1
|
Shiozawa K, Saito M, Lee JB, Seo N, Kondo H, Kashima H, Endo MY, Ishida K, Millar PJ, Katayama K. Aging in females has minimal effect on changes in celiac artery blood flow during dynamic light-intensity exercise. Am J Physiol Regul Integr Comp Physiol 2024; 327:R14-R24. [PMID: 38738294 DOI: 10.1152/ajpregu.00012.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
Blood flow to the active muscles and arterial blood pressure (ABP) increase during dynamic exercise, whereas blood flow to inactive organs (e.g., splanchnic organs and inactive limbs) declines. Aging leads to exaggerated ABP responses to exercise in females, but whether this is related to greater splanchnic vasoconstriction is unknown. This study sought to clarify the effect of aging in females on celiac artery blood flow during dynamic light-intensity exercise. Twelve healthy young females (YF: 20 ± 2 yr, mean ± SD) and 12 healthy older females (OF: 71 ± 4 yr) performed dynamic knee-extension and knee-flexion exercises at 30% of heart rate reserve for 4 min. The absolute changes from baseline (Δ) for mean arterial blood pressure (MAP), celiac artery mean blood flow (celMBF), and celiac vascular conductance (celVC) during exercise were calculated. ABP was measured using an automated sphygmomanometer, and celMBF was recorded by Doppler ultrasonography. The increase in MAP during exercise was greater in OF than in YF (YF: +14 ± 7 mmHg, OF: +24 ± 13 mmHg, P = 0.028). The celMBF decreased during exercise in both groups, but there was no significant difference in the response between YF and OF (YF: -93.0 ± 66.1 mL/min, OF: -89.6 ± 64.0 mL/min, P = 0.951). The celVC also decreased during exercise and remained lower than baseline during exercise. However, the response was not different between YF and OF (YF: -1.8 ± 1.0 mL/min/mmHg, OF: -1.5 ± 0.6 mL/min/mmHg, P = 0.517). These results demonstrate that aging in females has minimal influence on splanchnic artery hemodynamic responses during dynamic light-intensity exercise, suggesting that exaggerated ABP responses during exercise in OF are not due to greater splanchnic vasoconstriction.NEW & NOTEWORTHY During exercise, the splanchnic arteries vasoconstrict, contributing to blood flow redistribution and the blood pressure response. Blood pressure responses to exercise are exaggerated with aging in females; however, the physiological mechanism responsible has not been clarified. We show that celiac artery blood flow changes during light-intensity dynamic exercise do not differ with age in females. This indicates the exaggerated blood pressure to exercise with aging is likely not due to a difference in splanchnic vasoconstriction.
Collapse
Affiliation(s)
- Kana Shiozawa
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Mitsuru Saito
- Applied Physiology Laboratory, Toyota Technological Institute, Nagoya, Japan
| | - Jordan B Lee
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Natsuki Seo
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Haruna Kondo
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hideaki Kashima
- Department of Health Science, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Masako Yamaoka Endo
- Department of Health Science, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Koji Ishida
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Keisho Katayama
- Graduate School of Medicine, Nagoya University, Nagoya, Japan
- Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Panerai RB, Alshehri A, Beishon LC, Davies A, Haunton VJ, Katsogridakis E, Lam MY, Llwyd O, Robinson TG, Minhas JS. Determinants of the dynamic cerebral critical closing pressure response to changes in mean arterial pressure. Physiol Meas 2024; 45:065006. [PMID: 38838702 DOI: 10.1088/1361-6579/ad548d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Objective. Cerebral critical closing pressure (CrCP) represents the value of arterial blood pressure (BP) where cerebral blood flow (CBF) becomes zero. Its dynamic response to a step change in mean BP (MAP) has been shown to reflect CBF autoregulation, but robust methods for its estimation are lacking. We aim to improve the quality of estimates of the CrCP dynamic response.Approach. Retrospective analysis of 437 healthy subjects (aged 18-87 years, 218 males) baseline recordings with measurements of cerebral blood velocity in the middle cerebral artery (MCAv, transcranial Doppler), non-invasive arterial BP (Finometer) and end-tidal CO2(EtCO2, capnography). For each cardiac cycle CrCP was estimated from the instantaneous MCAv-BP relationship. Transfer function analysis of the MAP and MCAv (MAP-MCAv) and CrCP (MAP-CrCP) allowed estimation of the corresponding step responses (SR) to changes in MAP, with the output in MCAv (SRVMCAv) representing the autoregulation index (ARI), ranging from 0 to 9. Four main parameters were considered as potential determinants of the SRVCrCPtemporal pattern, including the coherence function, MAP spectral power and the reconstruction error for SRVMAP, from the other three separate SRs.Main results. The reconstruction error for SRVMAPwas the main determinant of SRVCrCPsignal quality, by removing the largest number of outliers (Grubbs test) compared to the other three parameters. SRVCrCPshowed highly significant (p< 0.001) changes with time, but its amplitude or temporal pattern was not influenced by sex or age. The main physiological determinants of SRVCrCPwere the ARI and the mean CrCP for the entire 5 min baseline period. The early phase (2-3 s) of SRVCrCPresponse was influenced by heart rate whereas the late phase (10-14 s) was influenced by diastolic BP.Significance. These results should allow better planning and quality of future research and clinical trials of novel metrics of CBF regulation.
