increase in HR (68.4 ± 11.7 beats/min versus 85.4 ± 13.6 beats/min; P < 0.001) and a significant decline in MSNA (6.8 ± 1.1 bursts/15 s bin; P < 0.001 versus 3.6 ± 0.6 bursts/15 s bin) relative to baseline. Remarkably, among men MSNA rebounded to baseline levels within the first minute of recovery, however, in women, MSNA suppression persisted for 5 min. We show that in healthy young adults, high intensity, low volume respiratory training results in the acute suppression of MSNA. Importantly, MSNA suppression is of greater magnitude and longer duration in women than in men.NEW & NOTEWORTHY Previous studies show 6 weeks of high intensity, low volume inspiratory muscle strength training (IMST) lowers blood pressure (BP) and systemic vascular resistance in young adults. However, the acute response to IMST is unknown. We characterized BP, heart rate, and sympathetic nervous activity (SNA) in healthy young adults at baseline, during IMST, and in recovery. There was no acute effect of IMST on BP, however, there was significant IMST-related suppression of SNA that was of greater magnitude in women than men.
Collapse
Affiliation(s)
- Claire M DeLucia
- Department of Physiology University of Arizona College of Medicine, Tucson, Arizona
| | - Dean R DeBonis
- Department of Physiology University of Arizona College of Medicine, Tucson, Arizona
| | - Sarah M Schwyhart
- Department of Physiology University of Arizona College of Medicine, Tucson, Arizona
| | - E Fiona Bailey
- Department of Physiology University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
16
|
Shimizu K, Shiozawa K, Ishida K, Saito M, Mizuno S, Akima H, Katayama K. Age and sex differences in blood pressure responses during hyperpnoea. Exp Physiol 2021; 106:736-747. [PMID: 33428277 DOI: 10.1113/ep089171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/06/2021] [Indexed: 01/13/2023]
Abstract
NEW FINDINGS What is the central question of this study? Increased respiratory muscle activation is associated with neural and cardiovascular consequences via the respiratory muscle-induced metaboreflex. Does ageing and/or sex influence the arterial blood pressure response during voluntary normocapnic incremental hyperpnoea? What is the main finding and its importance? The increase in blood pressure during hyperpnoea was smaller in younger females than in older females, whereas no difference was found between older males and older females. The blunted respiratory muscle-induced metaboreflex in younger females is normalized with advancing age, whereas ageing has no such effect in males. ABSTRACT We hypothesized that older females (OF) have a greater arterial blood pressure response to increased respiratory muscle work compared with younger females (YF) and that no such difference exists between older males (OM) and younger males (YM). To test these hypotheses, cardiovascular responses during voluntary normocapnic incremental hyperpnoea were evaluated and compared between older and younger subjects. An incremental respiratory endurance test (IRET) was performed as follows: target minute ventilation was initially set at 30% of the maximal voluntary ventilation (MVV12) and was increased by 10% of MVV12 every 3 min. The test was terminated when the subject could not maintain the target percentage of MVV12. Heart rate and mean arterial blood pressure (MAP) were recorded continuously. The increase in MAP from baseline (ΔMAP) during the IRET in OM (+24.0 ± 14.7 mmHg, mean ± SD) did not differ (P = 0.144) from that in YM (+24.3 ± 13.4 mmHg), but it was greater (P = 0.004) in OF (+31.2 ± 11.6 mmHg) than in YF (+10.3 ± 5.5 mmHg). No significant difference in ΔMAP during the IRET was observed between OM and OF (P = 0.975). These results suggest that the respiratory muscle-induced metaboreflex is blunted in YF, but it could be normalized with advancing age. In males, ageing has little effect on the respiratory muscle-induced metaboreflex. These results show no sex difference in the respiratory muscle-induced metaboreflex in older adults.
