1
|
Manferdelli G, Narang BJ, Bourdillon N, Giardini G, Debevec T, Millet GP. Impaired cerebrovascular CO 2 reactivity at high altitude in prematurely born adults. J Physiol 2024; 602:5801-5815. [PMID: 38116893 DOI: 10.1113/jp285048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
Premature birth impairs cardiac and ventilatory responses to both hypoxia and hypercapnia, but little is known about cerebrovascular responses. Both at sea level and after 2 days at high altitude (3375 m), 16 young preterm-born (gestational age, 29 ± 1 weeks) and 15 age-matched term-born (40 ± 0 weeks) adults were exposed to two consecutive 4 min bouts of hyperoxic hypercapnic conditions (3% CO2-97% O2; 6% CO2-94% O2), followed by two periods of voluntary hyperventilation-induced hypocapnia. We measured middle cerebral artery blood velocity, end-tidal CO2, pulmonary ventilation, beat-by-beat mean arterial pressure and arterialized capillary blood gases. Baseline middle cerebral artery blood velocity increased at high altitude compared with sea level in term-born (+24 ± 39%, P = 0.036), but not in preterm-born (-4 ± 27%, P = 0.278) adults. The end-tidal CO2, pulmonary ventilation and mean arterial pressure were similar between groups at sea level and high altitude. Hypocapnic cerebrovascular reactivity was higher at high altitude compared with sea level in term-born adults (+173 ± 326%, P = 0.026) but not in preterm-born adults (-21 ± 107%, P = 0.572). Hypercapnic reactivity was altered at altitude only in preterm-born adults (+125 ± 144%, P < 0.001). Collectively, at high altitude, term-born participants showed higher hypocapnic (P = 0.012) and lower hypercapnic (P = 0.020) CO2 reactivity compared with their preterm-born peers. In conclusion, exposure to high altitude revealed different cerebrovascular responses in preterm- compared with term-born adults, despite similar ventilatory responses. These findings suggest a blunted cerebrovascular response at high altitude in preterm-born adults, which might predispose these individuals to an increased risk of high-altitude illnesses. KEY POINTS: Cerebral haemodynamics and cerebrovascular reactivity in normoxia are known to be similar between term-born and prematurely born adults. In contrast, acute exposure to high altitude unveiled different cerebrovascular responses to hypoxia, hypercapnia and hypocapnia. In particular, cerebral vasodilatation was impaired in prematurely born adults, leading to an exaggerated cerebral vasoconstriction. Cardiovascular and ventilatory responses to both hypo- and hypercapnia at sea level and at high altitude were similar between control subjects and prematurely born adults. Other mechanisms might therefore underlie the observed blunted cerebral vasodilatory responses in preterm-born adults at high altitude.
Collapse
Affiliation(s)
| | - Benjamin J Narang
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Nicolas Bourdillon
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Guido Giardini
- Mountain Medicine and Neurology Centre, Valle D'Aosta Regional Hospital, Aosta, Italy
| | - Tadej Debevec
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Burtscher J, Citherlet T, Camacho-Cardenosa A, Camacho-Cardenosa M, Raberin A, Krumm B, Hohenauer E, Egg M, Lichtblau M, Müller J, Rybnikova EA, Gatterer H, Debevec T, Baillieul S, Manferdelli G, Behrendt T, Schega L, Ehrenreich H, Millet GP, Gassmann M, Schwarzer C, Glazachev O, Girard O, Lalande S, Hamlin M, Samaja M, Hüfner K, Burtscher M, Panza G, Mallet RT. Mechanisms underlying the health benefits of intermittent hypoxia conditioning. J Physiol 2024; 602:5757-5783. [PMID: 37860950 DOI: 10.1113/jp285230] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Intermittent hypoxia (IH) is commonly associated with pathological conditions, particularly obstructive sleep apnoea. However, IH is also increasingly used to enhance health and performance and is emerging as a potent non-pharmacological intervention against numerous diseases. Whether IH is detrimental or beneficial for health is largely determined by the intensity, duration, number and frequency of the hypoxic exposures and by the specific responses they engender. Adaptive responses to hypoxia protect from future hypoxic or ischaemic insults, improve cellular resilience and functions, and boost mental and physical performance. The cellular and systemic mechanisms producing these benefits are highly complex, and the failure of different components can shift long-term adaptation to maladaptation and the development of pathologies. Rather than discussing in detail the well-characterized individual responses and adaptations to IH, we here aim to summarize and integrate hypoxia-activated mechanisms into a holistic picture of the body's adaptive responses to hypoxia and specifically IH, and demonstrate how these mechanisms might be mobilized for their health benefits while minimizing the risks of hypoxia exposure.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Tom Citherlet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Alba Camacho-Cardenosa
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, Granada, Spain
| | - Marta Camacho-Cardenosa
- Clinical Management Unit of Endocrinology and Nutrition - GC17, Maimónides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofía University Hospital, Córdoba, Spain
| | - Antoine Raberin
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Bastien Krumm
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory (RES lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland
- International University of Applied Sciences THIM, Landquart, Switzerland
- Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Margit Egg
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| | - Mona Lichtblau
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Julian Müller
- Department of Pulmonology, University Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Elena A Rybnikova
- Pavlov Institute of Physiology, Russian Academy of Sciences, St Petersburg, Russia
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Institute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), UMIT TIROL-Private University for Health Sciences and Health Technology, Hall in Tirol, Austria
| | - Tadej Debevec
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
- Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Sebastien Baillieul
- Service Universitaire de Pneumologie Physiologie, University of Grenoble Alpes, Inserm, Grenoble, France
| | | | - Tom Behrendt
- Chair Health and Physical Activity, Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Lutz Schega
- Chair Health and Physical Activity, Department of Sport Science, Institute III, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, University Medical Center and Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Christoph Schwarzer
- Institute of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Oleg Glazachev
- Department of Normal Physiology, N.V. Sklifosovsky Institute of Clinical Medicine, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Olivier Girard