Collapse
Affiliation(s)
- Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Abdulaziz Alshehri
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- College of Applied Medical Sciences, University of Najran, Najran, Saudi Arabia
| | - Lucy C Beishon
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Aaron Davies
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Victoria J Haunton
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Emmanuel Katsogridakis
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Man Y Lam
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Osian Llwyd
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- Wolfson Centre for Prevention of Stroke and Dementia, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Thompson G Robinson
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
3
|
Fu X, Zhang W, Li X, Liu H, Zhang Y, Gao Q. Critical closing pressure as a new hemodynamic marker of cerebral small vessel diseases burden. Front Neurol 2023; 14:1091075. [PMID: 37025201 PMCID: PMC10071665 DOI: 10.3389/fneur.2023.1091075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
Purpose To investigate cerebrovascular hemodynamics, including critical closing pressure (CrCP) and pulsatility index (PI), and their independent relationship with cerebral small vessel disease (CSVD) burden in patients with small-vessel occlusion (SVO). Methods We recruited consecutive patients with SVO of acute cerebral infarction who underwent brain magnetic resonance imaging (MRI), transcranial Doppler (TCD) and CrCP during admission. Cerebrovascular hemodynamics were assessed using TCD. We used the CSVD score to rate the total MRI burden of CSVD. Multiple regression analysis was used to determine parameters related to CSVD burden or CrCP. Results Ninety-seven of 120 patients (mean age, 64.51 ± 9.99 years; 76% male) completed the full evaluations in this study. We observed that CrCP was an independent determinant of CSVD burden in four models [odds ratio, 1.41; 95% confidence interval (CI), 1.17-1.71; P < 0.001] and correlated with CSVD burden [β (95% CI): 0.05 (0.04-0.06); P < 0.001]. In ROC analysis, CrCP was considered as a predictor of CSVD burden, and AUC was 86.2% (95% CI, 78.6-93.9%; P < 0.001). Multiple linear regression analysis showed that CrCP was significantly correlated with age [β (95% CI): 0.27 (0.06 to 0.47); P = 0.012], BMI [β (95% CI): 0.61 (0.00-1.22)] and systolic BP [β (95% CI): 0.16 (0.09-0.23); P < 0.001]. Conclusions CrCP representing cerebrovascular tension is an independent determinant and predictor of CSVD burden. It was significantly correlated with age, BMI and systolic blood pressure. These results provide new insights in the mechanism of CSVD development.