Collapse
Affiliation(s)
- Kaori Shimizu
- Graduate School of Education and Human Development, Nagoya University, Nagoya, Japan
| | - Kana Shiozawa
- Department of Sports and Fitness, Faculty of Wellness, Shigakkan University, Obu, Japan.,Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Koji Ishida
- Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Mitsuru Saito
- Applied Physiology Laboratory, Toyota Technological Institute, Nagoya, Japan
| | - Sahiro Mizuno
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan.,Research Fellowship for Young Scientists of Japan Society for the Promotion of Science
| | - Hiroshi Akima
- Graduate School of Education and Human Development, Nagoya University, Nagoya, Japan.,Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Keisho Katayama
- Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| |
Collapse
|
17
|
Huang CC, Chung CM, Leu HB, Huang PH, Wu TC, Lin LY, Lin SJ, Pan WH, Chen JW. Sex difference in sympathetic nervous system activity and blood pressure in hypertensive patients. J Clin Hypertens (Greenwich) 2020; 23:137-146. [PMID: 33190416 PMCID: PMC8029801 DOI: 10.1111/jch.14098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022]
Abstract
Increased sympathetic nervous system (SNS) activity leads to increased risk of cardiovascular morbidity and mortality. This study investigated whether there were sex differences in SNS activity among Chinese patients with hypertension. Ethnic Chinese non‐diabetic hypertensive patients aged 20–50 years were enrolled in Taiwan. A total of 970 hypertensive patients (41.0 ± 7.2 years) completed the study, 664 men and 306 women. They received comprehensive evaluations including office blood pressure (BP) measurement, 24‐h ambulatory BP monitoring, and 24‐h urine sampling assayed for catecholamine excretion. Compared to women, men were younger, had higher body mass index (BMI), office systolic BP (SBP), office diastolic BP (DBP), 24‐h ambulatory BP, and 24‐h urine catecholamine excretion. In men, 24‐h urine total catecholamine levels were correlated with 24‐h SBP (r = 0.103, p = .008) and 24‐h DBP (r = 0.083, p = .033). In women, however, there was no correlation between 24‐h urine total catecholamine levels and 24‐h ambulatory BP. Multivariate linear regression indicated that being male (β = 1.65, 95% confidence interval [CI] 0.01–3.29, p = .048) and 24‐h urine total catecholamine (β = 5.03, 95% CI 0.62–9.44, p = .025) were both independently associated with 24‐h SBP; being male was independently associated with 24‐h DBP (β = 3.55, 95% CI 2.26–4.85, p < .001). In conclusion, Chinese men with hypertension had higher SNS activity than women, and SNS activity was independently associated with 24‐h ambulatory BP in men rather than in women. These findings suggest that different hypertensive treatment strategies should be considered according to patient sex.
Collapse
Affiliation(s)
- Chin-Chou Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Min Chung
- Environment-Omics-Disease Research Centre, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Hsin-Bang Leu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.,Healthcare and Management Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tao-Cheng Wu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Liang-Yu Lin
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.,Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shing-Jong Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Wen-Harn Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Institute of Epidemiology, School of Public Health, National Taiwan University, Taipei, Taiwan
| | - Jaw-Wen Chen
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.,Healthcare and Management Center, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
18
|
Ashley JD, Shelley JH, Sun J, Song J, Trent JA, Ambrosio LD, Larson DJ, Larson RD, Yabluchanskiy A, Kellawan JM. Cerebrovascular responses to graded exercise in young healthy males and females. Physiol Rep 2020; 8:e14622. [PMID: 33112497 PMCID: PMC7592493 DOI: 10.14814/phy2.14622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/04/2020] [Indexed: 01/06/2023] Open
