1
|
Amano T, Fujii N, Kenny GP, Mündel T, Yokoyama S, Yamashita H, Quan YS. Pretreatment of microneedles enhances passive transdermal administration of pilocarpine and pilocarpine-induced sweat production in humans. Int J Pharm 2024; 662:124497. [PMID: 39033941 DOI: 10.1016/j.ijpharm.2024.124497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
The development of an effective transdermal drug delivery protocol to eccrine sweat glands is important for the advancement of research on the human sweating response. We investigated whether microneedle treatment prior to the application of pilocarpine, a hydrophilic and sudorific agent that does not induce sweating due to a limited percutaneous passive diffusion by skin application alone, augments sweat production. We applied three microneedle arrays to forearm skin sites simultaneously (n = 20). Upon removal of the microneedles, 1 % pilocarpine was applied to each site for 5-, 15-, and 30-min for the assessment of sweat gland function. In parallel, pilocarpine was administered by transdermal iontophoresis (5-min) at a separate site. Sweat rate was assessed continuously via the ventilated capsule technique. Pilocarpine augmented sweat rate at the 15- and 30-min periods as compared to the application at 5-min. The sweating responses induced by the 15- and 30-min application of pilocarpine were equivalent to ∼ 80 % of that measured at the iontophoretically treated sites. Notably, we observed a correlation in sweat rate between these two transdermal drug delivery methods. Altogether, our findings show that pre-treatment of microneedle arrays can enhance transdermal delivery efficiency of pilocarpine to human eccrine sweat glands.
Collapse
Affiliation(s)
- Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan.
| | - Naoto Fujii
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ontario, Canada
| | - Toby Mündel
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Shotaro Yokoyama
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | | | | |
Collapse
|
2
|
Maimaituxun G, Amano T, Kenny GP, Mündel T, Kajiki M, Tagawa K, Katagiri A, Tanabe Y, Watanabe K, Nishiyasu T, Kondo N, Fujii N. GH and IGF-1 in skin interstitial fluid and blood are associated with heat loss responses in exercising young adults. Eur J Appl Physiol 2024; 124:2285-2301. [PMID: 38446190 DOI: 10.1007/s00421-024-05448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
PURPOSE Sweat glands and cutaneous vessels possess growth hormone (GH) and insulin-like growth factor 1 (IGF-1) receptors. Here, we assessed if exercise increases GH and IGF-1 in skin interstitial fluid, and whether baseline and exercise-induced increases in GH and IGF-1 concentrations in skin interstitial fluid/blood are associated with heat loss responses of sweating and cutaneous vasodilation. METHODS Sixteen young adults (7 women) performed a 50-min moderate-intensity exercise bout (50% VO2peak) during which skin dialysate and blood samples were collected. In a sub-study (n = 7, 4 women), we administered varying concentrations of GH (0.025-4000 ng/mL) and IGF-1 (0.000256-100 µg/mL) into skin interstitial fluid via intradermal microdialysis. Sweat rate (ventilated capsule) and cutaneous vascular conductance (CVC) were measured continuously for both studies. RESULTS Exercise increased sweating and CVC (both P < 0.001), paralleled by increases of serum GH and skin dialysate GH and IGF-1 (all P ≤ 0.041) without changes in serum IGF-1. Sweating was positively correlated with baseline dialysate and serum GH levels, as well as exercise-induced increases in serum GH and IGF-1 (all P ≤ 0.044). Increases in CVC were not correlated with any GH and IGF-1 variables. Exogenous administration of GH and IGF-1 did not modulate resting sweat rate and CVC. CONCLUSION (1) Exercise increases GH and IGF-1 levels in the skin interstitial fluid, (2) exercise-induced sweating is associated with baseline GH in skin interstitial fluid and blood, as well as exercise-induced increases in blood GH and IGF-1, and (3) cutaneous vasodilation during exercise is not associated with GH and IGF-1 in skin interstitial fluid and blood.
