1
|
Inno G, Takahashi Y, Naruko T, Matsumura Y, Abe Y, Aoyama T, Morisaki A, Nishiya K, Ueda M, Shibata T. Enhanced expression of neopterin in valve tissue of bicuspid aortic stenosis. J Thorac Dis 2024; 16:191-200. [PMID: 38410556 PMCID: PMC10894393 DOI: 10.21037/jtd-23-1360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/24/2023] [Indexed: 02/28/2024]
Abstract
Background Aortic valve stenosis (AS) occurs in bicuspid aortic valve (BAV) patients at a relatively young age compared to tricuspid aortic valve (TAV) patients. However, the underlying cause of this phenomenon remains unknown. Neopterin, which is a by-product of the guanosine triphosphate (GTP) pathway, enhances the oxidative potential of reactive oxygen species. To clarify the role of neopterin in the aortic valve, we immunohistochemically studied the presence of neopterin in aortic valve specimens from patients with AS harboring either TAV or BAV. Methods Frozen aortic valve samples were surgically obtained from 68 patients with severe AS with TAV (n=34) and BAV (n=34). Normal aortic valves were obtained from cadavers who died of non-cardiovascular causes as controls (n=9). Samples were immunohistochemically stained with antibodies against smooth muscle cells, macrophages, T lymphocytes, neopterin, and 4-hydroxy-2-nonenal (4-HNE). Results Quantitative analysis showed that the percentage of macrophages, 4-HNE- and neopterin-positive macrophage score, and the number of T lymphocytes were significantly higher in BAV patients than in TAV patients (macrophages, P=0.013; T lymphocytes, P=0.011; neopterin, P<0.001; 4-HNE, P=0.008). Double immunostaining for neopterin and macrophages demonstrated that most neopterin-positive cells were macrophages in BAV patients. Conclusions Neopterin accumulation in macrophages may increase oxidative stress and contribute to the early onset of AS in BAV.
Collapse
Affiliation(s)
- Goki Inno
- Department of Cardiovascular Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Yosuke Takahashi
- Department of Cardiovascular Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Takahiko Naruko
- Department of Cardiology, Osaka City General Hospital, Osaka, Japan
| | | | - Yukio Abe
- Department of Cardiology, Osaka City General Hospital, Osaka, Japan
| | - Takanobu Aoyama
- Department of Cardiovascular Surgery, Osaka City General Hospital, Osaka, Japan
| | - Akimasa Morisaki
- Department of Cardiovascular Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Kenta Nishiya
- Department of Cardiovascular Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Makiko Ueda
- Morinomiya University of Medical Sciences, Osaka, Japan
| | - Toshihiko Shibata
- Department of Cardiovascular Surgery, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
2
|
Kiriaev L, Baumann CW, Lindsay A. Eccentric contraction-induced strength loss in dystrophin-deficient muscle: Preparations, protocols, and mechanisms. J Gen Physiol 2023; 155:213810. [PMID: 36651896 PMCID: PMC9856740 DOI: 10.1085/jgp.202213208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/01/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
The absence of dystrophin hypersensitizes skeletal muscle of lower and higher vertebrates to eccentric contraction (ECC)-induced strength loss. Loss of strength can be accompanied by transient and reversible alterations to sarcolemmal excitability and disruption, triad dysfunction, and aberrations in calcium kinetics and reactive oxygen species production. The degree of ECC-induced strength loss, however, appears dependent on several extrinsic and intrinsic factors such as vertebrate model, skeletal muscle preparation (in vivo, in situ, or ex vivo), skeletal muscle hierarchy (single fiber versus whole muscle and permeabilized versus intact), strength production, fiber branching, age, and genetic background, among others. Consistent findings across research groups show that dystrophin-deficient fast(er)-twitch muscle is hypersensitive to ECCs relative to wildtype muscle, but because preparations are highly variable and sensitivity to ECCs are used repeatedly to determine efficacy of many preclinical treatments, it is critical to evaluate the impact of skeletal muscle preparations on sensitivity to ECC-induced strength loss in dystrophin-deficient skeletal muscle. Here, we review and discuss variations in skeletal muscle preparations to evaluate the factors responsible for variations and discrepancies between research groups. We further highlight that dystrophin-deficiency, or loss of the dystrophin-glycoprotein complex in skeletal muscle, is not a prerequisite for accelerated strength loss-induced by ECCs.