Abstract
Although systemic sex-specific differences in cardiovascular responses to exercise are well established, the comparison of sex-specific cerebrovascular responses to exercise has gone under-investigated especially, during high intensity exercise. Therefore, our purpose was to compare cerebrovascular responses in males and females throughout a graded exercise test (GXT). Twenty-six participants (13 Females and 13 Males, 24 ± 4 yrs.) completed a GXT on a recumbent cycle ergometer consisting of 3-min stages. Each sex completed 50W, 75W, 100W stages. Thereafter, power output increased 30W/stage for females and 40W/stage for males until participants were unable to maintain 60-80 RPM. The final stage completed by the participant was considered maximum workload(Wmax ). Respiratory gases (End-tidal CO2 , EtCO2 ), middle cerebral artery blood velocity (MCAv), heart rate (HR), non-invasive mean arterial pressure (MAP), cardiac output (CO), and stroke volume (SV) were continuously recorded on a breath-by-breath or beat-by-beat basis. Cerebral perfusion pressure, CPP = MAP (0. 7,355 distance from heart-level to doppler probe) and cerebral vascular conductance index, CVCi = MCAv/CPP 100mmHg were calculated. The change from baseline (Δ) in MCAv was similar between the sexes during the GXT (p = .091, ωp2 = 0.05). However, ΔCPP (p < .001, ωp2 = 0.25) was greater in males at intensities ≥ 80% Wmax and ΔCVCi (p = .005, ωp2 = 0.15) was greater in females at 100% Wmax . Δ End-tidal CO2 (ΔEtCO2 ) was not different between the sexes during exercise (p = .606, ωp2 = -0.03). These data suggest there are sex-specific differences in cerebrovascular control, and these differences may only be identifiable at high and severe intensity exercise.
Collapse
Affiliation(s)
- John D. Ashley
- Department of Health and Exercise ScienceHuman Circulation Research LaboratoryUniversity of OklahomaNormanOKUSA
| | - Joe H. Shelley
- Department of Health and Exercise ScienceHuman Circulation Research LaboratoryUniversity of OklahomaNormanOKUSA
| | - Jongjoo Sun
- Department of Health and Exercise ScienceHuman Circulation Research LaboratoryUniversity of OklahomaNormanOKUSA
| | - Jiwon Song
- Department of Health and Exercise ScienceHuman Circulation Research LaboratoryUniversity of OklahomaNormanOKUSA
| | - Jacob A. Trent
- Department of Health and Exercise ScienceHuman Circulation Research LaboratoryUniversity of OklahomaNormanOKUSA
| | - Luis D. Ambrosio
- Department of Health and Exercise ScienceHuman Circulation Research LaboratoryUniversity of OklahomaNormanOKUSA
| | - Daniel J. Larson
- Department of Health and Exercise Science, Sport, Health, and Exercise Data Analytics LaboratoryUniversity of OklahomaNormanOKUSA
| | - Rebecca D. Larson
- Department of Health and Exercise ScienceBody Composition and Physical Performance Research LaboratoryUniversity of OklahomaNormanOKUSA
| | - Andriy Yabluchanskiy
- Oklahoma Center for GeroscienceDepartment of Biochemistry and Molecular BiologyUniversity of Oklahoma Health Sciences CenterOklahoma CityOKUSA
| | - J. Mikhail Kellawan
- Department of Health and Exercise ScienceHuman Circulation Research LaboratoryUniversity of OklahomaNormanOKUSA
| |
Collapse
|
19
|
Dominelli PB, Molgat-Seon Y, Sheel AW. Sex Differences in the Pulmonary System Influence the Integrative Response to Exercise. Exerc Sport Sci Rev 2020; 47:142-150. [PMID: 30817330 DOI: 10.1249/jes.0000000000000188] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Healthy women have proportionally smaller lungs and airways compared with height-matched men. These anatomical sex-based differences result in greater mechanical ventilatory constraints and may influence the integrative response to exercise. Our review will examine this hypothesis in healthy humans in the context of dynamic whole-body exercise.
