1
|
Vatner DE, Zhang J, Vatner SF. Brown adipose tissue enhances exercise performance and healthful longevity. Aging (Albany NY) 2024; 16:13442-13451. [PMID: 39699442 PMCID: PMC11723650 DOI: 10.18632/aging.206179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
Brown adipose tissue (BAT), a major subtypes of adipose tissues, is known for thermogenesis and promoting healthful longevity. Our hypothesis is that BAT protects against impaired healthful longevity, i.e., obesity, diabetes, cardiovascular disorders, cancer, Alzheimer's disease, and reduced exercise tolerance. While most prior studies have shown that exercise regulates BAT activation and improves BAT density, relatively few have shown that BAT increases exercise performance. In contrast, our recent studies with the regulator of G protein signaling 14 (RGS14) knockout (KO) model of extended longevity showed that it enhances exercise performance, mediated by its more potent BAT, compared with BAT from wild type mice. For example, when the BAT from RGS14 KO mice is transplanted to WT mice, their exercise capacity is enhanced at 3 days after BAT transplantation, whereas BAT transplantation from WT to WT mice increased exercise performance, but only at 8 weeks after transplantation. The goal of this research perspective is to review the role of BAT in mediating healthful longevity, specifically exercise capacity. In view of the ability of BAT to mediate healthful longevity and enhance exercise performance, it is likely that a pharmaceutical analog of BAT will become a novel therapeutic modality.
Collapse
Affiliation(s)
- Dorothy E. Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jie Zhang
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Stephen F. Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
2
|
Chaudhari PS, Ermolaeva MA. Too old for healthy aging? Exploring age limits of longevity treatments. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:37. [PMID: 39678297 PMCID: PMC11638076 DOI: 10.1038/s44324-024-00040-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024]
Abstract
It is well documented that aging elicits metabolic failures, while poor metabolism contributes to accelerated aging. Metabolism in general, and energy metabolism in particular are also effective entry points for interventions that extend lifespan and improve organ function during aging. In this review, we discuss common metabolic remedies for healthy aging from the angle of their potential age-specificity. We demonstrate that some well-known metabolic treatments are mostly effective in young and middle-aged organisms, while others maintain high efficacy independently of age. The mechanistic basis of presence or lack of the age limitations is laid out and discussed.
Collapse
Affiliation(s)
| | - Maria A. Ermolaeva
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| |
Collapse
|
3
|
Duong JJ, Leija RG, Osmond AD, Arevalo JA, Brooks GA. Leg cycling efficiency is unaltered in healthy aging regardless of sex or training status. J Appl Physiol (1985) 2024; 137:857-863. [PMID: 39088644 PMCID: PMC11486473 DOI: 10.1152/japplphysiol.00393.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/03/2024] Open
Abstract
Muscular efficiency during exercise has been used to interrogate aspects of human muscle energetics, including mitochondrial coupling and biomechanical efficiencies. Typically, assessments of muscular efficiency have involved graded exercises. Results of previous studies have been interpreted to indicate a decline in exercise efficiency with aging owing to decreased mitochondrial function. However, discrepancies in variables such as exercise stage duration, cycling cadence, and treadmill walking mechanics may have affected interpretations of results. Furthermore, recent data from our lab examining the ATP to oxygen ratio (P:O) in mitochondrial preparations isolated from NIA mouse skeletal muscle showed no change with aging. Thus, we hypothesized that delta efficiency (Δ€) during steady-rate cycling exercise would not be altered in older healthy subjects compared with young counterparts regardless of biological sex or training status. Young (21-35 yr) and older (60-80 yr) men (n = 21) and women (n = 20) underwent continual, progressive leg cycle ergometer tests pedaling at 60 RPM for three stages (35, 60, 85 W) lasting 4 min. Δ€was calculated as: (Δ work accomplished/Δ energy expended). Overall, cycling efficiencies were not significantly different in older compared with young subjects. Similarly, trained subjects did not exhibit significantly different exercise efficiencies compared to untrained. Moreover, there were no differences between men and women. Hence, our results obtained on healthy young and older subjects are interpreted to mean that previous reports of decreased efficiency in older individuals were attributable to metabolic or biomechanical comorbidities, not aging per se.NEW & NOTEWORTHY Muscular power is reduced, but the efficiency of movement is unaltered in healthy aging.