Collapse
Affiliation(s)
- Xian Fu
- Department of Neurology, Shenzhen Bao'an District Songgang People's Hospital, Shenzhen, China
- Xian Fu
| | - Weijin Zhang
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xianliang Li
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongying Liu
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yin Zhang
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingchun Gao
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Qingchun Gao
| |
Collapse
|
4
|
Trofimova KA, Agarkova DI, Trofimov AO, Lidji-Goryaev C, Semyachkina-Glushkovskaya O, Abashkin AY, Bragin DE. Critical Closing Pressure of Cerebral Circulation at Concomitant Moderate-to-Severe Traumatic Brain Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1395:157-161. [PMID: 36527631 PMCID: PMC10042480 DOI: 10.1007/978-3-031-14190-4_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Critical closing pressure (CrCP) is the pressure below which local pial blood pressure is inadequate to prevent blood flow cessation. The state of cerebral CrCP in patients with concomitant moderate-to-severe traumatic brain injury (cTBI) after brain lesions surgery remains poorly understood. AIM The aim of our study was to establish the dynamics of CrCP after intracranial surgery in traumatic brain injury (TBI) patients with polytrauma. MATERIAL AND METHODS Results of the treatment of 70 patients with moderate-to-severe сTBI were studied (Male: Female - 39:31, mean age -33.2 ± 12.2 years). Depending on intracranial surgery, patients were divided into 2 groups. All patients were subjected to transcranial Doppler of both middle cerebral arteries, and evaluation of mean arterial pressure (MAP). Based on the data obtained, CrCPs were calculated. Significance was preset to P < 0.05. RESULTS Mean CrCP values in each group were significantly higher than a reference range (р < 0.01). There was no significant difference in CrCP values between the left and right hemispheres in the group 1 (p = 0.789). In the group 2, mean CrCP values on the unoperated side remained significantly lower than on the operated side (p = 0.000011) even after intracranial surgery. In group 1, mean CrCP values were significantly lower than on the surgery side in the group 1 (Z = 3,4; р = 0.043). CONCLUSION CrCP values in concomitant moderate-to-severe TBI after removing brain lesions and without surgery were significantly higher than referral data. Even after removal of brain lesions volumes in patients with concomitant moderate-to-severe TBI, CrCP values on the surgery side remained markedly higher than on the side opposite to the removed lesion volumes.
Collapse
Affiliation(s)
- Kseniia A Trofimova
- Department of Neurological Diseases, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Darya I Agarkova
- Department of Neurological Diseases, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Alex O Trofimov
- Department of Neurological Diseases, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
- Department of Physiology, Saratov State University, Saratov, Russia
| | - Cyrill Lidji-Goryaev
- Department of Neurological Diseases, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | | | | | - Denis E Bragin
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
5
|
Beishon L, Clough RH, Kadicheeni M, Chithiramohan T, Panerai RB, Haunton VJ, Minhas JS, Robinson TG. Vascular and haemodynamic issues of brain ageing. Pflugers Arch 2021; 473:735-751. [PMID: 33439324 PMCID: PMC8076154 DOI: 10.1007/s00424-020-02508-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 01/17/2023]
Abstract
The population is ageing worldwide, thus increasing the burden of common age-related disorders to the individual, society and economy. Cerebrovascular diseases (stroke, dementia) contribute a significant proportion of this burden and are associated with high morbidity and mortality. Thus, understanding and promoting healthy vascular brain ageing are becoming an increasing priority for healthcare systems. In this review, we consider the effects of normal ageing on two major physiological processes responsible for vascular brain function: Cerebral autoregulation (CA) and neurovascular coupling (NVC). CA is the process by which the brain regulates cerebral blood flow (CBF) and protects against falls and surges in cerebral perfusion pressure, which risk hypoxic brain injury and pressure damage, respectively. In contrast, NVC is the process by which CBF is matched to cerebral metabolic activity, ensuring adequate local oxygenation and nutrient delivery for increased neuronal activity. Healthy ageing is associated with a number of key physiological adaptations in these processes to mitigate age-related functional and structural declines. Through multiple different paradigms assessing CA in healthy younger and older humans, generating conflicting findings, carbon dioxide studies in CA have provided the greatest understanding of intrinsic vascular anatomical factors that may mediate healthy ageing responses. In NVC, studies have found mixed results, with reduced, equivalent and increased activation of vascular responses to cognitive stimulation. In summary, vascular and haemodynamic changes occur in response to ageing and are important in distinguishing “normal” ageing from disease states and may help to develop effective therapeutic strategies to promote healthy brain ageing.
Collapse
Affiliation(s)
- Lucy Beishon
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK.