Collapse
Affiliation(s)
- Leonit Kiriaev
- Muscle Research Group, Murdoch Children’s Research Institute, Parkville, Victoria, Australia,School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Cory W. Baumann
- Ohio Musculoskeletal and Neurological Institute (OMNI), Ohio University, Athens, OH, USA,Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, Australia,Correspondence to Angus Lindsay:
| |
Collapse
|
3
|
Tyagi SC, Pushpakumar S, Sen U, Mokshagundam SPL, Kalra DK, Saad MA, Singh M. COVID-19 Mimics Pulmonary Dysfunction in Muscular Dystrophy as a Post-Acute Syndrome in Patients. Int J Mol Sci 2022; 24:ijms24010287. [PMID: 36613731 PMCID: PMC9820572 DOI: 10.3390/ijms24010287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Although progressive wasting and weakness of respiratory muscles are the prominent hallmarks of Duchenne muscular dystrophy (DMD) and long-COVID (also referred as the post-acute sequelae of COVID-19 syndrome); however, the underlying mechanism(s) leading to respiratory failure in both conditions remain unclear. We put together the latest relevant literature to further understand the plausible mechanism(s) behind diaphragm malfunctioning in COVID-19 and DMD conditions. Previously, we have shown the role of matrix metalloproteinase-9 (MMP9) in skeletal muscle fibrosis via a substantial increase in the levels of tumor necrosis factor-α (TNF-α) employing a DMD mouse model that was crossed-bred with MMP9-knockout (MMP9-KO or MMP9-/-) strain. Interestingly, recent observations from clinical studies show a robust increase in neopterin (NPT) levels during COVID-19 which is often observed in patients having DMD. What seems to be common in both (DMD and COVID-19) is the involvement of neopterin (NPT). We know that NPT is generated by activated white blood cells (WBCs) especially the M1 macrophages in response to inducible nitric oxide synthase (iNOS), tetrahydrobiopterin (BH4), and tetrahydrofolate (FH4) pathways, i.e., folate one-carbon metabolism (FOCM) in conjunction with epigenetics underpinning as an immune surveillance protection. Studies from our laboratory, and others researching DMD and the genetically engineered humanized (hACE2) mice that were administered with the spike protein (SP) of SARS-CoV-2 revealed an increase in the levels of NPT, TNF-α, HDAC, IL-1β, CD147, and MMP9 in the lung tissue of the animals that were subsequently accompanied by fibrosis of the diaphragm depicting a decreased oscillation phenotype. Therefore, it is of interest to understand how regulatory processes such as epigenetics involvement affect DNMT, HDAC, MTHFS, and iNOS that help generate NPT in the long-COVID patients.
Collapse
Affiliation(s)
- Suresh C. Tyagi
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Sathnur Pushpakumar
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Utpal Sen
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Sri Prakash L. Mokshagundam
- Division of Endocrinology, Metabolism and Diabetes and Robley Rex VA Medical Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Dinesh K. Kalra
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Mohamed A. Saad
- Division of Pulmonary, Critical Care and Sleep Disorders Medicine, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Mahavir Singh
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
- Correspondence: or
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW This review highlights the key studies investigating various types of biomarkers in Duchenne muscular dystrophy (DMD). RECENT FINDINGS Several proteomic and metabolomic studies have been undertaken in both human DMD patients and animal models of DMD that have identified potential biomarkers in DMD. Although there have been a number of proteomic and metabolomic studies that have identified various potential biomarkers in DMD, more definitive studies still need to be undertaken in DMD patients to firmly correlate these biomarkers with diagnosis, disease progression, and monitoring the effects of novel treatment strategies being developed.
Collapse
Affiliation(s)
- Theo Lee-Gannon
- Division of Cardiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Xuan Jiang
- Division of Cardiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- UT Southwestern Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Tara C Tassin
- Division of Cardiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
- UT Southwestern Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Pradeep P A Mammen
- Division of Cardiology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- Department of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- UT Southwestern Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Heart Failure, Ventricular Assist Device & Heart Transplant Program, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
- Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
5
|
Kiriaev L, Kueh S, Morley JW, North KN, Houweling PJ, Head SI. Lifespan Analysis of Dystrophic mdx Fast-Twitch Muscle Morphology and Its Impact on Contractile Function. Front Physiol 2021; 12:771499. [PMID: 34950049 PMCID: PMC8689589 DOI: 10.3389/fphys.2021.771499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Duchenne muscular dystrophy is caused by the absence of the protein dystrophin from skeletal muscle and is characterized by progressive cycles of necrosis/regeneration. Using the dystrophin deficient mdx mouse model, we studied the morphological and contractile chronology of dystrophic skeletal muscle pathology in fast-twitch Extensor Digitorum Longus muscles from animals 4–22 months of age containing 100% regenerated muscle fibers. Catastrophically, the older age groups lost ∼80% of their maximum force after one eccentric contraction (EC) of 20% strain with the greatest loss of ∼92% recorded in senescent 22-month-old mdx mice. In old age groups, there was minimal force recovery ∼24% after 120 min, correlated with a dramatic increase in the number and complexity of branched fibers. This data supports our two-phase model where a “tipping point” is reached when branched fibers rupture irrevocably on EC. These findings have important implications for pre-clinical drug studies and genetic rescue strategies.