- School of Human Sciences (Exercise and Sport Science), The University of Western Australia, Crawley, Western Australia, Australia
| | - Sophie Lalande
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, USA
| | - Michael Hamlin
- Department of Tourism, Sport and Society, Lincoln University, Christchurch, New Zealand
| | - Michele Samaja
- Department of Health Science, University of Milan, Milan, Italy
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Hospital for Psychiatry II, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Gino Panza
- The Department of Health Care Sciences, Program of Occupational Therapy, Wayne State University, Detroit, MI, USA
- John D. Dingell VA Medical Center Detroit, Detroit, MI, USA
| | - Robert T Mallet
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| |
Collapse
|
3
|
Alsharifi A, Carter N, Irampaye A, Stevens C, Mejia E, Steier J, Rafferty GF. Ventilatory response to head-down-tilt in healthy human subjects. Exp Physiol 2024. [PMID: 39447579 DOI: 10.1113/ep092014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/06/2024] [Indexed: 10/26/2024]
Abstract
Postural fluid shifts may directly affect respiratory control via a complex interaction of baro- and chemo-reflexes, and cerebral blood flow. Few data exist concerning the steady state ventilatory responses during head-down tilt. We examined the cardiorespiratory responses during acute 50° head-down tilt (HDT) in 18 healthy subjects (mean [SD] age 27 [10] years). Protocol 1 (n = 8, two female) was 50° HDT from 60° head-up posture sustained for 10 min, while exposed to normoxia, normoxic hypercapnia (5% CO2), hypoxia (12% inspired O2) or hyperoxic hypercapnia (95% O2, 5% CO2). Protocol 2 (n = 10, four female) was 50° HDT from supine, sustained for 10 min, while breathing either medical air or normoxic hypercapnic (5% CO2) gas. Ventilation (V ̇ E ${{\dot{V}}_E}$ , pneumotachograph), end-tidal O2 and CO2 concentration and blood pressure (Finapres) were measured continuously throughout each protocol. Middle cerebral artery blood flow velocity (MCAv; transcranial Doppler) was also measured during protocol 2. Ventilation increased significantly (P < 0.05) compared to baseline during HDT in both hyperoxic hypercapnia (protocol 1 by mean [SD] 139 [26]%) and normoxic hypercapnia (protocol 1 by mean [SD] 131 [21]% and protocol 2 by 129 [23]%), despite no change inP ETC O 2 ${{P}_{{\mathrm{ETC}}{{{\mathrm{O}}}_2}}}$ orP ET O 2 ${{P}_{{\mathrm{ET}}{{{\mathrm{O}}}_2}}}$ from baseline. No change inV ̇ E ${{\dot{V}}_E}$ was observed during HDT with medical air or hypoxia, and there was no significant change in MCAv during HDT compared to baseline. The absence of change in cerebral blood flow leads us to postulate that the augmented ventilatory response during steep HDT may involve mechanisms related to cerebral venous pressure and venous outflow.
Collapse
Affiliation(s)
- Abdulaziz Alsharifi
- Centre for Human and Applied Physiological Sciences (CHAPS), Faculty of Life Sciences and Medicine, King's College London, London, UK
- Department of Respiratory Therapy, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Niamh Carter
- Centre for Human and Applied Physiological Sciences (CHAPS), Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Akbar Irampaye
- Centre for Human and Applied Physiological Sciences (CHAPS), Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Charlotte Stevens
- Centre for Human and Applied Physiological Sciences (CHAPS), Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Elisa Mejia
- Centre for Human and Applied Physiological Sciences (CHAPS), Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Joerg Steier
- Centre for Human and Applied Physiological Sciences (CHAPS), Faculty of Life Sciences and Medicine, King's College London, London, UK
- Lane Fox Unit/Sleep Disorders Centre, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | - Gerrard F Rafferty
- Centre for Human and Applied Physiological Sciences (CHAPS), Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
4
|
Caldwell HG, Hoiland RL, Bain AR, Howe CA, Carr JMJR, Gibbons TD, Durrer CG, Tymko MM, Stacey BS, Bailey DM, Sekhon MS, MacLeod DB, Ainslie PN. Evidence for direct CO 2 -mediated alterations in cerebral oxidative metabolism in humans. Acta Physiol (Oxf) 2024; 240:e14197. [PMID: 38958262 DOI: 10.1111/apha.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
AIM How the cerebral metabolic rates of oxygen and glucose utilization (CMRO2 and CMRGlc, respectively) are affected by alterations in arterial PCO2 (PaCO2) is equivocal and therefore was the primary question of this study. METHODS This retrospective analysis involved pooled data from four separate studies, involving 41 healthy adults (35 males/6 females). Participants completed stepwise steady-state alterations in PaCO2 ranging between 30 and 60 mmHg. The CMRO2 and CMRGlc were assessed via the Fick approach (CBF × arterial-internal jugular venous difference of oxygen or glucose content, respectively) utilizing duplex ultrasound of the internal carotid artery and vertebral artery to calculate cerebral blood flow (CBF). RESULTS The CMRO2 was altered by 0.5 mL × min-1 (95% CI: -0.6 to -0.3) per mmHg change in PaCO2 (p < 0.001) which corresponded to a 9.8% (95% CI: -13.2 to -6.5) change in CMRO2 with a 9 mmHg change in PaCO2 (inclusive of hypo- and hypercapnia). The CMRGlc was reduced by 7.7% (95% CI: -15.4 to -0.08, p = 0.045; i.e., reduction in net glucose uptake) and the oxidative glucose index (ratio of oxygen to glucose uptake) was reduced by 5.6% (95% CI: -11.2 to 0.06, p = 0.049) with a + 9 mmHg increase in PaCO2. CONCLUSION Collectively, the CMRO2 is altered by approximately 1% per mmHg change in PaCO2. Further, glucose is incompletely oxidized during hypercapnia, indicating reductions in CMRO2 are either met by compensatory increases in nonoxidative glucose metabolism or explained by a reduction in total energy production.
Collapse
Affiliation(s)
- Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Collaborative Entity for REsearching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony R Bain
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Travis D Gibbons
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Cody G Durrer
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Michael M Tymko
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Human Cerebrovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Mypinder S Sekhon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Collaborative Entity for REsearching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, British Columbia, Canada
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - David B MacLeod
- Human Pharmacology and Physiology Lab, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
5
|
Katayama T, Takahashi K, Yahara O. Atrial fibrillation, hypertension, and the cerebral vasodilatory reserve. Hypertens Res 2024; 47:2586-2588. [PMID: 38898245 DOI: 10.1038/s41440-024-01758-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Schematic representation for the cascade model of atrial fibrillation, hypertension, the cerebral vasodilatory reserve, and cognitive decline.