Collapse
Affiliation(s)
- Justin J Duong
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States
| | - Robert G Leija
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States
| | - Adam D Osmond
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States
| | - Jose A Arevalo
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States
| | - George A Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States
| |
Collapse
|
4
|
Ikeda Y, Gotoh-Katoh A, Okada S, Handa S, Sato T, Mizokami T, Saito B. Effect of kaempferol ingestion on physical activity and sleep quality: a double-blind, placebo-controlled, randomized, crossover trial. Front Nutr 2024; 11:1386389. [PMID: 39155930 PMCID: PMC11327823 DOI: 10.3389/fnut.2024.1386389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024] Open
Abstract
Background Kaempferol (KMP), a flavonoid in edible plants, exhibits diverse pharmacological effects. Growing body of evidence associates extended lifespan with physical activity (PA) and sleep, but KMP's impact on these behaviors is unclear. This double-blind, placebo-controlled, crossover trial assessed KMP's effects on PA and sleep. Methods A total of 33 city workers (17 males and 16 females) participated in this study. They were randomly assigned to take either 10 mg of KMP or placebo for 2 weeks in the order allocated, with a 7-day washout period in between. All participants wore an accelerometer-based wearable device (Fitbit Charge 4), which monitored daily PA, heart rate (HR), and HR variability during sleep. Results The duration of wearing the device was 23.73 ± 0.04 h/day. HR decreased in each PA level, and the mean daily step count and distance covered increased significantly during KMP intake compared to placebo. The outing rate, number of trips, number of recreational activities, and time spent in recreation on weekends increased. Sleep quality improved following KMP intake. The decrease in HR and increase in RMSSD may be important in mediating the effects of these KMPs. Conclusion KMP leads to behavioral changes that subsequently improve sleep quality and potentially improve long-term quality of life. Clinical Trial Registration https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000048447, UMIN000042438.
Collapse
Affiliation(s)
- Yasutaka Ikeda
- Otsu Nutraceuticals Research Institute, Otsuka Pharmaceutical Co. Ltd., Otsu, Japan
| | - Aina Gotoh-Katoh
- Otsu Nutraceuticals Research Institute, Otsuka Pharmaceutical Co. Ltd., Otsu, Japan
| | - Shinpei Okada
- Physical Education and Medicine Research Foundation, Tomi, Japan
| | - Shuichi Handa
- Physical Education and Medicine Research Foundation, Tomi, Japan
| | - Teruyuki Sato
- Physical Education and Medicine Research Foundation, Tomi, Japan
| | - Tsubasa Mizokami
- Saga Nutraceuticals Research Institute, Otsuka Pharmaceutical Co. Ltd., Saga, Japan
| | - Bungo Saito
- Physical Education and Medicine Research Foundation, Tomi, Japan
- Tomi City Mimaki Onsen Clinic, Tomi, Japan
| |
Collapse
|
5
|
Sanchez-Tocino ML, Cigarrán S, Ureña P, González-Casaus ML, Mas-Fontao S, Gracia-Iguacel C, Ortíz A, Gonzalez-Parra E. Definition and evolution of the concept of sarcopenia. Nefrologia 2024; 44:323-330. [PMID: 38945744 DOI: 10.1016/j.nefroe.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/18/2023] [Accepted: 08/06/2023] [Indexed: 07/02/2024] Open
Abstract
Sarcopenia and dynapenia are two terms associated with ageing that respectively define the loss of muscle mass and strength. In 2018, the European Working Group on Sarcopenia in Older People (EWGSOP) introduced the EWGSOP2 diagnostic algorithm for sarcopenia, which integrates both concepts. It consists of 4 sequential steps: screening for sarcopenia, examination of muscle strength, assessment of muscle mass and physical performance; depending on these last 3 aspects sarcopenia is categorised as probable, confirmed, and severe respectively. In the absence of validation of the EWGSOP2 algorithm in various clinical contexts, its use in haemodialysis poses several limitations: (a) low sensitivity of the screening, (b) the techniques that assess muscle mass are not very accessible, reliable, or safe in routine clinical care, (c) the sequential use of the magnitudes that assess dynapenia and muscle mass do not seem to adequately reflect the muscular pathology of the elderly person on dialysis. We reflect on the definition of sarcopenia and the use of more precise terms such as "myopenia" (replacing the classic concept of sarcopenia to designate loss of muscle mass), dynapenia and kratopenia. Prospective evaluation of EWGSOP2 and its comparison with alternatives (i.e. assessment of kratopenia and dynapenia only; steps 2 and 4) is proposed in terms of its applicability in clinical routine, resource consumption, identification of at-risk individuals and impact on events.