Collapse
Affiliation(s)
- Gulinu Maimaituxun
- Institue of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Toby Mündel
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Masanobu Kajiki
- Institue of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan
| | - Kaname Tagawa
- Institue of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan
| | - Akira Katagiri
- Institue of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan
| | - Yoko Tanabe
- Japan Society for the Promotion of Science, Tokyo, Japan
- Faculty of Health and Sports Sciences, Toyo University, Tokyo, Japan
| | - Koichi Watanabe
- Institue of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan
| | - Takeshi Nishiyasu
- Institue of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan
- Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Naoto Fujii
- Institue of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8574, Japan.
- Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
3
|
Notley SR, Akerman AP, D'Souza AW, Meade RD, McCourt ER, McCormick JJ, Kenny GP. Dose-dependent nonthermal modulation of whole body heat exchange during dynamic exercise in humans. Am J Physiol Regul Integr Comp Physiol 2024; 326:R53-R65. [PMID: 37955132 DOI: 10.1152/ajpregu.00203.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
To maintain heat balance during exercise, humans rely on skin blood flow and sweating to facilitate whole body dry and evaporative heat exchange. These responses are modulated by the rise in body temperature (thermal factors), as well as several nonthermal factors implicated in the cardiovascular response to exercise (i.e., central command, mechanoreceptors, and metaboreceptors). However, the way these nonthermal factors interact with thermal factors to maintain heat balance remains poorly understood. We therefore used direct calorimetry to quantify the effects of dose-dependent increases in the activation of these nonthermal stimuli on whole body dry and evaporative heat exchange during dynamic exercise. In a randomized crossover design, eight participants performed 45-min cycling at a fixed metabolic heat production (200 W/m2) in warm, dry conditions (30°C, 20% relative humidity) on four separate occasions, differing only in the level of lower-limb compression applied via bilateral thigh cuffs pressurized to 0, 30, 60, or 90 mmHg. This model provoked increments in nonthermal activation while ensuring the heat loss required to balance heat production was matched across trials. At end-exercise, dry heat loss was 2 W/m2 [1, 3] lower per 30-mmHg pressure increment (P = 0.006), whereas evaporative heat loss was elevated 5 W/m2 [3, 7] with each pressure increment (P < 0.001). Body heat storage and esophageal temperature did not differ across conditions (both P ≥ 0.600). Our findings indicate that the nonthermal factors engaged during exercise exert dose-dependent, opposing effects on whole body dry and evaporative heat exchange, which do not significantly alter heat balance.NEW & NOTEWORTHY To maintain heat balance during exercise, humans rely on skin blood flow and sweating to facilitate dry and evaporative heat exchange. These responses are modulated by body temperatures (thermal factors) and several nonthermal factors (e.g., central command, metaboreceptors), although the way thermal and nonthermal factors interact to regulate body temperature is poorly understood. We demonstrate that nonthermal factors exert dose-dependent, opposing effects on dry and evaporative heat loss, without altering heat storage during dynamic exercise.
Collapse
Affiliation(s)
- Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ashley P Akerman
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrew W D'Souza
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Emma R McCourt
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Fujii N, Rakwal R, Shibato J, Tanabe Y, Kenny GP, Amano T, Mündel T, Lei TH, Watanabe K, Kondo N, Nishiyasu T. Galanin receptors modulate cutaneous vasodilation elicited by whole-body and local heating but not thermal sweating in young adults. Eur J Pharmacol 2023:175904. [PMID: 37422121 DOI: 10.1016/j.ejphar.2023.175904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Galanin receptor subtypes GAL1, GAL2, and GAL3 are involved in several biological functions. We hypothesized that 1) GAL3 receptor activation contributes to sweating but limits cutaneous vasodilation induced by whole-body and local heating without a contribution of GAL2; and 2) GAL1 receptor activation attenuates both sweating and cutaneous vasodilation during whole-body heating. Young adults underwent whole-body (n = 12, 6 females) and local (n = 10, 4 females) heating. Forearm sweat rate (ventilated capsule) and cutaneous vascular conductance (CVC; ratio of laser-Doppler blood flow to mean arterial pressure) were assessed during whole-body heating (water-perfusion suit circulated with warm (35 °C) water), while CVC was also assessed by local forearm heating (33 °C-39 °C and elevated to 42 °C thereafter; each level of heating maintained for ∼30 min). Sweat rate and CVC were evaluated at four intradermal microdialysis forearm sites treated with either 1) 5% dimethyl sulfoxide (control), 2) M40, a non-selective GAL1 and GAL2 receptor antagonist, 3) M871 to selectively antagonize GAL2 receptor, or 4) SNAP398299 to selectively antagonize GAL3 receptor. Sweating was not modulated by any GAL receptor antagonist (P > 0.169), whereas only M40 reduced CVC (P ≤ 0.003) relative to control during whole-body heating. Relative to control, SNAP398299 augmented the initial and sustained increase in CVC during local heating to 39 °C, and the transient increase at 42 °C (P ≤ 0.028). We confirmed that while none of the galanin receptors modulate sweating during whole-body heating, GAL1 receptors mediate cutaneous vasodilation. Further, GAL3 receptors blunt cutaneous vasodilation during local heating.