Collapse
Affiliation(s)
- Paolo B Dominelli
- Department of Anesthesia, Mayo Clinic, Rochester, MN.,Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Yannick Molgat-Seon
- Centre for Heart and Lung Innovation, St. Paul's Hospital.,Department of Physical Therapy, Faculty of Medicine, and
| | - A William Sheel
- School of Kinesiology, Faculty of Education, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
20
|
Smith JR, Bruhn EJ, Berg JD, Nur AA, Villarraga N, Olson TP. Combined influence of inspiratory loading and locomotor subsystolic cuff inflation on cardiovascular responses during submaximal exercise. J Appl Physiol (1985) 2020; 128:1338-1345. [PMID: 32240016 DOI: 10.1152/japplphysiol.00781.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is unknown if simultaneous stimulation of the respiratory and locomotor muscle afferents via inspiratory loading (IL) and locomotor subsystolic cuff inflation (CUFF) influences the cardiovascular responses during exercise. We hypothesized that combined IL and CUFF (IL + CUFF) will result in greater increases in blood pressure (MAP) and systemic vascular resistance (SVR) than IL and CUFF alone during exercise. Eight adults (6 males/2 females) were enrolled and performed four 10-min bouts of constant-load cycling eliciting 40% maximal oxygen uptake on a single day. For each exercise bout, the first 5 min consisted of spontaneous breathing. The second 5 min consisted of voluntary hyperventilation (i.e., breathing frequency of 40 breaths/min) with IL (30% maximum inspiratory pressure), CUFF (80 mmHg), IL + CUFF, or no intervention (CTL) in randomized order. During exercise, cardiac output and MAP were determined via open-circuit acetylene wash-in and manual sphygmomanometry, respectively, and SVR was calculated. Across CTL, IL, CUFF, and IL + CUFF, MAP was greater with each condition (CTL: 97 ± 14; IL: 106 ± 13; CUFF: 114 ± 14; IL + CUFF: 119 ± 15 mmHg, all P < 0.02). Furthermore, SVR was greater with IL + CUFF compared with IL, CUFF, and CTL (CTL: 6.6 ± 1.1; IL: 7.5 ± 1.4; CUFF: 7.5 ± 1.3; IL + CUFF: 8.2 ± 1.4 mmHg·L-1·min-1, all P < 0.02). Cardiac output was not different across conditions (CTL: 15.2 ± 3.8; IL: 14.8 ± 3.7; CUFF: 15.6 ± 3.5; IL + CUFF: 14.7 ± 4.3 L/min, all P > 0.05). These data demonstrate that simultaneous stimulation of respiratory and locomotor muscle afferent feedback results in additive MAP and SVR responses than IL and CUFF alone during submaximal exercise. These findings have important clinical implications for populations with exaggerated locomotor and respiratory muscle reflex feedbacks.NEW & NOTEWORTHY Reflexes arising from the respiratory and locomotor muscles influence cardiovascular regulation during exercise. However, it is unclear how the respiratory and locomotor muscle reflexes interact when simultaneously stimulated. Herein, we demonstrate that stimulation of the respiratory and locomotor muscle reflexes yielded additive cardiovascular responses during submaximal exercise.
Collapse
Affiliation(s)
- Joshua R Smith
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester Minnesota
| | - Eric J Bruhn
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester Minnesota
| | - Jessica D Berg
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester Minnesota
| | - Amran A Nur
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester Minnesota
| | | | - Thomas P Olson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester Minnesota
| |
Collapse
|
21
|
Shimizu K, Shiozawa K, Ishida K, Saito M, Mizuno S, Akima H, Katayama K. Blood pressure and limb blood flow responses during hyperpnoea are not affected by menstrual cycle phase in young women. Respir Physiol Neurobiol 2020; 275:103387. [PMID: 31945516 DOI: 10.1016/j.resp.2020.103387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/11/2020] [Accepted: 01/11/2020] [Indexed: 12/18/2022]
Abstract
The purpose of this study was to clarify whether the menstrual cycle affects the cardiovascular and limb blood flow responses during hyperpnoea. Fifteen young female subjects participated. An incremental respiratory endurance test was performed at the early follicular (EF) and midluteal (ML) phases. Target minute ventilation was initially set at 30 % of maximal voluntary ventilation (MVV12) and was increased by 10 %MVV12 every 3 min. The test was terminated when the subjects no longer maintained the target ventilation. Mean arterial blood pressure (MBP) and mean blood flow in the brachial artery were continuously measured. There were no significant differences in the increase in MBP (EF: +13.0 ± 7.9 mmHg vs. ML: + 15.4 ± 12.9 mmHg during the test, F = 0.70, P = 0.59) and the decrease in brachial blood flow between the phases. These results suggest that menstrual cycle does not affect respiratory muscle-induced metaboreflex in young women.
