1
|
Möller FN, Fan JL, Futral JE, Hodgman CF, Kayser B, Lovering AT. Cardiopulmonary haemodynamics in Tibetans and Han Chinese during rest and exercise. J Physiol 2024; 602:3893-3907. [PMID: 38924564 DOI: 10.1113/jp286303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
During sea-level exercise, blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) in humans without a patent foramen ovale (PFO) is negatively correlated with pulmonary pressure. Yet, it is unknown whether the superior exercise capacity of Tibetans well adapted to living at high altitude is the result of lower pulmonary pressure during exercise in hypoxia, and whether their cardiopulmonary characteristics are significantly different from lowland natives of comparable ancestry (e.g. Han Chinese). We found a 47% PFO prevalence in male Tibetans (n = 19) and Han Chinese (n = 19) participants. In participants without a PFO (n = 10 each group), we measured heart structure and function at rest and peak oxygen uptake (V ̇ O 2 peak ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{peak}}}}$ ), peak power output (W ̇ p e a k ${{\dot{W}}_{peak}}$ ), pulmonary artery systolic pressure (PASP), blood flow through IPAVA and cardiac output (Q ̇ T ${{\dot{Q}}_{\mathrm{T}}} $ ) at rest and during recumbent cycle ergometer exercise at 760 Torr (SL) and at 410 Torr (ALT) barometric pressure in a pressure chamber. Tibetans achieved a higherW peak ${W}_{\textit{peak}}$ than Han, and a higherV ̇ O 2 peak ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}{\mathrm{peak}}}}$ at ALT without differences in heart rate, stroke volume orQ ̇ T ${{\dot{Q}}_{\mathrm{T}}} $ . Blood flow through IPAVA was generally similar between groups. Increases in PASP and total pulmonary resistance at ALT were comparable between the groups. There were no differences in the slopes of PASP plotted as a function ofQ ̇ T ${{\dot{Q}}_{\mathrm{T}}} $ during exercise. In those without PFO, our data indicate that the superior aerobic exercise capacity of Tibetans over Han Chinese is independent of cardiopulmonary features and more probably linked to differences in local muscular oxygen extraction. KEY POINTS: Patent foramen ovale (PFO) prevalence was 47% in Tibetans and Han Chinese living at 2 275 m. Subjects with PFO were excluded from exercise studies. Compared to Han Chinese, Tibetans had a higher peak workload with acute compression to sea level barometric pressure (SL) and acute decompression to 5000 m altitude (ALT). Comprehensive cardiac structure and function at rest were not significantly different between Han Chinese and Tibetans. Tibetans and Han had similar blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) during exercise at SL. Peak pulmonary artery systolic pressure (PASP) and total pulmonary resistance were different between SL and ALT, with significantly increased PASP for Han compared to Tibetans at ALT. No differences were observed between groups at acute SL and ALT.
Collapse
Affiliation(s)
- Fabian N Möller
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Boston, MA, USA
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
- German Sport University Cologne, Institute for Professional Sport Education and Qualification, Cologne, Germany
| | - Jui-Lin Fan
- Department of Physiology, Manaaki Manawa - The Centre for Heart Research, University of Auckland, Faculty of Medical and Health Sciences, Auckland, New Zealand
| | - Joel E Futral
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
- Oregon Heart & Vascular Institute, Springfield, Oregon, USA
| | - Charles F Hodgman
- Department of Health and Human Performance, University of Houston, Houston, TX, USA
| | - Bengt Kayser
- University of Lausanne, Institute of Sports Sciences, Lausanne, Switzerland
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
2
|
Stepanek J, Farina JM, Mahmoud AK, Chao CJ, Alsidawi S, Ayoub C, Barry T, Pereyra M, Scalia IG, Abbas MT, Wraith RE, Brown LS, Radavich MS, Curtisi PJ, Hartzendorf PC, Lasota EM, Umetsu KN, Peterson JM, Karlson KE, Breznak K, Fortuin DF, Lester SJ, Arsanjani R. Identifying the Causes of Unexplained Dyspnea at High Altitude Using Normobaric Hypoxia with Echocardiography. J Imaging 2024; 10:38. [PMID: 38392086 PMCID: PMC10889907 DOI: 10.3390/jimaging10020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
Exposure to high altitude results in hypobaric hypoxia, leading to physiological changes in the cardiovascular system that may result in limiting symptoms, including dyspnea, fatigue, and exercise intolerance. However, it is still unclear why some patients are more susceptible to high-altitude symptoms than others. Hypoxic simulation testing (HST) simulates changes in physiology that occur at a specific altitude by asking the patients to breathe a mixture of gases with decreased oxygen content. This study aimed to determine whether the use of transthoracic echocardiography (TTE) during HST can detect the rise in right-sided pressures and the impact of hypoxia on right ventricle (RV) hemodynamics and right to left shunts, thus revealing the underlying causes of high-altitude signs and symptoms. A retrospective study was performed including consecutive patients with unexplained dyspnea at high altitude. HSTs were performed by administrating reduced FiO2 to simulate altitude levels specific to patients' history. Echocardiography images were obtained at baseline and during hypoxia. The study included 27 patients, with a mean age of 65 years, 14 patients (51.9%) were female. RV systolic pressure increased at peak hypoxia, while RV systolic function declined as shown by a significant decrease in the tricuspid annular plane systolic excursion (TAPSE), the maximum velocity achieved by the lateral tricuspid annulus during systole (S' wave), and the RV free wall longitudinal strain. Additionally, right-to-left shunt was present in 19 (70.4%) patients as identified by bubble contrast injections. Among these, the severity of the shunt increased at peak hypoxia in eight cases (42.1%), and the shunt was only evident during hypoxia in seven patients (36.8%). In conclusion, the use of TTE during HST provides valuable information by revealing the presence of symptomatic, sustained shunts and confirming the decline in RV hemodynamics, thus potentially explaining dyspnea at high altitude. Further studies are needed to establish the optimal clinical role of this physiologic method.