Collapse
Affiliation(s)
| | - Secundino Cigarrán
- Servicio de Nefrología, Unidad ERCA, Hospital Público da Mariña, Burela, Lugo, Spain
| | - Pablo Ureña
- Departamento de Diálisis, AURA Nord Saint Ouen, París, France; Departamento de Fisiología Renal, Necker Hospital, Universidad de París Descartes, París, France
| | | | - Sebastian Mas-Fontao
- Laboratorio de patología renal y diabetes, IIS-Fundación Jiménez Díaz/CIBERDEM, Madrid, Spain
| | | | - Alberto Ortíz
- Servicio de Nefrología e Hipertensión, Fundación Jiménez Díaz, Madrid, Spain
| | | |
Collapse
|
6
|
Summerside EM, Courter RJ, Shadmehr R, Ahmed AA. Slowing of Movements in Healthy Aging as a Rational Economic Response to an Elevated Effort Landscape. J Neurosci 2024; 44:e1596232024. [PMID: 38408872 PMCID: PMC11007314 DOI: 10.1523/jneurosci.1596-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024] Open
Abstract
Why do we move slower as we grow older? The reward circuits of the brain, which tend to invigorate movements, decline with aging, raising the possibility that reduced vigor is due to the diminishing value that our brain assigns to movements. However, as we grow older, it also becomes more effortful to make movements. Is age-related slowing principally a consequence of increased effort costs from the muscles, or reduced valuation of reward by the brain? Here, we first quantified the cost of reaching via metabolic energy expenditure in human participants (male and female), and found that older adults consumed more energy than the young at a given speed. Thus, movements are objectively more costly for older adults. Next, we observed that when reward increased, older adults, like the young, responded by initiating their movements earlier. Yet, unlike the young, they were unwilling to increase their movement speed. Was their reluctance to reach quicker for rewards due to the increased effort costs, or because they ascribed less value to the movement? Motivated by a mathematical model, we next made the young experience a component of aging by making their movements more effortful. Now the young responded to reward by reacting faster but chose not to increase their movement speed. This suggests that slower movements in older adults are partly driven by an adaptive response to an elevated effort landscape. Moving slower may be a rational economic response the brain is making to mitigate the elevated effort costs that accompany aging.