| | - Rebecca H Clough
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK
| | - Meeriam Kadicheeni
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK
| | - Tamara Chithiramohan
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Victoria J Haunton
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Jatinder S Minhas
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, LE2 7LX, UK.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
6
|
Trofimova KA, Agarkova DI, Trofimov AO, Abashkin AY, Bragin DE. Cerebral Critical Closing Pressure in Concomitant Traumatic Brain Injury and Intracranial Hematomas. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1339:33-38. [PMID: 35023087 PMCID: PMC9131855 DOI: 10.1007/978-3-030-78787-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The critical closing pressure (CrCP) is the pressure below which the local pial blood pressure is inadequate to prevent blood flow cessation. The cerebral CrCP in concomitant traumatic brain injury (TBI) and intracranial hematomas (TBI + ICH) remains understudied. The aim was to determine the status of the CrCP at сTBI with and without the ICH development. MATERIAL AND METHODS The results of the treatment of 90 patients with severe to moderate сTBI were studied (male/female - 49:41). The average age was 34.2 ± 14.4 years. Depending on the presence of ICH, patients were divided into two groups. All patients were subjected to transcranial Doppler of the both middle cerebral arteries, and evaluation of mean arterial pressure (MAP). Based on data obtained, the CrCPs were calculated. Significance was preset to p < 0.05. RESULTS The mean CrCP values in each group appeared to be significantly higher than a referral value (р < 0.05). The mean CrCP values in the perifocal zone of removed hematoma were significantly higher than in TBI patients without ICH (р = 0.015 and р = 0.048, respectively). Analysis of CrCP values in various types of ICH showed no statistically significant differences (р > 0.05). DISCUSSION The CrCP significantly differs in the groups of TBI patients with and without ICH. The comparability of the groups in respect to the concomitant injury structure proves that the revealed CrCP changes result from the traumatic compression of the brain.
Collapse
Affiliation(s)
- Kseniia A Trofimova
- Department of Neurosurgery, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Darya I Agarkova
- Department of Neurosurgery, Regional Hospital named after Semashko, Nizhny Novgorod, Russia
| | - Alex O Trofimov
- Department of Neurosurgery, Privolzhsky Research Medical University, Nizhny Novgorod, Russia.
- Department of Neurosurgery, Regional Hospital named after Semashko, Nizhny Novgorod, Russia.
| | - Andrew Y Abashkin
- Department of Neurosurgery, Regional Hospital named after Semashko, Nizhny Novgorod, Russia
| | - Denis E Bragin
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
7
|
Washio T, Watanabe H, Ogoh S. Dynamic cerebral autoregulation in anterior and posterior cerebral circulation during cold pressor test. J Physiol Sci 2020; 70:1. [PMID: 32039699 PMCID: PMC6987085 DOI: 10.1186/s12576-020-00732-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/22/2020] [Indexed: 12/26/2022]
Abstract
We hypothesized that cerebral blood flow (CBF) regulation in the posterior circulation differs from that of the anterior circulation during a cold pressor test (CPT) and is accompanied by elevations in arterial blood pressure (ABP) and sympathetic nervous activity (SNA). To test this, dynamic cerebral autoregulation (dCA) in the middle and posterior cerebral arteries (MCA and PCA) were measured at three different conditions: control, early phase of the CPT, and the late phase of the CPT. The dCA was examined using a thigh cuff occlusion and release technique. The MCA and PCA blood velocities were unchanged at CPT compared with the control conditions despite an elevation in the ABP. The dCA in both the MCA and PCA remained unaltered at CPT. These findings suggest that CPT-induced elevations in the ABP and SNA did not cause changes in the CBF regulation in the posterior circulation compared with the anterior circulation.
Collapse
Affiliation(s)
- Takuro Washio
- Department of Biomedical Engineering, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama, 350-8585, Japan.,Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hironori Watanabe
- Department of Biomedical Engineering, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama, 350-8585, Japan
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama, 350-8585, Japan.
| |
Collapse
|
8
|
Robertson AD, Atwi S, Kostoglou K, Verhoeff NPLG, Oh PI, Mitsis GD, Marzolini S, MacIntosh BJ. Cerebrovascular Pulsatility During Rest and Exercise Reflects Hemodynamic Impairment in Stroke and Cerebral Small Vessel Disease. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:3116-3127. [PMID: 31570171 DOI: 10.1016/j.ultrasmedbio.2019.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/24/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Although aerobic exercise is recommended as a core component of stroke rehabilitation, knowledge of acute cerebrovascular responses in patients is limited. This study tested the hypothesis that older adults with chronic stroke or cerebral small vessel disease (SVD) exhibit a greater increase in pulsatile hemodynamics during exercise compared with young and age-matched healthy adults. Middle cerebral artery blood flow velocity was acquired during 20 min of moderate intensity cycling in 51 participants from four groups (young, old, SVD and stroke). During rest, only the stroke group had a higher pulsatility index (PI) compared with the young group (1.02 ± 0.17 vs 0.83 ± 0.13; p = 0.038). During exercise, however, the SVD group exhibited a larger increase in PI (68 ± 20% relative to rest) than the young (47 ± 19%), old (45 ± 17%) and stroke (40 ± 25%) groups (p < 0.05, for each). The stress of aerobic exercise may reveal arterial dysfunction associated with latent and overt cerebrovascular disease.