Collapse
Affiliation(s)
| | - Kae Takahashi
- Department of Neurology, Asahikawa City Hospital, Asahikawa, Japan
| | - Osamu Yahara
- Department of Neurology, Asahikawa City Hospital, Asahikawa, Japan
| |
Collapse
|
6
|
Sparks S, Hayes G, Pinto J, Bulte D. Characterising cerebrovascular reactivity and the pupillary light response-a comparative study. Front Physiol 2024; 15:1384113. [PMID: 39175613 PMCID: PMC11338921 DOI: 10.3389/fphys.2024.1384113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Smooth muscle is integral to multiple autonomic systems, including cerebrovascular dynamics through vascular smooth muscle cells and in ocular muscle dynamics, by regulating pupil size. In the brain, smooth muscle function plays a role in cerebrovascular reactivity (CVR) that describes changes in blood vessel calibre in response to vasoactive stimuli. Similarly, pupil size regulation can be measured using the pupillary light response (PLR), the pupil's reaction to changes in light levels. The primary aim of this study was to explore the interplay between cerebral blood flow and pupil dynamics, evaluated using CVR and PLR, respectively. Methods A total of 20 healthy adults took part in a CVR gas stimulus protocol and a light and dark flash PLR protocol. CVR was calculated as the blood flow velocity change in the middle cerebral artery, measured using transcranial Doppler ultrasound in response to a 5% increase in CO2. Multiple PLR metrics were evaluated with a clinical pupillometer. Results CVR and PLR metrics were all within the expected physiological ranges for healthy adults. Nine different PLR metrics, assessed through the light and dark flash protocols, were compared against CVR. A significant negative relationship was observed between the latency of the PLR in the dark flash protocol and CVR. No statistically significant relationships were found between CVR and other PLR metrics. Conclusion This is the first study to investigate the relationship between cerebral blood flow and pupil dynamics. A significant relationship between dark flash latency and CVR was observed. Future work includes evaluating these relationships using more robust CVR and PLR measurement techniques in a larger, more diverse cohort. Notably, more research is warranted into the PLR using a dark flash protocol and its connection to cerebrovascular function.
Collapse
Affiliation(s)
| | | | | | - Daniel Bulte
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Magnusson G, Engström M, Georgiopoulos C, Cedersund G, Tobieson L, Tisell A. High inspired CO 2 target accuracy in mechanical ventilation and spontaneous breathing using the Additional CO 2 method. Front Med (Lausanne) 2024; 11:1352012. [PMID: 38841571 PMCID: PMC11150593 DOI: 10.3389/fmed.2024.1352012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/16/2024] [Indexed: 06/07/2024] Open
Abstract
Introduction Cerebrovascular reactivity imaging (CVR) is a diagnostic method for assessment of alterations in cerebral blood flow in response to a controlled vascular stimulus. The principal utility is the capacity to evaluate the cerebrovascular reserve, thereby elucidating autoregulatory functioning. In CVR, CO2 gas challenge is the most prevalent method, which elicits a vascular response by alterations in inspired CO2 concentrations. While several systems have been proposed in the literature, only a limited number have been devised to operate in tandem with mechanical ventilation, thus constraining the majority CVR investigations to spontaneously breathing individuals. Methods We have developed a new method, denoted Additional CO2, designed to enable CO2 challenge in ventilators. The central idea is the introduction of an additional flow of highly concentrated CO2 into the respiratory circuit, as opposed to administration of the entire gas mixture from a reservoir. By monitoring the main respiratory gas flow emanating from the ventilator, the CO2 concentration in the inspired gas can be manipulated by adjusting the proportion of additional CO2. We evaluated the efficacy of this approach in (1) a ventilator coupled with a test lung and (2) in spontaneously breathing healthy subjects. The method was evaluated by assessment of the precision in attaining target inspired CO2 levels and examination of its performance within a magnetic resonance imaging environment. Results and discussion Our investigations revealed that the Additional CO2 method consistently achieved a high degree of accuracy in reaching target inspired CO2 levels in both mechanical ventilation and spontaneous breathing. We anticipate that these findings will lay the groundwork for a broader implementation of CVR assessments in mechanically ventilated patients.
Collapse
Affiliation(s)
- Gustav Magnusson
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Maria Engström
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Charalampos Georgiopoulos
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Diagnostic Radiology, Department of Clinical Sciences, Medical Faculty, Lund University, Lund, Sweden
| | - Gunnar Cedersund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Lovisa Tobieson
- Department of Neurosurgery in Linköping, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anders Tisell
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| |
Collapse
|
8
|
Barakat RM, Turcani M, Al-Khaledi G, Kilarkaje N, Al-Sarraf H, Sayed Z, Redzic Z. Low oxygen in inspired air causes severe cerebrocortical hypoxia and cell death in the cerebral cortex of awake rats. Neurosci Lett 2024; 818:137515. [PMID: 37865187 DOI: 10.1016/j.neulet.2023.137515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/12/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023]
Abstract
Type 1 respiratory failure (T1RF) is associated with secondary acute brain injury (sABI). The underlying mechanisms of sABI could include injury to brain cells mediated either by hypoxia or by lung injury-triggered inflammation. To elucidate to what extent T1RF causes hypoxia and a consequent hypoxic injury in the brain in the absence of lung injury, we exposed healthy, conscious Sprague-Dawley rats to 48 h long low partial pressure of O2 in inspired air (PiO2) (7.5-8 % O2 in N2, CO2 < 0.5 %, normal barometric pressure) and measured the partial pressure of oxygen in the premotor cortex (PtO2), cerebral blood flow (CBF), lactate concentrations, and cell death. Low PiO2 significantly affected PtO2, which was 52.3 (SD 2.1) mmHg when PiO2 was normal but declined to 6.4 (SD 3.8) mmHg when PiO2 was low for 1 h. This was accompanied by increased lactate concentrations in plasma, CSF, and premotor cortex. Low PiO2 elevated the number of dead cells in the cerebral cortex from 5.6 (SD 4.8) % (when PiO2 was normal) to 20.5 (SD 4.1) % and 32.37 (SD 6.5) % after 24 h and 48 h exposure to low PiO2, respectively. The Mann-Kendall test could not detect any monotonic increase or decrease in pial blood flow during the 48 h exposure to low PiO2. In summary, our findings suggest that exposure to low PiO2 caused a severe hypoxia in the cerebral cortex, which triggers a massive cell death. Since these conditions mimic T1RF, hypoxic injury could be an important underlying cause of T1RF-induced sABI.