Collapse
Affiliation(s)
- Leonit Kiriaev
- Myogenica Laboratory, School of Medicine, Western Sydney University, Sydney, NSW, Australia
- *Correspondence: Leonit Kiriaev,
| | - Sindy Kueh
- Myogenica Laboratory, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - John W. Morley
- Myogenica Laboratory, School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Kathryn N. North
- Muscle Research Group, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Peter J. Houweling
- Muscle Research Group, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Stewart I. Head
- Myogenica Laboratory, School of Medicine, Western Sydney University, Sydney, NSW, Australia
- Muscle Research Group, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Lindsay A, Kemp B, Larson AA, Baumann CW, McCourt PM, Holm J, Karachunski P, Lowe DA, Ervasti JM. Tetrahydrobiopterin synthesis and metabolism is impaired in dystrophin-deficient mdx mice and humans. Acta Physiol (Oxf) 2021; 231:e13627. [PMID: 33580591 DOI: 10.1111/apha.13627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022]
Abstract
AIM Loss of dystrophin causes oxidative stress and affects nitric oxide synthase-mediated vascular function in striated muscle. Because tetrahydrobiopterin is an antioxidant and co-factor for nitric oxide synthase, we tested the hypothesis that tetrahydrobiopterin would be low in mdx mice and humans deficient for dystrophin. METHODS Tetrahydrobiopterin and its metabolites were measured at rest and in response to exercise in Duchenne and Becker muscular dystrophy patients, age-matched male controls as well as wild-type, mdx and mdx mice transgenically overexpressing skeletal muscle-specific dystrophins. Mdx mice were also supplemented with tetrahydrobiopterin and pathophysiology was assessed. RESULTS Duchenne muscular dystrophy patients had lower urinary dihydrobiopterin + tetrahydrobiopterin/specific gravity1.020 compared to unaffected age-matched males and Becker muscular dystrophy patients. Mdx mice had low urinary and skeletal muscle dihydrobiopterin + tetrahydrobiopterin compared to wild-type mice. Overexpression of dystrophins that localize neuronal nitric oxide synthase restored dihydrobiopterin + tetrahydrobiopterin in mdx mice to wild-type levels while utrophin overexpression did not. Mdx mice and Duchenne muscular dystrophy patients did not increase tetrahydrobiopterin during exercise and in mdx mice tetrahydrobiopterin deficiency was likely because of lower levels of sepiapterin reductase in skeletal muscle. Tetrahydrobiopterin supplementation improved skeletal muscle strength, resistance to fatiguing and injurious contractions in vivo, increased utrophin and capillary density of skeletal muscle and lowered cardiac muscle fibrosis and left ventricular wall thickness in mdx mice. CONCLUSION These data demonstrate that impaired tetrahydrobiopterin synthesis is associated with dystrophin loss and treatment with tetrahydrobiopterin improves striated muscle histopathology and skeletal muscle function in mdx mice.
Collapse
Affiliation(s)
- Angus Lindsay
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Bailey Kemp
- Lillehei Heart Institute, Cancer and Cardiovascular Research Center, University of Minnesota, Minneapolis, MN, USA
| | - Alexie A Larson
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Cory W Baumann
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Preston M McCourt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - John Holm
- Lillehei Heart Institute, Cancer and Cardiovascular Research Center, University of Minnesota, Minneapolis, MN, USA
| | - Peter Karachunski
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Dawn A Lowe
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
7
|
Lunetta C, Lizio A, Gerardi F, Tarlarini C, Filippi M, Riva N, Tremolizzo L, Diamanti S, Dellanoce CC, Mosca L, Sansone VA, Campolo J. Urinary neopterin, a new marker of the neuroinflammatory status in amyotrophic lateral sclerosis. J Neurol 2020; 267:3609-3616. [PMID: 32638112 DOI: 10.1007/s00415-020-10047-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To comprehensively assess whether neopterin in urine could be a candidate biomarker for determining the neuroinflammatory status in ALS. METHODS We performed an observational, cross-sectional study in 81 pALS, 68 age- and sex-comparable healthy controls (HC), 14 patients affected by MS and 24 OND patients. ALS patients underwent a neurological evaluation to assess the global functional status evaluated by Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) and the disease progression rate. Urinary neopterin concentrations were determined by high-performance liquid chromatography method and were recorded at the time of first examination to assess their effect on disease severity and survival. RESULTS Urinary neopterin was significantly higher in pALS (263.90 [198.71-474.90]) compared to MS (155.28 [131.74-190.38], p = < .001), OND patients (205.60 [158.96-299.41], p = 0.04) and HC (169.55 [134.91-226.10], p < .001). Moreover, a significant negative correlation was found between neopterin level and the severity of symptoms evaluated by ALSFRS-R total score (r = - 0.46, p < .001) and its subscores (bulbar r = - 0.34, p = 0.002; motor r = - 0.33, p = 0.003; respiratory r = - 0.53, p < .001), also adjusting for the effect of sex, site of onset, age at evaluation and time from onset to evaluation. CONCLUSIONS Our finding indicates that urine neopterin is elevated in ALS, emphasizing the role of the cell-mediated inflammation in the disease. Moreover, whether confirmed in further studies, our results will underline the neopterin's potential use as non-invasive clinical biomarker of ALS, to discriminate patients possibly candidates to clinical interventions aimed to interfere the neuroinflammatory processes.