Collapse
Affiliation(s)
- Andrew D Robertson
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Ottawa, Ontario, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada.
| | - Sarah Atwi
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Ottawa, Ontario, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Kyriaki Kostoglou
- Department of Electrical, Computer and Software Engineering, McGill University, Montreal, Quebec, Canada
| | - Nicolaas Paul L G Verhoeff
- Department of Psychiatry, Division of Geriatric Psychiatry, University of Toronto, Toronto, Ontario, Canada; Sam and Ida Ross Memory Disorders Clinic, Baycrest Health Sciences, Toronto, Ontario, Canada
| | - Paul I Oh
- Toronto Rehab, University Health Network, Toronto Ontario, Canada; Peter Munk Cardiac Centre, University of Toronto, Toronto, Ontario, Canada
| | - Georgios D Mitsis
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Susan Marzolini
- Toronto Rehab, University Health Network, Toronto Ontario, Canada
| | - Bradley J MacIntosh
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Ottawa, Ontario, Canada; Hurvitz Brain Sciences Program, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Determining differences between critical closing pressure and resistance-area product: responses of the healthy young and old to hypocapnia. Pflugers Arch 2019; 471:1117-1126. [DOI: 10.1007/s00424-019-02290-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/31/2019] [Accepted: 06/05/2019] [Indexed: 10/26/2022]
|
10
|
Steventon JJ, Hansen AB, Whittaker JR, Wildfong KW, Nowak-Flück D, Tymko MM, Murphy K, Ainslie PN. Cerebrovascular Function in the Large Arteries Is Maintained Following Moderate Intensity Exercise. Front Physiol 2018; 9:1657. [PMID: 30519192 PMCID: PMC6258791 DOI: 10.3389/fphys.2018.01657] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/02/2018] [Indexed: 01/13/2023] Open
Abstract
Exercise has been shown to induce cerebrovascular adaptations. However, the underlying temporal dynamics are poorly understood, and regional variation in the vascular response to exercise has been observed in the large cerebral arteries. Here, we sought to measure the cerebrovascular effects of a single 20-min session of moderate-intensity exercise in the one hour period immediately following exercise cessation. We employed transcranial Doppler (TCD) ultrasonography to measure cerebral blood flow velocity (CBFV) in the middle cerebral artery (MCAv) and posterior cerebral artery (PCAv) before, during, and following exercise. Additionally, we simultaneously measured cerebral blood flow (CBF) in the internal carotid artery (ICA) and vertebral artery (VA) before and up to one hour following exercise cessation using Duplex ultrasound. A hypercapnia challenge was used before and after exercise to examine exercise-induced changes in cerebrovascular reactivity (CVR). We found that MCAv and PCAv were significantly elevated during exercise (p = 4.81 × 10-5 and 2.40 × 10-4, respectively). A general linear model revealed that these changes were largely explained by the partial pressure of end-tidal CO2 and not a direct vascular effect of exercise. After exercise cessation, there was no effect of exercise on CBFV or CVR in the intracranial or extracranial arteries (all p > 0.05). Taken together, these data confirm that CBF is rapidly and uniformly regulated following exercise cessation in healthy young males.