Collapse
Affiliation(s)
- Jan Stepanek
- Aerospace Medicine Program, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ 85054, USA
| | - Juan M Farina
- Department of Cardiovascular Medicine, Mayo Clinic, Scottsdale, AZ 85054, USA
| | - Ahmed K Mahmoud
- Department of Cardiovascular Medicine, Mayo Clinic, Scottsdale, AZ 85054, USA
| | - Chieh-Ju Chao
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Said Alsidawi
- Department of Cardiovascular Medicine, Mayo Clinic, Scottsdale, AZ 85054, USA
| | - Chadi Ayoub
- Department of Cardiovascular Medicine, Mayo Clinic, Scottsdale, AZ 85054, USA
| | - Timothy Barry
- Department of Cardiovascular Medicine, Mayo Clinic, Scottsdale, AZ 85054, USA
| | - Milagros Pereyra
- Department of Cardiovascular Medicine, Mayo Clinic, Scottsdale, AZ 85054, USA
| | - Isabel G Scalia
- Department of Cardiovascular Medicine, Mayo Clinic, Scottsdale, AZ 85054, USA
| | | | - Rachel E Wraith
- Department of Cardiovascular Medicine, Mayo Clinic, Scottsdale, AZ 85054, USA
| | - Lisa S Brown
- Department of Cardiovascular Medicine, Mayo Clinic, Scottsdale, AZ 85054, USA
| | - Michael S Radavich
- Department of Cardiovascular Medicine, Mayo Clinic, Scottsdale, AZ 85054, USA
| | - Pamela J Curtisi
- Department of Cardiovascular Medicine, Mayo Clinic, Scottsdale, AZ 85054, USA
| | | | - Elizabeth M Lasota
- Department of Cardiovascular Medicine, Mayo Clinic, Scottsdale, AZ 85054, USA
| | - Kyley N Umetsu
- Department of Cardiovascular Medicine, Mayo Clinic, Scottsdale, AZ 85054, USA
| | - Jill M Peterson
- Department of Cardiovascular Medicine, Mayo Clinic, Scottsdale, AZ 85054, USA
| | - Kristin E Karlson
- Department of Cardiovascular Medicine, Mayo Clinic, Scottsdale, AZ 85054, USA
| | - Karen Breznak
- Aerospace Medicine Program, Department of Internal Medicine, Mayo Clinic, Scottsdale, AZ 85054, USA
| | - David F Fortuin
- Department of Cardiovascular Medicine, Mayo Clinic, Scottsdale, AZ 85054, USA
| | - Steven J Lester
- Department of Cardiovascular Medicine, Mayo Clinic, Scottsdale, AZ 85054, USA
| | - Reza Arsanjani
- Department of Cardiovascular Medicine, Mayo Clinic, Scottsdale, AZ 85054, USA
| |
Collapse
|
3
|
Lovering AT, Kelly TS, DiMarco KG, Bradbury KE, Charkoudian N. Implications of a patent foramen ovale on environmental physiology and pathophysiology: Do we know the hole story? J Physiol 2022; 600:1541-1553. [PMID: 35043424 DOI: 10.1113/jp281108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/14/2022] [Indexed: 11/08/2022] Open
Abstract
The foramen ovale is an essential component of the foetal circulation contributing to oxygenation and carbon dioxide elimination that remains patent under certain circumstances, in ∼ 30% of the healthy adult population, without major negative sequelae in most. Adults with a patent foramen ovale (PFO) have a greater tendency to develop symptoms of acute mountain sickness and high-altitude pulmonary oedema upon ascent to high altitude, and PFO presence is associated with worse cardiopulmonary function in chronic mountain sickness. This increase in altitude illness prevalence may be related to dysregulated cerebral blood flow associated with altered respiratory chemoreflex sensitivity; however, the mechanisms remain to be elucidated. Interestingly, men with a PFO appear to have a shift in thermoregulatory control to higher internal temperatures, both at rest and during exercise, and they have blunted thermal tachypnea. The teleological "reason" for this thermoregulatory shift is unclear, but the shift of ∼0.5°C in core body temperature does not appear to be sufficient to have any significant negative consequences in terms of risk of heat illness. Further work in this area is needed, particularly in women, to evaluate mechanisms of heat storage and dissipation in these individuals as compared to people without a PFO. Consequences of a PFO in SCUBA divers include a greater incidence of unprovoked decompression sickness, but whether PFO is beneficial or detrimental to breath hold diving remains unexplored. Whether PFO presence will explain interindividual variability in responses to, and consequences from, other environmental stressors such as spaceflight remain entirely unknown. Abstract figure legend Associations between PFO and altitude illnesses, core body temperature and diving. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Tyler S Kelly
- University of Oregon, Department of Human Physiology, Eugene, OR
| | | | - Karleigh E Bradbury
- University of Oregon, Department of Human Physiology, Eugene, OR.,United States Army Research Institute of Environmental Medicine, Thermal & Mountain Medicine Division, Natick, MA
| | - Nisha Charkoudian
- United States Army Research Institute of Environmental Medicine, Thermal & Mountain Medicine Division, Natick, MA
| |
Collapse
|