Collapse
Affiliation(s)
- Rawan M Barakat
- Department of Physiology, College of Medicine, Kuwait University, Kuwait
| | - Marian Turcani
- Department of Physiology, College of Medicine, Kuwait University, Kuwait
| | - Ghanim Al-Khaledi
- Department of Pharmacology, College of Medicine, Kuwait University, Kuwait
| | | | - Hameed Al-Sarraf
- Department of Physiology, College of Medicine, Kuwait University, Kuwait
| | - Zeinab Sayed
- Department of Physiology, College of Medicine, Kuwait University, Kuwait
| | - Zoran Redzic
- Department of Physiology, College of Medicine, Kuwait University, Kuwait.
| |
Collapse
|
9
|
Sams A, Haanes KA, Holm A, Kazantzi S, Mikkelsen LF, Edvinsson L, Brain S, Sheykhzade M. Heterogeneous vasomotor responses in segments from Göttingen Minipigs coronary, cerebral, and mesenteric artery: A comparative study. Vascul Pharmacol 2023; 153:107231. [PMID: 37730143 DOI: 10.1016/j.vph.2023.107231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
Göttingen Minipigs (GM) are used as an important preclinical model for cardiovascular safety pharmacology and for evaluation of cardiovascular drug targets. To improve the translational value of the GM model, the current study represents a basic characterization of vascular responses to endothelial regulators and sympathetic, parasympathetic, and sensory neurotransmitters in different anatomical origins. The aim of the current comparative and descriptive study is to use myography to characterize the vasomotor responses of coronary artery isolated from GM and compare the responses to those obtained from parallel studies using cerebral and mesenteric arteries. The selected agonists for sympathetic (norepinephrine), parasympathetic (carbachol), sensory (calcitonin gene-related peptide, CGRP), and endothelial pathways (endothelin-1, ET-1, and bradykinin) were used for comparison. Further, the robust nature of the vasomotor responses was evaluated after 24 h of cold storage of vascular tissue mimicking the situation under which human biopsies are often kept before experiments or grafting is feasible. Results show that bradykinin and CGRP consistently dilated, and endothelin consistently contracted artery segments from coronary, cerebral, and mesenteric origin. By comparison, norepinephrine and carbachol, had responses that varied with the anatomical source of the tissues. To support the basic characterization of GM vasomotor responses, we demonstrated the presence of mRNA encoding selected vascular receptors (CGRP- and ETA-receptors) in fresh artery segments. In conclusion, the vasomotor responses of isolated coronary, cerebral, and mesenteric arteries to selected agonists of endothelial, sympathetic, parasympathetic, and sensory pathways are different and the phenotypes are similar to sporadic human findings.
Collapse
Affiliation(s)
- Anette Sams
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark; Epoqe Pharma, Ole Maaloes Vej 3, 2200 Copenhagen N, Denmark.
| | | | - Anja Holm
- Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark; Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
| | - Spyridoula Kazantzi
- Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark
| | | | - Lars Edvinsson
- Department of Clinical Experimental Research, Rigshospitalet, Glostrup, Denmark
| | - Susan Brain
- Section of Vascular Biology & Inflammation, School of Cardiovascular Medicine & Research, BHF Centre of Excellence, King's College London, London, United Kingdom
| | - Majid Sheykhzade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
10
|
Guluzade NA, Huggard JD, Duffin J, Keir DA. A test of the interaction between central and peripheral respiratory chemoreflexes in humans. J Physiol 2023; 601:4591-4609. [PMID: 37566804 DOI: 10.1113/jp284772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
How central and peripheral chemoreceptor drives to breathe interact in humans remains contentious. We measured the peripheral chemoreflex sensitivity to hypoxia (PChS) at various isocapnic CO2 tensions (P C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) to determine the form of the relationship between PChS and centralP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ . Twenty participants (10F) completed three repetitions of modified rebreathing tests with end-tidalP O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ (P ET O 2 ${P_{{\mathrm{ET}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) clamped at 150, 70, 60 and 45 mmHg. End-tidalP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ (P ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ),P ET O 2 ${P_{{\mathrm{ET}}{{\mathrm{O}}_{\mathrm{2}}}}}$ , ventilation (V ̇ $\dot{V}$ E ) and calculated oxygen saturation (SC O2 ) were measured breath-by-breath by gas-analyser and pneumotach. TheV ̇ $\dot{V}$ E -P ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ relationship of repeat-trials were linear-interpolated, combined, averaged into 1 mmHg bins, and fitted with a double-linear function (V ̇ $\dot{V}$ E S, L min-1 mmHg-1 ). PChS was computed at intervals of 1 mmHg ofP ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ as follows: the difference inV ̇ $\dot{V}$ E between the three hypoxic profiles and the hyperoxic profile (∆V ̇ $\dot{V}$ E ) was calculated; three ∆V ̇ $\dot{V}$ E values were plotted against corresponding SC O2 ; and linear regression determined PChS (Lmin-1 mmHg-1 %SC O2 -1 ). These processing steps were repeated at eachP ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ to produce the PChS vs. isocapnicP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ relationship. These were fitted with linear and polynomial functions, and Akaike information criterion identified the best-fit model. One-way repeated measures analysis of variance assessed between-condition differences.V ̇ $\dot{V}$ E S increased (P < 0.0001) with isoxicP ET O 2 ${P_{{\mathrm{ET}}{{\mathrm{O}}_{\mathrm{2}}}}}$ from 3.7 ± 1.5 L min-1 mmHg-1 at 150 mmHg to 4.4 ± 1.8, 5.0 ± 1.6 and 6.0 ± 2.2 Lmin-1 mmHg-1 at 70, 60 and 45 mmHg, respectively. Mean SC O2 fell progressively (99.3 ± 0%, 93.7 ± 0.1%, 90.4 ± 0.1% and 80.5 ± 0.1%; P < 0.0001). In all individuals, PChS increased withP ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ , and this relationship was best described by a linear model in 75%. Despite increasing central chemoreflex activation, PChS increased linearly withP ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ indicative of an additive central-peripheral chemoreflex response. KEY POINTS: How central and peripheral chemoreceptor drives to breathe interact in humans remains contentious. We measured peripheral chemoreflex sensitivity to hypoxia (PChS) at various isocapnic carbon dioxide tensions (P C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) to determine the form of the relationship between PChS and centralP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ . Participants performed three repetitions of modified rebreathing with end-tidalP O 2 ${P_{{{\mathrm{O}}_{\mathrm{2}}}}}$ fixed at 150, 70, 60 and 45 mmHg. PChS was computed at intervals of 1 mmHg of end-tidalP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ (P ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ) as follows: the difference inV ̇ $\dot{V}$ E between the three hypoxic profiles and the hyperoxic profile (∆V ̇ $\dot{V}$ E ) was calculated; three ∆V ̇ $\dot{V}$ E values were plotted against corresponding calculated oxygen saturation (SC O2 ); and linear regression determined PChS (Lmin-1 mmHg-1 %SC O2 -1 ). In all individuals, PChS increased withP ETC O 2 ${P_{{\mathrm{ETC}}{{\mathrm{O}}_{\mathrm{2}}}}}$ , and this relationship was best described by a linear (rather than polynomial) model in 15 of 20. Most participants did not exhibit a hypo- or hyper-additive effect of central chemoreceptors on the peripheral chemoreflex indicating that the interaction was additive.