Collapse
Affiliation(s)
- Naoto Fujii
- Advanced Research Initiative for Human High Performance (ARIHHP), Japan; Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.
| | - Randeep Rakwal
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.
| | - Junko Shibato
- Clinical Medicine Research Laboratory, Shonan University of Medical Sciences, Yokohama, Japan.
| | - Yoko Tanabe
- Advanced Research Initiative for Human High Performance (ARIHHP), Japan; Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada.
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan.
| | - Toby Mündel
- Department of Kinesiology, Brock University, St. Catharines, Canada.
| | - Tze-Huan Lei
- College of Physical Education, Hubei Normal University, Huangshi, China.
| | - Koichi Watanabe
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan.
| | - Takeshi Nishiyasu
- Advanced Research Initiative for Human High Performance (ARIHHP), Japan; Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
5
|
Kapoor MP, Sugita M, Kawaguchi M, Timm D, Kawamura A, Abe A, Okubo T. Influence of iron supplementation on fatigue, mood states and sweating profiles of healthy non-anemic athletes during a training exercise: A double-blind, randomized, placebo-controlled, parallel-group study. Contemp Clin Trials Commun 2023; 32:101084. [PMID: 36817736 PMCID: PMC9932653 DOI: 10.1016/j.conctc.2023.101084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Iron is specifically important to athletes, and attention has grown to the association between sports performance and iron regulation in the daily diets of athletes. The study presents new insights into stress, mood states, fatigue, and sweating behavior among the non-anemic athletes with sweating exercise habits who consumed a routine low dose (3.6 mg/day) of iron supplementation. In this double-blind, randomized, placebo-controlled, parallel-group study, both non-anemic male (N = 51) and female (N = 42) athletes were supplemented either with a known highly bioavailable iron formulation (SunActive® Fe) or placebo during the follow-up training exercise period over four weeks at their respective designated clinical sites. The effect of oral iron consumption was examined on fatigue, stress profiles, as well as the quality of life using the profile of mood state (POMS) test or a visual analog scale (VAS) questionnaire, followed by an exercise and well-being related fatigue-sweat. Also, their monotonic association with stress biomarkers (salivary α-amylase, salivary cortisol, and salivary immunoglobulin A) were determined using spearman's rank correlation coefficient test. Repeated measure multivariate analysis of variance (group by time) revealed that the total mood disturbance (TMD) score was significantly lower (P = 0.016; F = 6.26) between placebo and iron supplementation groups over the four weeks study period among female athletes. Also, a significant reduction in tired feeling/exhaustion after the exercise (P = 0.05; F = 4.07) between the placebo and iron intake groups was noticed. A significant within-group reduction (P ≤ 0.05) was noticed in the degree of sweat among both male and female athletes after 2 and 4 weeks of iron supplementation, while athletes of the placebo intake group experienced a non-significant within-group reduction in the degree of sweat. Overall, the result indicates routine use of low dose (3.6 mg/day) iron supplementation is beneficial for non-anemic endurance athletes to improve stress, mood states, subjective fatigue, and sweating conditions.