Collapse
Affiliation(s)
- Erik M Summerside
- Departments of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309
| | - Robert J Courter
- Departments of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309
- Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309
| | - Reza Shadmehr
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205
| | - Alaa A Ahmed
- Departments of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309
- Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309
| |
Collapse
|
7
|
Zhang J, Kibret BG, Vatner DE, Vatner SF. The role of brown adipose tissue in mediating healthful longevity. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:17. [PMID: 39119146 PMCID: PMC11309368 DOI: 10.20517/jca.2024.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
There are two major subtypes of adipose tissue, i.e., white adipose tissue (WAT) and brown adipose tissue (BAT). It has been known for a long time that WAT mediates obesity and impairs healthful longevity. More recently, interest has focused on BAT, which, unlike WAT, actually augments healthful aging. The goal of this review is to examine the role of BAT in mediating healthful longevity. A major role for BAT and its related beige adipose tissue is thermogenesis, as a mechanism to maintain body temperature by producing heat through uncoupling protein 1 (UCP1) or through UCP1-independent thermogenic pathways. Our hypothesis is that healthful longevity is, in part, mediated by BAT. BAT protects against the major causes of impaired healthful longevity, i.e., obesity, diabetes, cardiovascular disorders, cancer, Alzheimer's disease, reduced exercise tolerance, and impaired blood flow. Several genetically engineered mouse models have shown that BAT enhances healthful aging and that their BAT is more potent than wild-type (WT) BAT. For example, when BAT, which increases longevity and exercise performance in mice with disruption of the regulator of G protein signaling 14 (RGS14), is transplanted to WT mice, their exercise capacity is enhanced at 3 days after BAT transplantation, whereas BAT transplantation from WT to WT mice also resulted in increased exercise performance, but only at 8 weeks after transplantation. In view of the ability of BAT to mediate healthful longevity, it is likely that a pharmaceutical analog of BAT will become a novel therapeutic modality.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Berhanu Geresu Kibret
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Dorothy E. Vatner
- Department of Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Stephen F. Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
8
|
Affourtit C, Carré JE. Mitochondrial involvement in sarcopenia. Acta Physiol (Oxf) 2024; 240:e14107. [PMID: 38304924 DOI: 10.1111/apha.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Sarcopenia lowers the quality-of-life for millions of people across the world, as accelerated loss of skeletal muscle mass and function contributes to both age- and disease-related frailty. Physical activity remains the only proven therapy for sarcopenia to date, but alternatives are much sought after to manage this progressive muscle disorder in individuals who are unable to exercise. Mitochondria have been widely implicated in the etiology of sarcopenia and are increasingly suggested as attractive therapeutic targets to help restore the perturbed balance between protein synthesis and breakdown that underpins skeletal muscle atrophy. Reviewing current literature, we note that mitochondrial bioenergetic changes in sarcopenia are generally interpreted as intrinsic dysfunction that renders muscle cells incapable of making sufficient ATP to fuel protein synthesis. Based on the reported mitochondrial effects of therapeutic interventions, however, we argue that the observed bioenergetic changes may instead reflect an adaptation to pathologically decreased energy expenditure in sarcopenic muscle. Discrimination between these mechanistic possibilities will be crucial for improving the management of sarcopenia.
Collapse
Affiliation(s)
| | - Jane E Carré
- School of Biomedical Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
9
|
Venturelli M, Morgan GR, Tarperi C, Zhao J, Naro F, Reggiani C, Donato AJ, Richardson RS, Schena F. Physiological determinants of mechanical efficiency during advanced ageing and disuse. J Physiol 2024; 602:355-372. [PMID: 38165402 DOI: 10.1113/jp285639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024] Open
Abstract
This study aimed to determine which physiological factors impact net efficiency (ηnet) in oldest-old individuals at different stages of skeletal muscle disuse. To this aim, we examined ηnet, central haemodynamics, peripheral circulation, and peripheral factors (skeletal muscle fibre type, capillarization and concentration of mitochondrial DNA [mtDNA]). Twelve young (YG; 25 ± 2 years), 12 oldest-old mobile (OM; 87 ± 3 years), and 12 oldest-old immobile (OI; 88 ± 4 years) subjects performed dynamic knee extensor (KE) and elbow flexors (EF) exercise. Pulmonary oxygen uptake, photoplethysmography, Doppler ultrasound and muscle biopsies of the vastus lateralis and biceps brachii were used to assess central and peripheral adaptations to advanced ageing and disuse. Compared to the YG (12.1 ± 2.4%), the ηnet of lower-limb muscle was higher in the OM (17.6 ± 3.5%, P < 0.001), and lower in the OI (8.9 ± 1.9%, P < 0.001). These changes in ηnet during KE were coupled with significant peripheral adaptations, revealing strong correlations between ηnet and the proportion of type I muscle fibres (r = 0.82), as well as [mtDNA] (r = 0.77). No differences in ηnet were evident in the upper-limb muscles between YG, OM and OI. In view of the differences in limb-specific activity across the lifespan, these findings suggest that ηnet is reduced by skeletal muscle inactivity and not by chronological age, per se. Likewise, this study revealed that the age-related changes in ηnet are not a consequence of central or peripheral haemodynamic adaptations, but are likely a product of peripheral changes related to skeletal muscle fibre type and mitochondrial density. KEY POINTS: Although the effects of ageing and muscle disuse deeply impact the cardiovascular and skeletal muscle function, the combination of these factors on the mechanical efficiency are still a matter of debate. By measuring both upper- and lower-limb muscle function, which experience differing levels of disuse, we examined the influence of central and peripheral haemodynamics, and skeletal muscle factors linked to mechanical efficiency. Across the ages and degree of disuse, upper-limb muscles exhibited a preserved work economy. In the legs the oldest-old without mobility limitations exhibited an augmented mechanical efficiency, which was reduced in those with an impairment in ambulation. These changes in mechanical efficiency were associated with the proportion of type I muscle fibres. Recognition that the mechanical efficiency is not simply age-dependent, but the consequence of inactivity and subsequent skeletal muscle changes, highlights the importance of maintaining physical activity across the lifespan.