Collapse
Affiliation(s)
- Kaori Shimizu
- Graduate School of Education and Human Development, Nagoya University, Nagoya, Japan
| | - Kana Shiozawa
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Koji Ishida
- Graduate School of Medicine, Nagoya University, Nagoya, Japan; Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Mitsuru Saito
- Applied Physiology Laboratory, Toyota Technological Institute, Nagoya, Japan
| | - Sahiro Mizuno
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan; Research Fellow of Japan Society for the Promotion of Science, Japan
| | - Hiroshi Akima
- Graduate School of Education and Human Development, Nagoya University, Nagoya, Japan; Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Keisho Katayama
- Graduate School of Medicine, Nagoya University, Nagoya, Japan; Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan.
| |
Collapse
|
22
|
Smith JR, Koepp KE, Berg JD, Akinsanya JG, Olson TP. Influence of Sex, Menstrual Cycle, and Menopause Status on the Exercise Pressor Reflex. Med Sci Sports Exerc 2019; 51:874-881. [PMID: 30986812 DOI: 10.1249/mss.0000000000001877] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this review, we highlight the underlying mechanisms responsible for the sex differences in the exercise pressor reflex (EPR), and, importantly, the impact of sex hormones and menopausal status. The EPR is attenuated in premenopausal women compared with age-matched men. Specifically, activation of the metaboreflex (a component of the EPR) results in attenuated increases in blood pressure and sympathetic vasomotor outflow compared with age-matched men. In addition, premenopausal women exhibit less transduction of sympathetic outflow to the peripheral vasculature than men. In stark contrast, postmenopausal women exhibit an augmented EPR arising from exaggerated metaboreflex-induced autonomic and cardiovascular reflexes. We propose that metaboreflex-induced autonomic and cardiovascular changes associated with menopause majorly contribute to the elevated blood pressure response during dynamic exercise in postmenopausal women. In addition, we discuss the potential mechanisms by which sex hormones in premenopausal women may impact the EPR as well as metaboreflex.
Collapse
Affiliation(s)
- Joshua R Smith
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | | | | | | | | |
Collapse
|
23
|
Welch JF, Kipp S, Sheel AW. Respiratory muscles during exercise: mechanics, energetics, and fatigue. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Katayama K, Saito M. Muscle sympathetic nerve activity during exercise. J Physiol Sci 2019; 69:589-598. [PMID: 31054082 PMCID: PMC10717921 DOI: 10.1007/s12576-019-00669-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/22/2019] [Indexed: 11/25/2022]
Abstract
Appropriate cardiovascular adjustment is necessary to meet the metabolic demands of working skeletal muscle during exercise. The sympathetic nervous system plays a crucial role in the regulation of arterial blood pressure and blood flow during exercise, and several important neural mechanisms are responsible for changes in sympathetic vasomotor outflow. Changes in sympathetic vasomotor outflow (i.e., muscle sympathetic nerve activity: MSNA) in inactive muscles during exercise differ depending on the exercise mode (static or dynamic), intensity, duration, and various environmental conditions (e.g., hot and cold environments or hypoxic). In 1991, Seals and Victor [6] reviewed MSNA responses to static and dynamic exercise with small muscle mass. This review provides an updated comprehensive overview on the MSNA response to exercise including large-muscle, dynamic leg exercise, e.g., two-legged cycling, and its regulatory mechanisms in healthy humans.