Collapse
Affiliation(s)
- Nasimi A Guluzade
- School of Kinesiology, The University of Western Ontario, London, ON, Canada
| | - Joshua D Huggard
- School of Kinesiology, The University of Western Ontario, London, ON, Canada
| | - James Duffin
- Department of Anaesthesia and Pain Management, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Thornhill Research Inc., Toronto, ON, Canada
| | - Daniel A Keir
- School of Kinesiology, The University of Western Ontario, London, ON, Canada
- Toronto General Research Institute, Toronto General Hospital, Toronto, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
11
|
Carr JMJR, Day TA, Ainslie PN, Hoiland RL. The jugular venous-to-arterial P C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ difference during rebreathing and end-tidal forcing: Relationship with cerebral perfusion. J Physiol 2023; 601:4251-4262. [PMID: 37635691 DOI: 10.1113/jp284449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023] Open
Abstract
We examined two assumptions of the modified rebreathing technique for the assessment of the ventilatory central chemoreflex (CCR) and cerebrovascular CO2 reactivity (CVR), hypothesizing: (1) that rebreathing abolishes the gradient between the partial pressures of arterial and brain tissue CO2 [measured via the surrogate jugular venousP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ and arterialP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ difference (Pjv-a CO2 )] and (2) rebreathing eliminates the capacity of CVR to influence the Pjv-a CO2 difference, and thus affect CCR sensitivity. We also evaluated these variables during two separate dynamic end-tidal forcing (ETF) protocols (termed: ETF-1 and ETF-2), another method of assessing CCR sensitivity and CVR. Healthy participants were included in the rebreathing (n = 9), ETF-1 (n = 11) and ETF-2 (n = 10) protocols and underwent radial artery and internal jugular vein (advanced to jugular bulb) catheterization to collect blood samples. Transcranial Doppler ultrasound was used to measure middle cerebral artery blood velocity (MCAv). The Pjv-a CO2 difference was not abolished during rebreathing (6.2 ± 2.6 mmHg; P < 0.001), ETF-1 (9.3 ± 1.5 mmHg; P < 0.001) or ETF-2 (8.6 ± 1.4 mmHg; P < 0.001). The Pjv-a CO2 difference did not change during the rebreathing protocol (-0.1 ± 1.2 mmHg; P = 0.83), but was reduced during the ETF-1 (-3.9 ± 1.1 mmHg; P < 0.001) and ETF-2 (-3.4 ± 1.2 mmHg; P = 0.001) protocols. Overall, increases in MCAv were associated with reductions in the Pjv-a CO2 difference during ETF (-0.095 ± 0.089 mmHg cm-1 s-1 ; P = 0.001) but not during rebreathing (-0.028 ± 0.045 mmHg · cm-1 · s-1 ; P = 0.067). These findings suggest that, although the Pjv-a CO2 is not abolished during any chemoreflex assessment technique, hyperoxic hypercapnic rebreathing is probably more appropriate to assess CCR sensitivity independent of cerebrovascular reactivity to CO2 . KEY POINTS: Modified rebreathing is a technique used to assess the ventilatory central chemoreflex and is based on the premise that the rebreathing method eliminates the difference between arterial and brain tissueP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ . Therefore, rebreathing is assumed to isolate the ventilatory response to central chemoreflex stimulation from the influence of cerebral blood flow. We assessed these assumptions by measuring arterial and jugular venous bulbP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ and middle cerebral artery blood velocity during modified rebreathing and compared these data against data from another test of the ventilatory central chemoreflex using hypercapnic dynamic end-tidal forcing. The difference between arterial and jugular venous bulbP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ remained present during both rebreathing and end-tidal forcing tests, whereas middle cerebral artery blood velocity was associated with theP C O 2 ${P_{{\mathrm{C}}{{\mathrm{O}}_{\mathrm{2}}}}}$ difference during end-tidal forcing but not rebreathing. These findings offer substantiating evidence that clarifies and refines the assumptions of modified rebreathing tests, enhancing interpretation of future findings.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, AB, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, University of British Columbia Okanagan, Kelowna, BC, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Liu JX, Fang CL, Zhang K, Ma RF, Zhou HS, Chen L, Wang QL, Lu YX, Wang TH, Xiong LL. Transcranial Doppler Ultrasonography detection on cerebrovascular flow for evaluating neonatal hypoxic-ischemic encephalopathy modeling. Front Neurosci 2023; 17:962001. [PMID: 37250420 PMCID: PMC10213400 DOI: 10.3389/fnins.2023.962001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/18/2023] [Indexed: 05/31/2023] Open
Abstract
Objective This study aimed to investigate the feasibility of Transcranial Doppler Ultrasonography (TCD) in evaluating neonatal hypoxic-ischemic encephalopathy (NHIE) modeling through monitoring the alteration of cerebrovascular flow in neonatal hypoxic-ischemic (HI) rats. Methods Postnatal 7-day-old Sprague Dawley (SD) rats were divided into the control group, HI group, and hypoxia (H) group. TCD was applied to assess the changes of cerebral blood vessels, cerebrovascular flow velocity, and heart rate (HR) in sagittal and coronal sections at 1, 2, 3, and 7 days after the operation. For accuracy, cerebral infarct of rats was examined by 2,3,5-Triphenyl tetrazolium chloride (TTC) staining and Nissl staining to simultaneously verify the establishment of NHIE modeling. Results Coronal and sagittal TCD scans revealed obvious alteration of cerebrovascular flow in main cerebral vessels. Obvious cerebrovascular back-flow was observed in anterior cerebral artery (ACA), basilar artery (BA), middle cerebral artery (MCA) of HI rats, along with accelerated cerebrovascular flows in the left internal carotid artery (ICA-L) and BA, decreased flows in right internal carotid artery (ICA-R) relative to those in the H and control groups. The alterations of cerebral blood flows in neonatal HI rats indicated successful ligation of right common carotid artery. Besides, TTC staining further validated the cerebral infarct was indeed caused due to ligation-induced insufficient blood supply. Damage to nervous tissues was also revealed by Nissl staining. Conclusion Cerebral blood flow assessment by TCD in neonatal HI rats contributed to cerebrovascular abnormalities observed in a real-time and non-invasive way. The present study elicits the potentials to utilize TCD as an effective means for monitoring the progression of injury as well as NHIE modeling. The abnormal appearance of cerebral blood flow is also beneficial to the early warning and effective detection in clinical practice.