Collapse
Affiliation(s)
- Christian Lunetta
- NEuroMuscular Omnicentre, Fondazione Serena Onlus, Piazza Ospedale Maggiore, 3, 20162, Milan, Italy.
| | - Andrea Lizio
- NEuroMuscular Omnicentre, Fondazione Serena Onlus, Piazza Ospedale Maggiore, 3, 20162, Milan, Italy
| | - Francesca Gerardi
- NEuroMuscular Omnicentre, Fondazione Serena Onlus, Piazza Ospedale Maggiore, 3, 20162, Milan, Italy
| | - Claudia Tarlarini
- NEuroMuscular Omnicentre, Fondazione Serena Onlus, Piazza Ospedale Maggiore, 3, 20162, Milan, Italy
| | - Massimo Filippi
- Neuropathology Unit, Department of Neurology, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Nilo Riva
- Neuropathology Unit, Department of Neurology, Institute of Experimental Neurology (INSPE), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Lucio Tremolizzo
- ALS Clinic, Neurology Unit, San Gerardo Hospital, and University of Milano-Bicocca, Monza, Italy
| | - Susanna Diamanti
- ALS Clinic, Neurology Unit, San Gerardo Hospital, and University of Milano-Bicocca, Monza, Italy
| | - Cinzia Carla Dellanoce
- CNR Institute of Clinical Physiology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Lorena Mosca
- Department of Laboratory Medicine, Medical Genetics, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Valeria Ada Sansone
- NEuroMuscular Omnicentre, Fondazione Serena Onlus, Piazza Ospedale Maggiore, 3, 20162, Milan, Italy.,Department of Biomedical Sciences of Health, University of Milan, Milan, Italy
| | - Jonica Campolo
- CNR Institute of Clinical Physiology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
8
|
Lindsay A, Baumann CW, Rebbeck RT, Yuen SL, Southern WM, Hodges JS, Cornea RL, Thomas DD, Ervasti JM, Lowe DA. Mechanical factors tune the sensitivity of mdx muscle to eccentric strength loss and its protection by antioxidant and calcium modulators. Skelet Muscle 2020; 10:3. [PMID: 32007101 PMCID: PMC6995146 DOI: 10.1186/s13395-020-0221-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022] Open
Abstract
Background Dystrophin deficiency sensitizes skeletal muscle of mice to eccentric contraction (ECC)-induced strength loss. ECC protocols distinguish dystrophin-deficient from healthy, wild type muscle, and test the efficacy of therapeutics for Duchenne muscular dystrophy (DMD). However, given the large lab-to-lab variability in ECC-induced strength loss of dystrophin-deficient mouse skeletal muscle (10–95%), mechanical factors of the contraction likely impact the degree of loss. Therefore, the purpose of this study was to evaluate the extent to which mechanical variables impact sensitivity of dystrophin-deficient mouse skeletal muscle to ECC. Methods We completed ex vivo and in vivo muscle preparations of the dystrophin-deficient mdx mouse and designed ECC protocols within physiological ranges of contractile parameters (length change, velocity, contraction duration, and stimulation frequencies). To determine whether these contractile parameters affected known factors associated with ECC-induced strength loss, we measured sarcolemmal damage after ECC as well as strength loss in the presence of the antioxidant N-acetylcysteine (NAC) and small molecule calcium modulators that increase SERCA activity (DS-11966966 and CDN1163) or lower calcium leak from the ryanodine receptor (Chloroxine and Myricetin). Results The magnitude of length change, work, and stimulation duration ex vivo and in vivo of an ECC were the most important determinants of strength loss in mdx muscle. Passive lengthening and submaximal stimulations did not induce strength loss. We further showed that sarcolemmal permeability was associated with muscle length change, but it only accounted for a minimal fraction (21%) of the total strength loss (70%). The magnitude of length change also significantly influenced the degree to which NAC and small molecule calcium modulators protected against ECC-induced strength loss. Conclusions These results indicate that ECC-induced strength loss of mdx skeletal muscle is dependent on the mechanical properties of the contraction and that mdx muscle is insensitive to ECC at submaximal stimulation frequencies. Rigorous design of ECC protocols is critical for effective use of strength loss as a readout in evaluating potential therapeutics for muscular dystrophy.