Collapse
Affiliation(s)
- Keisho Katayama
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, 464-8601, Japan.
- Graduate School of Medicine, Nagoya University, Nagoya, Japan.
| | - Mitsuru Saito
- Applied Physiology Laboratory, Toyota Technological Institute, Nagoya, Japan
| |
Collapse
|
25
|
Intercostal muscle blood flow is elevated in old rats during submaximal exercise. Respir Physiol Neurobiol 2019; 263:26-30. [PMID: 30825527 DOI: 10.1016/j.resp.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND Respiratory muscle blood flows (BF) increase substantially during exercise in younger adult rats. As aging is associated with altered pulmonary function, we hypothesized that old rats will have greater intercostal muscle BF and vascular conductances (VC) than young rats during submaximal exercise. METHODS Mean arterial pressure and respiratory muscle BFs (via carotid artery catheter and radiolabeled microspheres, respectively) were measured at rest and during submaximal exercise in young (n = 9) and old (n = 7) Fischer 344 X Brown Norway rats. RESULTS At rest, diaphragm, intercostal, and transversus abdominis BFs and VCs were not different between groups (all, p > 0.10). During submaximal exercise, old compared to young rats had greater intercostal BF (40 ± 6 vs 25 ± 2 mL/min/100 g) and VC (0.30 ± 0.05 vs 0.18 ± 0.02 mL/min/mmHg/100 g) (both, p ≤ 0.01). Diaphragm and transversus abdominis BFs and VCs were not different between groups during exercise (all, p > 0.24). CONCLUSIONS These data demonstrate that intercostal muscle BF and VC are increased in old compared to young rats during submaximal exercise.
Collapse
|
26
|
Katayama K, Goto K, Ohya T, Iwamoto E, Takao K, Kasai N, Sumi D, Mori H, Ishida K, Shimizu K, Shiozawa K, Suzuki Y. Effects of Respiratory Muscle Endurance Training in Hypoxia on Running Performance. Med Sci Sports Exerc 2019; 51:1477-1486. [PMID: 30789438 DOI: 10.1249/mss.0000000000001929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE We hypothesized that respiratory muscle endurance training (RMET) in hypoxia induces greater improvements in respiratory muscle endurance with attenuated respiratory muscle metaboreflex and consequent whole-body performance. We evaluated respiratory muscle endurance and cardiovascular response during hyperpnoea and whole-body running performance before and after RMET in normoxia and hypoxia. METHODS Twenty-one collegiate endurance runners were assigned to control (n = 7), normoxic (n = 7), and hypoxic (n = 7) groups. Before and after the 6 wk of RMET, incremental respiratory endurance test and constant exercise tests were performed. The constant exercise test was performed on a treadmill at 95% of the individual's peak oxygen uptake (V˙O2peak). The RMET was isocapnic hyperpnoea under normoxic and hypoxic conditions (30 min·d). The initial target of minute ventilation during RMET was set to 50% of the individual maximal voluntary ventilation, and the target increased progressively during the 6 wk. Target arterial oxygen saturation in the hypoxic group was set to 90% in the first 2 wk, and thereafter it was set to 80%. RESULTS Respiratory muscle endurance was increased after RMET in the normoxic and hypoxic groups. The time to exhaustion at 95% V˙O2peak exercise also increased after RMET in the normoxic (10.2 ± 2.4 to 11.2 ± 2.6 min) and hypoxic (11.5 ± 2.6 to 12.6 ± 3.0 min) groups, but not in the control group (9.6 ± 3.2 to 9.4 ± 4.0 min). The magnitude of these changes did not differ between the normoxic and the hypoxic groups (P = 0.84). CONCLUSION These results suggest that the improvement of respiratory muscle endurance and blunted respiratory muscle metaboreflex could, in part, contribute to improved endurance performance in endurance-trained athletes. However, it is also suggested that there are no additional effects when the RMET is performed in hypoxia.