Collapse
Affiliation(s)
- Jin-Xiang Liu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Laboratory Animal Department, Kunming Medical University, Kunming, China
| | - Chang-Le Fang
- Laboratory Animal Department, Kunming Medical University, Kunming, China
- School of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Kun Zhang
- Shantou Ultrasonic Instrument Research Institute Co., Ltd., Shantou, Guangdong, China
| | - Rui-Fang Ma
- Laboratory Animal Department, Kunming Medical University, Kunming, China
| | - Hong-Su Zhou
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Li Chen
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiu-Lin Wang
- Department of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Yu-Xuan Lu
- School of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Ting-Hua Wang
- Laboratory Animal Department, Kunming Medical University, Kunming, China
- Institute of Neurological Disease, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
13
|
Carr JM, Ainslie PN, MacLeod DB, Tremblay JC, Nowak-Flück D, Howe CA, Stembridge M, Patrician A, Coombs GB, Stacey BS, Bailey DM, Green DJ, Hoiland RL. Cerebral O 2 and CO 2 transport in isovolumic haemodilution: Compensation of cerebral delivery of O 2 and maintenance of cerebrovascular reactivity to CO 2. J Cereb Blood Flow Metab 2023; 43:99-114. [PMID: 36131560 PMCID: PMC9875354 DOI: 10.1177/0271678x221119442] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This study investigated the influence of acute reductions in arterial O2 content (CaO2) via isovolumic haemodilution on global cerebral blood flow (gCBF) and cerebrovascular CO2 reactivity (CVR) in 11 healthy males (age; 28 ± 7 years: body mass index; 23 ± 2 kg/m2). Radial artery and internal jugular vein catheters provided measurement of blood pressure and gases, quantification of cerebral metabolism, cerebral CO2 washout, and trans-cerebral nitrite exchange (ozone based chemiluminescence). Prior to and following haemodilution, the partial pressure of arterial CO2 (PaCO2) was elevated with dynamic end-tidal forcing while gCBF was measured with duplex ultrasound. CVR was determined as the slope of the gCBF response and PaCO2. Replacement of ∼20% of blood volume with an equal volume of 5% human serum albumin (Alburex® 5%) reduced haemoglobin (13.8 ± 0.8 vs. 11.3 ± 0.6 g/dL; P < 0.001) and CaO2 (18.9 ± 1.0 vs 15.0 ± 0.8 mL/dL P < 0.001), elevated gCBF (+18 ± 11%; P = 0.002), preserved cerebral oxygen delivery (P = 0.49), and elevated CO2 washout (+11%; P = 0.01). The net cerebral uptake of nitrite (11.6 ± 14.0 nmol/min; P = 0.027) at baseline was abolished following haemodilution (-3.6 ± 17.9 nmol/min; P = 0.54), perhaps underpinning the conservation of CVR (61.7 ± 19.0 vs. 69.0 ± 19.2 mL/min/mmHg; P = 0.23). These findings demonstrate that the cerebrovascular responses to acute anaemia in healthy humans are sufficient to support the maintenance of CVR.
Collapse
Affiliation(s)
- Jay Mjr Carr
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, School of Health and Exercise Sciences, Kelowna, B.C., Canada, V1V 1V7
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, School of Health and Exercise Sciences, Kelowna, B.C., Canada, V1V 1V7
| | - David B MacLeod
- Human Pharmacology & Physiology Lab, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Joshua C Tremblay
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, School of Health and Exercise Sciences, Kelowna, B.C., Canada, V1V 1V7
| | - Daniela Nowak-Flück
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, School of Health and Exercise Sciences, Kelowna, B.C., Canada, V1V 1V7
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, School of Health and Exercise Sciences, Kelowna, B.C., Canada, V1V 1V7
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Alexander Patrician
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, School of Health and Exercise Sciences, Kelowna, B.C., Canada, V1V 1V7
| | - Geoff B Coombs
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, School of Health and Exercise Sciences, Kelowna, B.C., Canada, V1V 1V7.,School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Daniel J Green
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Nedlands, Western Australia
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, University of British Columbia - Okanagan Campus, School of Health and Exercise Sciences, Kelowna, B.C., Canada, V1V 1V7.,Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.,International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Ingestion of carbonated water increases middle cerebral artery blood velocity and improves mood states in resting humans exposed to ambient heat stress. Physiol Behav 2022; 255:113942. [PMID: 35964802 DOI: 10.1016/j.physbeh.2022.113942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022]
Abstract
Sugar-free carbonated water is consumed worldwide. The consumption of carbonated water is high in summer, when the heat loss responses of sweating and skin vasodilation are activated, and thermal perceptions (thermal sensation and comfort) and mood states are negatively modulated. However, whether ingesting carbonated water under ambient heat exposure modulates cerebral blood flow index, heat loss responses, thermal perceptions, and mood states remains to be determined. In this study, 17 healthy, habitually active, young adults (eight women) ingested 4 °C noncarbonated or carbonated water under 37 °C ambient heat-stressed resting conditions. Both drinks increased the middle cerebral artery mean blood velocity, an index of cerebral blood flow, and mean arterial pressure, with carbonated water exhibiting higher elevations than noncarbonated water (P < 0.05). However, the heart rate, sweat rate, and skin blood flow during and after drinking remained unchanged between the two conditions (P > 0.05). The thermal sensation and comfort after drinking remained unchanged between the two conditions (P > 0.05); but, a drink-induced reduction in sleepiness was higher, and drink-induced elevations in motivation and exhilaration were higher after ingesting carbonated water than those after ingesting noncarbonated water (P < 0.05). The analyses suggest that in humans under ambient heat-stressed resting conditions, ingestion of cold carbonated water increases the cerebral blood flow index, blood pressure, motivation, and exhilaration, whereas it decreases sleepiness relative to ingestion of noncarbonated cold water. However, ingestion of cold carbonated water fails to modulate thermoregulatory responses and thermal perception as opposed to noncarbonated cold water.