Collapse
Affiliation(s)
- Angus Lindsay
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, MMC 388, 420 Delaware Street SE, Minneapolis, 55455, USA.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street SE, Minneapolis, 55455, USA.,Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, 3220, Australia
| | - Cory W Baumann
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, MMC 388, 420 Delaware Street SE, Minneapolis, 55455, USA
| | - Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street SE, Minneapolis, 55455, USA
| | - Samantha L Yuen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street SE, Minneapolis, 55455, USA
| | - William M Southern
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street SE, Minneapolis, 55455, USA
| | - James S Hodges
- Division of Biostatistics, University of Minnesota, A460 Mayo Building, 420 Delaware Street SE, Minneapolis, 55455, USA
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street SE, Minneapolis, 55455, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street SE, Minneapolis, 55455, USA
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street SE, Minneapolis, 55455, USA
| | - Dawn A Lowe
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, MMC 388, 420 Delaware Street SE, Minneapolis, 55455, USA.
| |
Collapse
|
9
|
Pterins as Diagnostic Markers of Mechanical and Impact-Induced Trauma: A Systematic Review. J Clin Med 2019; 8:jcm8091383. [PMID: 31484468 PMCID: PMC6780259 DOI: 10.3390/jcm8091383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022] Open
Abstract
We performed a systematic review of the literature to evaluate pterins as biomarkers of mechanical and impact-induced trauma. MEDLINE and Scopus were searched in March 2019. We included in vivo human studies that measured a pterin in response to mechanical or impact-induced trauma with no underlying prior disease or complication. We included 40 studies with a total of 3829 subjects. Seventy-seven percent of studies measured a significant increase in a pterin, primarily neopterin or total neopterin (neopterin + 7,8-dihydroneopterin). Fifty-one percent of studies measured an increase within 24 h of trauma, while 46% measured increases beyond 48 h. Pterins also showed promise as predictors of post-trauma complications such as sepsis, multi-organ failure and mortality. Exercise-induced trauma and traumatic brain injury caused an immediate increase in neopterin or total neopterin, while patients of multiple trauma had elevated pterin levels that remained above baseline for several days. Pterin concentration changes in response to surgery were variable with patients undergoing cardiac surgery having immediate and sustained pterin increases, while gastrectomy, liver resection or hysterectomy showed no change. This review provides systematic evidence that pterins, in particular neopterin and total neopterin, increase in response to multiple forms of mechanical or impact-induced trauma.
Collapse
|
10
|
Lindsay A, Gieseg SP. Pterins as diagnostic markers of exercise-induced stress: a systematic review. J Sci Med Sport 2019; 23:53-62. [PMID: 31501021 DOI: 10.1016/j.jsams.2019.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 01/17/2023]
Abstract
OBJECTIVES To evaluate pterins as diagnostic biomarkers of exercise-induced stress. DESIGN Systematic review of the literature. METHODS MEDLINE, Scopus and Web of Science were searched in March 2019 for relevant literature. We only considered in vivo studies of healthy humans that reported measurement of a pterin(s) in response to exercise or sport with no underlying prior disease or complication. Relevant articles were independently reviewed and resolved by consensus. RESULTS We included 29 studies with 644 participants. We classified articles by running/hiking, cycling, rugby, mixed martial arts (MMA) or other. Eighty-six percent of studies measured a significant increase in a pterin in response to exercise. Changes in pterin concentrations were within 24h of the exercise-stimulus in 79% of studies and 17% measured a change from baseline greater than 48h post-exercise (49% did not measure or report beyond 48h). Neopterin or total neopterin (neopterin+7,8-dihydroneopterin) were the primary pterin measured (28 studies) and they were equally sensitive to exercise regardless of whether the stimulus was running, cycling, rugby, MMA or other. CONCLUSIONS Neopterin and total neopterin increase in response to exercise-induced stress. Pterins may have limited capacity for monitoring long-term stress beyond 48h but further research is required.
Collapse
Affiliation(s)
- Angus Lindsay
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia.
| | - Steven P Gieseg
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; Department of Radiology, University of Otago Christchurch, PO Box 4345, Christchurch 8011, New Zealand
| |
Collapse
|
11
|
Thangarajh M, Zhang A, Gill K, Ressom HW, Li Z, Varghese RS, Hoffman EP, Nagaraju K, Hathout Y, Boca SM. Discovery of potential urine-accessible metabolite biomarkers associated with muscle disease and corticosteroid response in the mdx mouse model for Duchenne. PLoS One 2019; 14:e0219507. [PMID: 31310630 PMCID: PMC6634414 DOI: 10.1371/journal.pone.0219507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
Urine is increasingly being considered as a source of biomarker development in Duchenne Muscular Dystrophy (DMD), a severe, life-limiting disorder that affects approximately 1 in 4500 boys. In this study, we considered the mdx mice-a murine model of DMD-to discover biomarkers of disease, as well as pharmacodynamic biomarkers responsive to prednisolone, a corticosteroid commonly used to treat DMD. Longitudinal urine samples were analyzed from male age-matched mdx and wild-type mice randomized to prednisolone or vehicle control via liquid chromatography tandem mass spectrometry. A large number of metabolites (869 out of 6,334) were found to be significantly different between mdx and wild-type mice at baseline (Bonferroni-adjusted p-value < 0.05), thus being associated with disease status. These included a metabolite with m/z = 357 and creatine, which were also reported in a previous human study looking at serum. Novel observations in this study included peaks identified as biliverdin and hypusine. These four metabolites were significantly higher at baseline in the urine of mdx mice compared to wild-type, and significantly changed their levels over time after baseline. Creatine and biliverdin levels were also different between treated and control groups, but for creatine this may have been driven by an imbalance at baseline. In conclusion, our study reports a number of biomarkers, both known and novel, which may be related to either the mechanisms of muscle injury in DMD or prednisolone treatment.