Collapse
Affiliation(s)
- Keisho Katayama
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, JAPAN.,Graduate School of Medicine, Nagoya University, Nagoya, JAPAN
| | - Kazushige Goto
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, JAPAN
| | - Toshiyuki Ohya
- School of Health and Sport Sciences, Chukyo University, Toyota, JAPAN
| | - Erika Iwamoto
- School of Health Sciences, Sapporo Medical University, Sapporo, JAPAN
| | - Kenji Takao
- Graduate School of Sport and Health Sciences, Ritsumeikan University, Kusatsu, JAPAN
| | - Nobukazu Kasai
- Graduate School of Sport and Health Sciences, Ritsumeikan University, Kusatsu, JAPAN.,Japan Society for the Promotion of Science, Chiyoda, JAPAN
| | - Daichi Sumi
- Graduate School of Sport and Health Sciences, Ritsumeikan University, Kusatsu, JAPAN.,Japan Society for the Promotion of Science, Chiyoda, JAPAN
| | - Hisashi Mori
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, JAPAN.,Japan Society for the Promotion of Science, Chiyoda, JAPAN
| | - Koji Ishida
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, JAPAN.,Graduate School of Medicine, Nagoya University, Nagoya, JAPAN
| | - Kaori Shimizu
- Graduate School of Education and Human Development, Nagoya University, Nagoya, JAPAN
| | - Kana Shiozawa
- Graduate School of Medicine, Nagoya University, Nagoya, JAPAN
| | | |
Collapse
|
27
|
O'Halloran KD. Blood flow to limb muscles during submaximal dynamic exercise with resistive breathing: Use it or lose it? Exp Physiol 2019; 104:165-167. [DOI: 10.1113/ep087483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Ken D. O'Halloran
- Department of Physiology; School of Medicine; College of Medicine & Health; University College Cork; Cork Ireland
| |
Collapse
|
28
|
Hoffmeister AD, Lima KSD, Cavalli NP, Callegaro CC. Metaborreflexo inspiratório eleva a pressão arterial em indivíduos obesos e eutróficos. FISIOTERAPIA EM MOVIMENTO 2019. [DOI: 10.1590/1980-5918.0032.ao42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Resumo Introdução: O metaborreflexo, ativado pelo acúmulo de metabólitos durante o exercício, ocasiona vasoconstrição periférica, resultando em elevação da pressão arterial. Indivíduos obesos apresentam redução da endurance muscular inspiratória, sugerindo um acúmulo precoce de metabólitos e, consequentemente, alterações no metaborreflexo inspiratório. Objetivo: Comparar as respostas hemodinâmicas mediadas pelo metaborreflexo inspiratório em indivíduos obesos e em eutróficos. Método: Participaram do estudo vinte indivíduos obesos (31 ± 6 anos, dez homens, 37,5 ± 4,7 kg/m 2 ) e vinte eutróficos (29 ± 8 anos, dez homens, 23,2 ± 1,5 kg/m 2 ) submetidos a avaliação da força muscular respiratória através de manovacuometria. O metaborreflexo inspiratório foi induzido através de exercício resistido a 60% da pressão inspiratória máxima mantido até a exaustão. O protocolo controle consistiu na respiração sem resistência inspiratória (zero cmH 2 O) mantida durante 30 minutos. A pressão arterial e a frequência cardíaca foram mensuradas ao longo dos protocolos, realizados em dias distintos e em ordem randomizada. Resultados: O protocolo de indução do metaborreflexo inspiratório induziu aumento das pressões arteriais sistólica, diastólica e média, bem como da frequência cardíaca semelhante em indivíduos obesos e eutróficos. Conforme esperado, no protocolo controle as variáveis hemodinâmicas permaneceram inalteradas. Conclusão: A força muscular inspiratória não variou (p = 0,814) entre indivíduos obesos e eutróficos. Este estudo sugere que indivíduos obesos apresentam respostas hemodinâmicas, induzidas pelo metaborreflexo inspiratório, semelhantes aos indivíduos eutróficos.