Collapse
|
15
|
Caldwell HG, Hoiland RL, Smith KJ, Brassard P, Bain AR, Tymko MM, Howe CA, Carr JMJR, Stacey BS, Bailey DM, Drapeau A, Sekhon MS, MacLeod DB, Ainslie PN. Trans-cerebral HCO 3- and PCO 2 exchange during acute respiratory acidosis and exercise-induced metabolic acidosis in humans. J Cereb Blood Flow Metab 2022; 42:559-571. [PMID: 34904461 PMCID: PMC8943603 DOI: 10.1177/0271678x211065924] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 01/06/2023]
Abstract
This study investigated trans-cerebral internal jugular venous-arterial bicarbonate ([HCO3-]) and carbon dioxide tension (PCO2) exchange utilizing two separate interventions to induce acidosis: 1) acute respiratory acidosis via elevations in arterial PCO2 (PaCO2) (n = 39); and 2) metabolic acidosis via incremental cycling exercise to exhaustion (n = 24). During respiratory acidosis, arterial [HCO3-] increased by 0.15 ± 0.05 mmol ⋅ l-1 per mmHg elevation in PaCO2 across a wide physiological range (35 to 60 mmHg PaCO2; P < 0.001). The narrowing of the venous-arterial [HCO3-] and PCO2 differences with respiratory acidosis were both related to the hypercapnia-induced elevations in cerebral blood flow (CBF) (both P < 0.001; subset n = 27); thus, trans-cerebral [HCO3-] exchange (CBF × venous-arterial [HCO3-] difference) was reduced indicating a shift from net release toward net uptake of [HCO3-] (P = 0.004). Arterial [HCO3-] was reduced by -0.48 ± 0.15 mmol ⋅ l-1 per nmol ⋅ l-1 increase in arterial [H+] with exercise-induced acidosis (P < 0.001). There was no relationship between the venous-arterial [HCO3-] difference and arterial [H+] with exercise-induced acidosis or CBF; therefore, trans-cerebral [HCO3-] exchange was unaltered throughout exercise when indexed against arterial [H+] or pH (P = 0.933 and P = 0.896, respectively). These results indicate that increases and decreases in systemic [HCO3-] - during acute respiratory/exercise-induced metabolic acidosis, respectively - differentially affect cerebrovascular acid-base balance (via trans-cerebral [HCO3-] exchange).
Collapse
Affiliation(s)
- Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Ryan L Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kurt J Smith
- Department of Exercise Science, Physical and Health Education, Faculty of Education, University of Victoria, Victoria, British Columbia, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada
| | - Anthony R Bain
- Faculty of Human Kinetics, Department of Kinesiology, University of Windsor, Windsor, ON, Canada
| | - Michael M Tymko
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, AB, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Jay MJR Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Audrey Drapeau
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, QC, Canada
| | - Mypinder S Sekhon
- Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - David B MacLeod
- Human Pharmacology and Physiology Lab, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
16
|
Sayin ES, Davidian A, Levine H, Venkatraghavan L, Mikulis DJ, Fisher JA, Sobczyk O, Duffin J. Does breathing pattern affect cerebrovascular reactivity? Exp Physiol 2021; 107:183-191. [PMID: 34961983 DOI: 10.1113/ep090122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is cerebrovascular reactivity affected by isocapnic changes in breathing pattern? What is the main finding and its importance? The main finding is that cerebrovascular reactivity does not change with isocapnic variations in tidal volume and frequency. ABSTRACT Deviations of arterial carbon dioxide tension from resting values affect cerebral blood vessel tone and thereby cerebral blood flow. Arterial carbon dioxide tension also affects central respiratory chemoreceptors, adjusting respiratory drive. This coincidence raises the question whether respiratory drive also affects the cerebral blood flow response to carbon dioxide. A change in cerebral blood flow for a given change in the arterial carbon dioxide tension is defined as cerebrovascular reactivity. Two studies have reached conflicting conclusions on this question, using voluntary control of breathing as a disturbing factor during measurements of cerebrovascular reactivity. Here we address some of the methodological limitations of both studies by using sequential gas delivery and targeted control of carbon dioxide and oxygen to enable a separation of the effects of carbon dioxide on cerebrovascular reactivity from breathing vigor. We confirm there is no detectable superimposed effect of breathing efforts on cerebrovascular reactivity. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ece Su Sayin
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Anahis Davidian
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Harrison Levine
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Lashmi Venkatraghavan
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - David J Mikulis
- Institute of Medical Sciences, University of Toronto, Toronto, Canada.,Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, Canada
| | - Joseph A Fisher
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Olivia Sobczyk
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, Canada.,Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, Canada
| | - James Duffin
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
17
|
Carr JMJR, Caldwell HG, Carter H, Smith K, Tymko MM, Green DJ, Ainslie PN, Hoiland RL. The stability of cerebrovascular CO 2 reactivity following attainment of physiological steady-state. Exp Physiol 2021; 106:2542-2555. [PMID: 34730862 DOI: 10.1113/ep089982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? During a steady-state cerebrovascular CO2 reactivity test, do different data extraction time points change the outcome for cerebrovascular CO2 reactivity? What is the main finding and its importance? Once steady-state end-tidal pressure of CO2 and haemodynamics were achieved, cerebral blood flow was stable, and so cerebrovascular CO2 reactivity values remained unchanged regardless of data extraction length (30 vs. 60 s) and time point (at 2-5 min). ABSTRACT This study assessed cerebrovascular CO2 reactivity (CVR) and examined data extraction time points and durations with the hypotheses that: (1) there would be no difference in CVR values when calculated with cerebral blood flow (CBF) measures at different time points following the attainment of physiological steady-state, (2) once steady-state was achieved there would be no difference in CVR values derived from 60 to 30 s extracted means, and (3) that changes in V ̇ E would not be associated with any changes in CVR. We conducted a single step iso-oxic hypercapnic CVR test using dynamic end-tidal forcing (end-tidal P C O 2 , +9.4 ± 0.7 mmHg), and transcranial Doppler and Duplex ultrasound of middle cerebral artery (MCA) and internal carotid artery (ICA), respectively. From the second minute of hypercapnia onwards, physiological steady-state was apparent, with no subsequent changes in end-tidal P C O 2 , P O 2 or mean arterial pressure. Therefore, CVR measured in the ICA and MCA was stable following the second minute of hypercapnia onwards. Data extraction durations of 30 or 60 s did not give statistically different CVR values. No differences in CVR were detected following the second minute of hypercapnia after accounting for mean arterial pressure via calculated conductance or covariation of mean arterial pressure. These findings demonstrate that, provided the P C O 2 stimulus remains in a steady-state, data extracted from any minute of a CVR test during physiological steady-state conditions produce equivalent CVR values; any change in the CVR value would represent a failure of CVR mechanisms, a change in the magnitude of the stimulus, or measurement error.