Collapse
Affiliation(s)
- Mathula Thangarajh
- Department of Neurology, George Washington University School of Medicine and Children’s National Health Systems, Washington, D.C., United States of America
| | - Aiping Zhang
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Children’s National Health Systems, Washington, D.C., United States of America
| | - Kirandeep Gill
- Department of Oncology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Habtom W. Ressom
- Department of Oncology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Zhenzhi Li
- Department of Oncology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Rency S. Varghese
- Department of Oncology, Georgetown University Medical Center, Washington, D.C., United States of America
| | - Eric P. Hoffman
- School of Pharmacy & Pharmaceutical Sciences, Binghamton University, Binghamton, N.Y., United States of America
| | - Kanneboyina Nagaraju
- School of Pharmacy & Pharmaceutical Sciences, Binghamton University, Binghamton, N.Y., United States of America
| | - Yetrib Hathout
- School of Pharmacy & Pharmaceutical Sciences, Binghamton University, Binghamton, N.Y., United States of America
| | - Simina M. Boca
- Department of Oncology, Georgetown University Medical Center, Washington, D.C., United States of America
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, D.C., United States of America
- Department of Biostatistics, Bioinformatics and Biomathematics, Georgetown University Medical Center, Washington, D.C., United States of America
- * E-mail:
| |
Collapse
|
12
|
Lindsay A, Southern WM, McCourt PM, Larson AA, Hodges JS, Lowe DA, Ervasti JM. Variable cytoplasmic actin expression impacts the sensitivity of different dystrophin-deficient mdx skeletal muscles to eccentric contraction. FEBS J 2019; 286:2562-2576. [PMID: 30942954 PMCID: PMC6613979 DOI: 10.1111/febs.14831] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/24/2019] [Accepted: 04/01/2019] [Indexed: 11/29/2022]
Abstract
Eccentric contractions (ECCs) induce force loss in several skeletal muscles of dystrophin-deficient mice (mdx), with the exception of the soleus (Sol). The eccentric force : isometric force (ECC : ISO), expression level of utrophin, fiber type distribution, and sarcoendoplasmic reticulum calcium ATPase expression are factors that differ between muscles and may contribute to the sensitivity of mdx skeletal muscle to ECC. Here, we confirm that the Sol of mdx mice loses only 13% force compared to 87% in the extensor digitorum longus (EDL) following 10 ECC of isolated muscles. The Sol has a greater proportion of fibers expressing Type I myosin heavy chain (MHC) and expresses 2.3-fold more utrophin compared to the EDL. To examine the effect of ECC : ISO, we show that the mdx Sol is insensitive to ECC at ECC : ISO up to 230 ± 15%. We show that the peroneus longus (PL) muscle presents with similar ECC : ISO compared to the EDL, intermediate force loss (68%) following 10 ECC, and intermediate fiber type distribution and utrophin expression relative to EDL and Sol. The combined absence of utrophin and dystrophin in mdx/utrophin-/- mice rendered the Sol only partially susceptible to ECC and exacerbated force loss in the EDL and PL. Most interestingly, the expression levels of cytoplasmic β- and γ-actins correlate inversely with a given muscle's sensitivity to ECC; EDL < PL < Sol. Our data indicate that fiber type, utrophin, and cytoplasmic actin expression all contribute to the differential sensitivities of mdxEDL, PL, and Sol muscles to ECC.
Collapse
Affiliation(s)
- Angus Lindsay
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, USA
| | - William M. Southern
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, USA
| | - Preston M. McCourt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, USA
| | - Alexie A. Larson
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, USA
| | - James S. Hodges
- Division of Biostatistics, University of Minnesota, Minneapolis, USA
| | - Dawn A. Lowe
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, USA
| | - James M. Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, USA
| |
Collapse
|
13
|
Lindsay A, Chamberlain CM, Witthuhn BA, Lowe DA, Ervasti JM. Dystrophinopathy-associated dysfunction of Krebs cycle metabolism. Hum Mol Genet 2019; 28:942-951. [PMID: 30476171 PMCID: PMC6400043 DOI: 10.1093/hmg/ddy404] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/23/2018] [Accepted: 11/13/2018] [Indexed: 01/03/2023] Open
Abstract
Duchenne muscular dystrophy is a deadly muscle-wasting disorder caused by loss of dystrophin protein. Studies suggest that metabolic alterations are important to disease pathogenesis. Because muscle accounts for ~40% of body mass, we hypothesized that dystrophy-mediated metabolic changes would be measurable in biofluids and that a metabolomic analysis of urine would provide insight into the metabolic status of dystrophic muscle. Using the mdx mouse model, we performed a large-scale metabolomic screen at 1 and 3 months. While 10% of metabolites were altered at age 1 month, 40% were changed at 3 months. Principal component analysis distinguished wild-type from mdx animals, with the greatest separation at 3 months. A critical distinguishing pathway was Krebs cycle metabolite depletion in mdx urine. Five of seven detected Krebs cycle metabolites were depleted in mdx urine, with succinate being the most robustly affected metabolite. Using selected reaction monitoring mass spectrometry, we demonstrated that muscle-specific dystrophin expression corrects mdx succinate depletion. When subjected to downhill treadmill running, wild-type and mdx mice expressing recombinant dystrophin in skeletal muscle displayed significant increases in urinary succinate levels. However, mdx succinate levels were unchanged, suggesting urinary succinate depletion may reflect an inability to upregulate the Krebs cycle following exercise. Finally, we show that supplementing the Krebs cycle in an ex vivo fatigue/recovery assay significantly impacts mdx muscle performance but has no effect on wild-type muscle. Our results suggest that global metabolic impairment is associated with mdx disease progression and that Krebs cycle deficiencies are a downstream consequence of dystrophin loss.