Collapse
Affiliation(s)
- Mahendra P. Kapoor
- Taiyo Kagaku Co., Ltd., Research & Development, Nutrition Division, 1-3 Takaramachi, Yokkaichi, Mie, 510-0844, Japan,Corresponding author.
| | - Masaaki Sugita
- Nippon Sport Science University, Faculty of Sport Science, 7-1-1 Fukusawa, Setagaya-Ku, Tokyo, 158 8508, Japan
| | - Mikiko Kawaguchi
- Otsuma Women's University, Faculty of Home Economics, Department of Food Science, 12 Sanbancho, Chiyoda, Tokyo, 102-8357, Japan
| | - Derek Timm
- Taiyo International Inc, 5960 Golden Hills Dr., Minneapolis, MN, 55416, USA
| | - Aki Kawamura
- Nippon Sport Science University, Faculty of Sport Science, 7-1-1 Fukusawa, Setagaya-Ku, Tokyo, 158 8508, Japan
| | - Aya Abe
- Taiyo Kagaku Co., Ltd., Research & Development, Nutrition Division, 1-3 Takaramachi, Yokkaichi, Mie, 510-0844, Japan
| | - Tsutomu Okubo
- Taiyo Kagaku Co., Ltd., Research & Development, Nutrition Division, 1-3 Takaramachi, Yokkaichi, Mie, 510-0844, Japan
| |
Collapse
|
6
|
Ingestion of carbonated water increases middle cerebral artery blood velocity and improves mood states in resting humans exposed to ambient heat stress. Physiol Behav 2022; 255:113942. [PMID: 35964802 DOI: 10.1016/j.physbeh.2022.113942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022]
Abstract
Sugar-free carbonated water is consumed worldwide. The consumption of carbonated water is high in summer, when the heat loss responses of sweating and skin vasodilation are activated, and thermal perceptions (thermal sensation and comfort) and mood states are negatively modulated. However, whether ingesting carbonated water under ambient heat exposure modulates cerebral blood flow index, heat loss responses, thermal perceptions, and mood states remains to be determined. In this study, 17 healthy, habitually active, young adults (eight women) ingested 4 °C noncarbonated or carbonated water under 37 °C ambient heat-stressed resting conditions. Both drinks increased the middle cerebral artery mean blood velocity, an index of cerebral blood flow, and mean arterial pressure, with carbonated water exhibiting higher elevations than noncarbonated water (P < 0.05). However, the heart rate, sweat rate, and skin blood flow during and after drinking remained unchanged between the two conditions (P > 0.05). The thermal sensation and comfort after drinking remained unchanged between the two conditions (P > 0.05); but, a drink-induced reduction in sleepiness was higher, and drink-induced elevations in motivation and exhilaration were higher after ingesting carbonated water than those after ingesting noncarbonated water (P < 0.05). The analyses suggest that in humans under ambient heat-stressed resting conditions, ingestion of cold carbonated water increases the cerebral blood flow index, blood pressure, motivation, and exhilaration, whereas it decreases sleepiness relative to ingestion of noncarbonated cold water. However, ingestion of cold carbonated water fails to modulate thermoregulatory responses and thermal perception as opposed to noncarbonated cold water.