Collapse
Affiliation(s)
- Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Howard Carter
- Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, Australia
| | - Kurt Smith
- Cerebrovascular Health, Exercise, and Environmental Research Sciences Laboratory (CHEERS), School of Exercise Science and Physical Health Education, Faculty of Education, University of Victoria, Victoria, British Columbia, Canada
| | - Michael M Tymko
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, & Recreation, University of Alberta, Edmonton, Canada
| | - Daniel J Green
- Cardiovascular Research Group, School of Human Sciences (Exercise and Sport Science), University of Western Australia, Perth, Australia
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan Campus, Kelowna, British Columbia, Canada.,Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaborations on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
18
|
Caldwell HG, Carr JMJR, Minhas JS, Swenson ER, Ainslie PN. Acid-base balance and cerebrovascular regulation. J Physiol 2021; 599:5337-5359. [PMID: 34705265 DOI: 10.1113/jp281517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022] Open
Abstract
The regulation and defence of intracellular pH is essential for homeostasis. Indeed, alterations in cerebrovascular acid-base balance directly affect cerebral blood flow (CBF) which has implications for human health and disease. For example, changes in CBF regulation during acid-base disturbances are evident in conditions such as chronic obstructive pulmonary disease and diabetic ketoacidosis. The classic experimental studies from the past 75+ years are utilized to describe the integrative relationships between CBF, carbon dioxide tension (PCO2 ), bicarbonate (HCO3 - ) and pH. These factors interact to influence (1) the time course of acid-base compensatory changes and the respective cerebrovascular responses (due to rapid exchange kinetics between arterial blood, extracellular fluid and intracellular brain tissue). We propose that alterations in arterial [HCO3 - ] during acute respiratory acidosis/alkalosis contribute to cerebrovascular acid-base regulation; and (2) the regulation of CBF by direct changes in arterial vs. extravascular/interstitial PCO2 and pH - the latter recognized as the proximal compartment which alters vascular smooth muscle cell regulation of CBF. Taken together, these results substantiate two key ideas: first, that the regulation of CBF is affected by the severity of metabolic/respiratory disturbances, including the extent of partial/full acid-base compensation; and second, that the regulation of CBF is independent of arterial pH and that diffusion of CO2 across the blood-brain barrier is integral to altering perivascular extracellular pH. Overall, by realizing the integrative relationships between CBF, PCO2 , HCO3 - and pH, experimental studies may provide insights to improve CBF regulation in clinical practice with treatment of systemic acid-base disorders.
Collapse
Affiliation(s)
- Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, Kelowna, Canada
| | - Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, Kelowna, Canada
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Erik R Swenson
- Pulmonary, Critical Care and Sleep Medicine Division, University of Washington, and VA Puget Sound Healthcare System, Seattle, WA, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Okanagan, Kelowna, Canada
| |
Collapse
|
19
|
Erratum. Exp Physiol 2021; 106:2287. [PMID: 34643004 DOI: 10.1113/ep090093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 11/08/2022]
|
20
|
Weston ME, Barker AR, Tomlinson OW, Coombes JS, Bailey TG, Bond B. Differences in cerebrovascular regulation and ventilatory responses during ramp incremental cycling in children, adolescents, and adults. J Appl Physiol (1985) 2021; 131:1200-1210. [PMID: 34435503 DOI: 10.1152/japplphysiol.00182.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Regulation of cerebral blood flow during exercise in youth is poorly understood. This study investigated the cerebrovascular and ventilatory responses to a ramp incremental cycle test to exhaustion in 14 children (means ± SD age: 9.4 ± 0.9 yr), 14 adolescents (12.4 ± 0.4 yr), and 19 adults (23.4 ± 2.5 yr). Middle cerebral artery blood velocity (MCAv), partial pressure of end-tidal CO2 ([Formula: see text]), and ventilatory parameters were analyzed at baseline, gas exchange threshold (GET), respiratory compensation point (RCP), and exhaustion. The increase in minute ventilation relative to CO2 production during exercise was also calculated (V̇e/V̇co2 slope). Relative change from baseline (Δ%) in MCAv was lower in children, compared with adolescents and adults at GET [15 ± 10% vs. 26 ± 14%, and 24 ± 10%, respectively, P ≤ 0.03, effect size (d) = 0.9] and RCP (13 ± 11% vs. 24 ± 16% and 27 ± 15%, respectively, P ≤ 0.05, d ≥ 0.8). Δ%MCAv was similar in adults and adolescents at all intensities and similar in all groups at exhaustion. The magnitude of the V̇E/V̇co2 slope was negatively associated with Δ%MCAv at GET and RCP across all participants (P ≤ 0.01, r = -0.37 to -0.48). Δ%[Formula: see text] was smaller in children and adolescents compared with adults at GET and RCP (P ≤ 0.05, d ≥ 0.6). In children, Δ%[Formula: see text] and Δ%MCAv were not associated from baseline-GET (r¯ = 0.14) and were moderately associated from RCP-exhaustion (r¯ = 0.49). These relationships strengthened with increasing age and were stronger in adolescents (baseline-GET: r¯ = 0.47, RCP-exhaustion: r¯ = 0.62) and adults (baseline-GET: r¯ = 0.66, RCP-exhaustion: r¯ = 0.78). These findings provide the first evidence on the development of the regulatory role of [Formula: see text] on MCAv during exercise in children, adolescents, and adults.NEW & NOTEWORTHY This is the first study to observe similar increases in cerebral blood flow during incremental exercise in adolescents and adults. Increases in cerebral blood flow during exercise were smaller in children compared with adolescents and adults and were associated with a greater V̇E/V̇co2 slope. This study also provides the first evidence on the progressive development of the regulatory role of end-tidal CO2 on cerebral blood flow during exercise during the transition from childhood to adulthood.
Collapse
Affiliation(s)
- Max E Weston
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.,Physiology and Ultrasound Laboratory in Science and Exercise, School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Alan R Barker
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Owen W Tomlinson
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Jeff S Coombes
- Physiology and Ultrasound Laboratory in Science and Exercise, School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Tom G Bailey
- Physiology and Ultrasound Laboratory in Science and Exercise, School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Bert Bond
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|