Collapse
|
29
|
Katayama K, Goto K, Shimizu K, Saito M, Ishida K, Zhang L, Shiozawa K, Sheel AW. Effect of increased inspiratory muscle work on blood flow to inactive and active limbs during submaximal dynamic exercise. Exp Physiol 2018; 104:180-188. [PMID: 30462876 DOI: 10.1113/ep087380] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 11/19/2018] [Indexed: 01/18/2023]
Abstract
NEW FINDINGS What is the central question of this study? Increased respiratory muscle activation is associated with neural and cardiovascular consequences via the respiratory muscle metaboreflex. Does increased sympathetic vasoconstriction originating from the respiratory musculature elicit a reduction in blood flow to an inactive limb in order to maintain blood flow to an active limb? What is the main finding and its importance? Arm blood flow was reduced whereas leg blood flow was preserved during mild leg exercise with inspiratory resistance. Blood flow to the active limb is maintained via sympathetic control of blood flow redistribution when the respiratory muscle-induced metaboreflex is activated. ABSTRACT The purpose of this study was to elucidate the effect of increasing inspiratory muscle work on blood flow to inactive and active limbs. Healthy young men (n = 10, 20 ± 2 years of age) performed two bilateral dynamic knee-extension and knee-flexion exercise tests at 40% peak oxygen uptake for 10 min. The trials consisted of spontaneous breathing for 5 min followed by voluntary hyperventilation either with or without inspiratory resistance for 5 min (40% of maximal inspiratory mouth pressure, inspiratory duty cycle of 50% and a breathing frequency of 40 breaths min-1 ). Mean arterial blood pressure was acquired using finger photoplethysmography. Blood flow in the brachial artery (inactive limb) and in the femoral artery (active limb) were monitored using Doppler ultrasound. Mean arterial blood pressure during exercise was higher (P < 0.05) with inspiratory resistance (121 ± 7 mmHg) than without resistance (99 ± 5 mmHg). Brachial artery blood flow increased during exercise without inspiratory resistance (120 ± 31 ml min-1 ) compared with the resting level, whereas it was attenuated with inspiratory resistance (65 ± 43 ml min-1 ). Femoral artery blood flow increased at the onset of exercise and was maintained throughout exercise without inspiratory resistance (2576 ± 640 ml min-1 ) and was unchanged when inspiratory resistance was added (2634 ± 659 ml min-1 ; P > 0.05). These results suggest that sympathetic control of blood redistribution to active limbs is facilitated, in part, by the respiratory muscle-induced metaboreflex.
Collapse
Affiliation(s)
- Keisho Katayama
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan.,Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kanako Goto
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kaori Shimizu
- Graduate School of Education and Human Development, Nagoya University, Nagoya, Japan
| | - Mitsuru Saito
- Applied Physiology Laboratory, Toyota Technological Institute, Nagoya, Japan
| | - Koji Ishida
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan.,Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Luyu Zhang
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kana Shiozawa
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - A William Sheel
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
Molgat-Seon Y, Peters CM, Sheel AW. Sex-differences in the human respiratory system and their impact on resting pulmonary function and the integrative response to exercise. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
31
|
O'Halloran KD. Sympathetic vasomotor activity during dynamic exercise with resistive breathing: Sex differences and the nerve to show it! Exp Physiol 2018; 103:435-436. [DOI: 10.1113/ep086904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Ken D. O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health; University College Cork; Cork Ireland
| |
Collapse
|