Collapse
Affiliation(s)
- Jessica J Steventon
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Cardiff University Brain Research Imaging Centre, School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Alex B Hansen
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Joseph R Whittaker
- Cardiff University Brain Research Imaging Centre, School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Kevin W Wildfong
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Daniela Nowak-Flück
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Michael M Tymko
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Kevin Murphy
- Cardiff University Brain Research Imaging Centre, School of Physics and Astronomy, Cardiff University, Cardiff, United Kingdom
| | - Phil N Ainslie
- Centre for Heart Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia Okanagan, Kelowna, BC, Canada
| |
Collapse
|
11
|
Braz ID, Fisher JP. The impact of age on cerebral perfusion, oxygenation and metabolism during exercise in humans. J Physiol 2016; 594:4471-83. [PMID: 26435295 PMCID: PMC4983626 DOI: 10.1113/jp271081] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/24/2015] [Indexed: 01/05/2023] Open
Abstract
Age is one of the most important risk factors for dementia and stroke. Examination of the cerebral circulatory responses to acute exercise in the elderly may help to pinpoint the mechanisms by which exercise training can reduce the risk of brain diseases, inform the optimization of exercise training programmes and assist with the identification of age-related alterations in cerebral vascular function. During low-to-moderate intensity dynamic exercise, enhanced neuronal activity is accompanied by cerebral perfusion increases of ∼10-30%. Beyond ∼60-70% maximal oxygen uptake, cerebral metabolism remains elevated but perfusion in the anterior portion of the circulation returns towards baseline, substantively because of a hyperventilation-mediated reduction in the partial pressure of arterial carbon dioxide (P aC O2) and cerebral vasoconstriction. Cerebral perfusion is lower in older individuals, both at rest and during incremental dynamic exercise. Nevertheless, the increase in the estimated cerebral metabolic rate for oxygen and the arterial-internal jugular venous differences for glucose and lactate are similar in young and older individuals exercising at the same relative exercise intensities. Correction for the age-related reduction in P aC O2 during exercise by the provision of supplementary CO2 is suggested to remove ∼50% of the difference in cerebral perfusion between young and older individuals. A multitude of candidates could account for the remaining difference, including cerebral atrophy, and enhanced vasoconstrictor and blunted vasodilatory pathways. In summary, age-related reductions in cerebral perfusion during exercise are partly associated with a lower P aC O2 in exercising older individuals; nevertheless the cerebral extraction of glucose, lactate and oxygen appear to be preserved.
Collapse
Affiliation(s)
- Igor D Braz
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - James P Fisher
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
12
|
Robertson AD, Edgell H, Hughson RL. Assessing cerebrovascular autoregulation from critical closing pressure and resistance area product during upright posture in aging and hypertension. Am J Physiol Heart Circ Physiol 2014; 307:H124-33. [PMID: 24858843 DOI: 10.1152/ajpheart.00086.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Static cerebral autoregulation (sCA) is believed to be resistant to aging and hypertensive pathology. However, methods to characterize autoregulation commonly rely on beat-by-beat mean hemodynamic measures and do not consider within-beat pulse wave characteristics that are impacted by arterial stiffening. We examined the role of critical closing pressure (CrCP) and resistance area product (RAP), two measures derived from the pulse wave, across supine lying, sitting, and standing postures in young adults, normotensive older adults, and older adults with controlled and uncontrolled hypertension (N = 80). Traditional measures of sCA, using both intracranial and extracranial methods, indicated similar efficiency across all groups, but within-beat measures suggested different mechanisms of regulation. At rest, RAP was increased in hypertension compared with young adults (P < 0.001), but CrCP was similar. In contrast, the drop in CrCP was the primary regulator of change in cerebrovascular resistance upon adopting an upright posture. Both CrCP and RAP demonstrated group-by-posture interaction effects (P < 0.05), with older hypertensive adults exhibiting a rise in RAP that was absent in other groups. The posture-related swings in CrCP and RAP were related to changes in both the pulsatile and mean components of arterial pressure, independent of age, cardiac output, and carbon dioxide. Group-by-posture differences in pulse pressure were mediated in part by an attenuated heart rate response in older hypertensive adults (P = 0.002). Examination of pulsatile measures in young, elderly, and hypertensive adults identified unique differences in how cerebral blood flow is regulated in upright posture.
Collapse
Affiliation(s)
- Andrew D Robertson
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| | - Heather Edgell
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| | - Richard L Hughson
- Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| |
Collapse
|
13
|
Dynamic cerebral autoregulation changes during sub-maximal handgrip maneuver. PLoS One 2013; 8:e70821. [PMID: 23967113 PMCID: PMC3743835 DOI: 10.1371/journal.pone.0070821] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/23/2013] [Indexed: 12/21/2022] Open
Abstract
Purpose We investigated the effect of handgrip (HG) maneuver on time-varying estimates of dynamic cerebral autoregulation (CA) using the autoregressive moving average technique. Methods Twelve healthy subjects were recruited to perform HG maneuver during 3 minutes with 30% of maximum contraction force. Cerebral blood flow velocity, end-tidal CO2 pressure (PETCO2), and noninvasive arterial blood pressure (ABP) were continuously recorded during baseline, HG and recovery. Critical closing pressure (CrCP), resistance area-product (RAP), and time-varying autoregulation index (ARI) were obtained. Results PETCO2 did not show significant changes during HG maneuver. Whilst ABP increased continuously during the maneuver, to 27% above its baseline value, CBFV raised to a plateau approximately 15% above baseline. This was sustained by a parallel increase in RAP, suggestive of myogenic vasoconstriction, and a reduction in CrCP that could be associated with metabolic vasodilation. The time-varying ARI index dropped at the beginning and end of the maneuver (p<0.005), which could be related to corresponding alert reactions or to different time constants of the myogenic, metabolic and/or neurogenic mechanisms. Conclusion Changes in dynamic CA during HG suggest a complex interplay of regulatory mechanisms during static exercise that should be considered when assessing the determinants of cerebral blood flow and metabolism.