Collapse
MESH Headings
- Animals
- Biomarkers
- Citric Acid Cycle
- Disease Models, Animal
- Dystrophin/genetics
- Dystrophin/metabolism
- Energy Metabolism
- Male
- Metabolome
- Metabolomics/methods
- Mice
- Mice, Inbred mdx
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/physiopathology
- Mutation
- Physical Conditioning, Animal
Collapse
Affiliation(s)
- Angus Lindsay
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Christopher M Chamberlain
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Bruce A Witthuhn
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Dawn A Lowe
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
14
|
Lindsay A, McCourt PM, Karachunski P, Lowe DA, Ervasti JM. Xanthine oxidase is hyper-active in Duchenne muscular dystrophy. Free Radic Biol Med 2018; 129:364-371. [PMID: 30312761 PMCID: PMC6599518 DOI: 10.1016/j.freeradbiomed.2018.10.404] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/21/2018] [Accepted: 10/04/2018] [Indexed: 11/30/2022]
Abstract
Generation of superoxide by xanthine oxidase can be stimulated under ischemic and aberrant calcium homeostasis. Because patients and mice with Duchenne muscular dystrophy (DMD) suffer from ischemia and excessive calcium influx, we tested the hypothesis that xanthine oxidase activity is elevated and contributes to disease pathology. Xanthine oxidase activity was measured by urinary isoxanthopterin in DMD patients at rest and in response to exercise. Urinary isoxanthopterin/creatinine was elevated compared to age-matched controls and Becker muscular dystrophy (BMD) patients. Concentrations were also increased after a six minute walk test in ambulatory patients. We also measured urinary isoxanthopterin in wildtype mice and a number of dystrophic mouse models; the DMD mouse model (mdx), mdx mice overexpressing a variety of transgenic miniaturized and chimeric skeletal muscle-specific dystrophins and utrophin and the β-sarcoglycan deficient (Scgb-/-) mouse which represents type 2E human limb-girdle muscular dystrophy. Mdx and Scgb-/-mice had greater urinary isoxanthopterin/creatinine than wildtype mice while mdx mice expressing dystrophin or utrophin linking the extracellular matrix to the actin cytoskeleton were not different than wildtype. We also measured higher levels of urinary ortho-tyrosine in humans and mice deficient for dystrophin to confirm elevated oxidative stress. Surprisingly, mdx had lower xanthine oxidase protein levels and higher mRNA in gastrocnemius muscle compared to wildtype mice, however, the enzymatic activity of skeletal muscle xanthine oxidase was elevated above wildtype and a transgenic rescued mdx mouse (DysΔMTB-mdx). Downhill treadmill running also caused significant increases in mdx urinary isoxanthopterin that was prevented with the xanthine oxidase inhibitor allopurinol. Similarly, in vitro eccentric contraction-induced force drop of mdx muscle was attenuated by the allopurinol metabolite, oxypurinol. Together, our data suggests hyper-activity of xanthine oxidase in DMD, identifies xanthine oxidase activity as a contributing factor in eccentric contraction-induced force drop of dystrophin-deficient skeletal muscle and highlights the potential of isoxanthopterin as a noninvasive biomarker in DMD.