Collapse
|
7
|
Fujii N, Amano T, Kenny GP, Mündel T, Lei TH, Honda Y, Kondo N, Nishiyasu T. TMEM16A blockers T16Ainh-A01 and benzbromarone do not modulate the regulation of sweating and cutaneous vasodilatation in humans in vivo. Exp Physiol 2022; 107:844-853. [PMID: 35688020 DOI: 10.1113/ep090521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/07/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do transmembrane member 16A (TMEM16A) blockers modulate the activation of heat loss responses of sweating and cutaneous vasodilatation? What are the main finding and its importance? Relative to the vehicle control site, TMEM16A blockers T16Ainh-A01 and benzbromarone had no effect on sweat rate or cutaneous vascular conductance during whole-body heating inducing a 1.1 ± 0.1°C increase in core temperature above baseline resting levels. These results suggest that TMEM16A blockers T16Ainh-A01 and benzbromarone do not modulate the regulation of sweating and cutaneous vasodilatation during whole-body heat stress. ABSTRACT Animal and in vitro studies suggest that transmembrane member 16A (TMEM16A), a Ca2+ -activated Cl- channel, contributes to regulating eccrine sweating. However, direct evidence supporting this possibility in humans is lacking. We assessed the hypothesis that TMEM16A blockers attenuate sweating during whole-body heating in humans. Additionally, we assessed the associated changes in the heat loss response of cutaneous vasodilatation to determine if a functional role of TMEM16A may exist. Twelve young (24 ± 2 years) adults (six females) underwent whole-body heating using a water-perfused suit to raise core temperature 1.1 ± 0.1°C above baseline. Sweat rate and cutaneous vascular conductance (normalized to maximal conductance via administration of sodium nitroprusside) were evaluated continuously at four forearm skin sites treated continuously by intradermal microdialysis with (1) lactated Ringer's solution (control), (2) 5% dimethyl sulfoxide (DMSO) serving as a vehicle control, or (3) TMEM16A blockers 1 mM T16Ainh-A01 or 2 mM benzbromarone dissolved in 5% DMSO solution. All drugs were administered continuously via intradermal microdialysis. Whole-body heating increased core temperature progressively and this was paralleled by an increase in sweat rate and cutaneous vascular conductance at all skin sites. However, sweat rate (all P > 0.318) and cutaneous vascular conductance (all P ≥ 0.073) did not differ between the vehicle control site relative to the TMEM16A blocker-treated sites. Collectively, our findings indicate that TMEM16A blockers T16Ainh-A01 and benzbromarone do not modulate the regulation of sweating and cutaneous vasodilatation during whole-body heating in young adults in vivo.
Collapse
Affiliation(s)
- Naoto Fujii
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ottawa, Canada
| | - Toby Mündel
- School of Sport Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| | - Tze-Huan Lei
- College of Physical Education, Hubei Normal University, Huangshi, China
| | - Yasushi Honda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Takeshi Nishiyasu
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
8
|
Rutherford MM, Akerman AP, Meade RD, Notley SR, Schmidt MD, Kenny GP. The effect of extracellular hyperosmolality on sweat rate during metaboreflex activation in passively heated young men. Am J Physiol Regul Integr Comp Physiol 2021; 322:R1-R13. [PMID: 34786980 DOI: 10.1152/ajpregu.00161.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metaboreflex activation augments sweating during mild-to-moderate hyperthermia in euhydrated (isosmotic isovolemic) individuals. Recent work indicates that extracellular hyperosmolality may augment metaboreflex-mediated elevations in sympathetic nervous activity. Our primary objective was therefore to test the hypothesis that extracellular hyperosmolality would exacerbate metaboreflex-mediated increases in sweat rate. On two separate occasions, 12 young men (mean (SD): 25 (5) years) received a 90-min intravenous infusion of either 0.9% saline (isosmotic condition, ISO) or 3.0% saline (hyperosmotic condition, HYP), resulting in a post-infusion serum osmolality of 290 (3) and 301 (7) mOsm/kg, respectively. A whole-body water perfusion suit was then used to increase esophageal temperature by 0.8°C above resting. Participants then performed a metaboreflex activation protocol consisting of 90 s isometric handgrip exercise (40% of their pre-determined maximum voluntary contraction), followed by 150 s of brachial occlusion (trapping produced metabolites within the limb). Metaboreflex-induced sweating was quantified as the change in global sweat rate (from pre-isometric handgrip exercise to brachial occlusion), estimated as the surface area-weighted average of local sweat rate on the abdomen, axilla, chest, bicep, quadriceps, and calf, measured using ventilated capsules (3.8 cm2). We also explored whether this response differed between body regions. The change in global sweat rate due to metaboreflex activation was significantly greater in HYP compared to ISO (0.03 mg/min/cm2 [95% confidence interval: 0.00, 0.06]; p=0.047), but was not modulated by body region (site*condition interaction: p=0.679). These findings indicate that extracellular hyperosmolality augments metaboreflex-induced increases in global sweat rate, with no evidence for region-specific differences.
Collapse
Affiliation(s)
- Maura M Rutherford
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Ashley P Akerman
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.,Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Madison D Schmidt
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, Ottawa, Ontario, Canada.,Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|