Collapse
|
14
|
Vlak MHM, Rinkel GJE, Greebe P, van der Bom JG, Algra A. Trigger factors for rupture of intracranial aneurysms in relation to patient and aneurysm characteristics. J Neurol 2011; 259:1298-302. [PMID: 22186848 PMCID: PMC3390687 DOI: 10.1007/s00415-011-6341-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 11/22/2011] [Accepted: 11/24/2011] [Indexed: 12/01/2022]
Abstract
Female gender, age above 60 years, and an aneurysm larger than 5 mm or location on the posterior circulation are associated with a higher rupture risk of intracranial aneurysms. We hypothesized that this association is explained by a higher susceptibility to (one of) the eight trigger factors that were recently identified. We included 250 patients with aneurysmal subarachnoid hemorrhage. We calculated relative risks (RR) with 95% confidence intervals (95% CI) of aneurysmal rupture for trigger factors according to sex, age, site, and size of the aneurysms by means of the case-crossover design. None of the triggers except for physical exercise differed according to patient and aneurysm characteristics. In the hour after exposure to physical exercise: (1) patients over the age of 60 have a six-times-higher risk of rupture (RR 13; 95% CI 6.3−26) than those of 60 years of age and under (RR 2.3; 1.3−4.1); (2) aneurysms at the internal carotid artery have a higher risk than those at other locations (RR 17; 7.8−37), but this was only statistically significant when compared to anterior communicating artery aneurysms (RR 3.2; 1.6−6.1); (3) aneurysms 5 mm or smaller had a higher risk of rupture (RR 9.5; 4.6−19) than larger aneurysms (RR 2.4; 1.3−4.3); and (4) women and men had similar risks. A higher susceptibility to exercise might explain part of the higher risk of rupture in older patients. Why women and patients with aneurysms larger than 5 mm or posterior circulation aneurysms have a higher risk of rupture remains to be settled.
Collapse
Affiliation(s)
- Monique H M Vlak
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
15
|
Archer T. Influence of Physical Exercise on Traumatic Brain Injury Deficits: Scaffolding Effect. Neurotox Res 2011; 21:418-34. [DOI: 10.1007/s12640-011-9297-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 12/02/2011] [Accepted: 12/02/2011] [Indexed: 12/19/2022]
|
16
|
Abstract
Sir Harold Himsworth's prescient observations 75 years ago have recently been expanded to include a clear relationship between insulin resistance and central nervous system function. Insulin is a master regulator of corporeal ageing in all known species, determining the rate and expression of ageing in multiple body systems. Thus, it is not surprising that insulin also plays an important role in brain ageing and cognitive decline that is associated with pathological brain ageing. Brain ageing is accompanied by reduced insulin effectiveness, either by an inadequate cellular response to insulin or by insulin deficiency attributable to reduced insulin transport across the blood-brain barrier. Age-associated brain insulin abnormalities may contribute to cognitive decline in ageing, as have been documented in older adults with Type 2 diabetes mellitus and hypertension. With more extreme pathology, brain insulin resistance may be associated with neurogenerative diseases such as Alzheimer's disease, and the condition which precedes Alzheimer's disease, known as amnestic mild cognitive impairment. In the following review, we discuss the mechanisms through which insulin resistance may induce or potentiate pathological brain ageing and thereby create a neurobiological environment that promotes neurodegeneration and associated cognitive decline. This topic is timely, given that insulin resistance-associated conditions such as diabetes and obesity have reached epidemic proportions. The prevalence of such chronic conditions, in combination with a rapidly ageing population, may result in a corresponding increase in the prevalence of Alzheimer's disease and other cognitive disorders. Fortunately, insulin resistance-associated conditions are amenable to both pharmacologic and lifestyle interventions that may reduce the deleterious impact of insulin resistance on the ageing brain.
Collapse
Affiliation(s)
- B Cholerton
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA 98108, USA
| | | | | |
Collapse
|