Collapse
MESH Headings
- Adolescent
- Allopurinol/pharmacology
- Animals
- Biomarkers/urine
- Case-Control Studies
- Creatinine/urine
- Dystrophin/deficiency
- Dystrophin/genetics
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation
- Humans
- Male
- Mice
- Mice, Inbred mdx
- Muscle Contraction/drug effects
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Animal/drug therapy
- Muscular Dystrophy, Animal/enzymology
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/physiopathology
- Muscular Dystrophy, Duchenne/drug therapy
- Muscular Dystrophy, Duchenne/enzymology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/physiopathology
- Oxypurinol/pharmacology
- Sarcoglycans/deficiency
- Sarcoglycans/genetics
- Tyrosine/urine
- Utrophin/deficiency
- Utrophin/genetics
- Xanthine Oxidase/genetics
- Xanthine Oxidase/urine
- Xanthopterin/urine
- Young Adult
Collapse
Affiliation(s)
- Angus Lindsay
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, USA; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, USA.
| | - Preston M McCourt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, USA
| | - Peter Karachunski
- Department of Pediatrics, University of Minnesota, Minneapolis, USA; Department of Neurology, University of Minnesota, Minneapolis, USA
| | - Dawn A Lowe
- Division of Rehabilitation Science and Division of Physical Therapy, Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, USA
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, USA
| |
Collapse
|
15
|
Baxter-Parker G, Roffe L, Cross S, Frampton C, Hooper GJ, Gieseg SP. Knee replacement surgery significantly elevates the urinary inflammatory biomarkers neopterin and 7,8-dihydroneopterin. Clin Biochem 2018; 63:39-45. [PMID: 30399370 DOI: 10.1016/j.clinbiochem.2018.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022]
Abstract
CONTEXT Knee arthroplasty surgery is significant trauma, leading to an activated immune system causing inflammation and oxidative stress. Many current biomarkers are invasive, costly, and often slow to analyse, limiting their use for rapid inflammatory measurements. OBJECTIVES We have examined the use of urinary neopterin and total neopterin in knee arthroplasty patients to non-invasively measure oxidative stress and inflammation from immune system activation. We aim to validate the use of these biomarkers for quick, cost effective and predictive measurements of post-surgical inflammation assessment. METHODOLOGY 19 Knee arthroplasty patients were analysed pre-operatively and for a defined post-operative period to determine the urinary levels of neopterin and total neopterin (neopterin +7,8-dihydroneopterin) using high performance liquid chromatography with fluorescence detection. These results were then compared to a control group of 20 participants with normal knee function. RESULTS 7,8-Dihydroneopterin was stable in urine over 12 h when refrigerated. Knee arthritis was associated with an increase in pre-operative neopterin (oxidative stress) and total neopterin (inflammation). The subsequent arthroplasty surgery generated a significant increase neopterin and total neopterin. Both biomarkers were reduced immediately post-operatively, before becoming elevated on the following days. There was no clear evidence of an association between initial neopterin and total neopterin levels and a patient's level of inflammation during in-hospital recovery. CONCLUSIONS The stability of 7,8-dihydroneopterin in urine allows for its use as an inflammatory marker. Urinary neopterin and total neopterin provided a fast, non-invasive, and simple measure of oxidative stress and inflammation after knee arthroplasty.
Collapse
Affiliation(s)
- Gregory Baxter-Parker
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.
| | - Lloyd Roffe
- Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago Christchurch, PO Box 4345, Christchurch, New Zealand.
| | - Sean Cross
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Chris Frampton
- Department of Medicine, University of Otago Christchurch, PO Box 4345, Christchurch, New Zealand.
| | - Gary J Hooper
- Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago Christchurch, PO Box 4345, Christchurch, New Zealand
| | - Steven P Gieseg
- School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; Department of Radiology, University of Otago Christchurch, PO Box 4345, Christchurch 8011, New Zealand.
| |
Collapse
|
16
|
Neopterin, Inflammation, and Oxidative Stress: What Could We Be Missing? Antioxidants (Basel) 2018; 7:antiox7070080. [PMID: 29949851 PMCID: PMC6071275 DOI: 10.3390/antiox7070080] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 01/17/2023] Open
Abstract
Neopterin has been extensively used as a clinical marker of immune activation during inflammation in a wide range of conditions and stresses. However, the analysis of neopterin alone neglects the cellular reactions that generate it in response to interferon-γ. Neopterin is the oxidation product of 7,8-dihydroneopterin, which is a potent antioxidant generated by interferon-γ-activated macrophages. 7,8-Dihydroneopterin can protect macrophage cells from a range of oxidants through a scavenging reaction that generates either neopterin or dihydroxanthopterin, depending on the oxidant. Therefore, plasma and urinary neopterin levels are dependent on both macrophage activation to generate 7,8-dihydroneopterin and subsequent oxidation to neopterin. This relationship is clearly shown in studies of exercise and impact-induced injury during intense contact sport. Here, we argue that neopterin and total neopterin, which is the combined value of 7,8-dihydroneopterin and neopterin, could provide a more comprehensive analysis of clinical inflammation than neopterin alone.
Collapse
|
17
|
Houweling PJ. The antioxidants neopterin/7,8-dihydroneopterin: Novel biomarker and muscle protectant in Duchenne muscular dystrophy. Exp Physiol 2018; 103:939-940. [PMID: 29786157 DOI: 10.1113/ep087093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Peter J Houweling
- Murdoch Children's Research Institute, Victoria, Parkville, Australia
| |
Collapse
|