Collapse
Affiliation(s)
- Massimo Venturelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Garrett R Morgan
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, Utah, USA
- The Murtha Cancer Center at Walter Reed Bethesda, Bethesda, Maryland, USA
| | - Cantor Tarperi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Jia Zhao
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Fabio Naro
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University, Rome, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Anthony J Donato
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, Utah, USA
- The Murtha Cancer Center at Walter Reed Bethesda, Bethesda, Maryland, USA
- George E. Whalen Department of Veterans Affairs Medical Center, Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah, USA
| | - Russell S Richardson
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, Utah, USA
- George E. Whalen Department of Veterans Affairs Medical Center, Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah, USA
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah, USA
| | - Federico Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
10
|
Summerside EM, Courter RJ, Shadmehr R, Ahmed AA. Effort cost of reaching prompts vigor reduction in older adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555022. [PMID: 37693378 PMCID: PMC10491094 DOI: 10.1101/2023.08.28.555022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
As people age, they move slower. Is age-related reduction in vigor a reflection of a reduced valuation of reward by the brain, or a consequence of increased effort costs by the muscles? Here, we quantified cost of movements objectively via the metabolic energy that young and old participants consumed during reaching and found that in order reach at a given speed, older adults expended more energy than the young. We next quantified how reward modulated movements in the same populations and found that like the young, older adults responded to increased reward by initiating their movements earlier. Yet, their movements were less sensitive to increased reward, resulting in little or no modulation of reach speed. Lastly, we quantified the effect of increased effort on how reward modulated movements in young adults. Like the effects of aging, when faced with increased effort the young adults responded to reward primarily by reacting faster, with little change in movement speed. Therefore, reaching required greater energetic expenditure in the elderly, suggesting that the slower movements and reactions exhibited in aging are partly driven by an adaptive response to an elevation in the energetic landscape of effort. That is, moving slower appears to be a rational economic consequence of aging. Significance statement Healthy aging coincides with a reduction in speed, or vigor, of walking, reaching, and eye movements. Here we focused on disentangling two opposing sources of aging-related movement slowing: reduced reward sensitivity due to loss of dopaminergic tone, or increased energy expenditure movements related to mitochondrial or muscular inefficiencies. Through a series of three experiments and construction of a computational model, here we demonstrate that transient changes in reaction time and movement speed together offer a quantifiable metric to differentiate between reward- and effort-based alterations in movement vigor. Further, we suggest that objective increases in the metabolic cost of moving, not reductions in reward valuation, are driving much of the movement slowing occurring alongside healthy aging.
Collapse
|
11
|
Sánchez-Tocino ML, Mas-Fontao S, Gracia-Iguacel C, Pereira M, González-Ibarguren I, Ortiz A, Arenas MD, Parra EG. A Sarcopenia Index Derived from Malnutrition Parameters in Elderly Haemodialysis Patients. Nutrients 2023; 15:nu15051115. [PMID: 36904114 PMCID: PMC10005100 DOI: 10.3390/nu15051115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
(1) Background: Persons with chronic kidney disease may have sarcopenia characterized by the loss of muscle mass and loss of muscle strength. However, EWGSOP2 criteria to diagnose sarcopenia are technically challenging, especially in elderly persons on hemodialysis. Sarcopenia may be associated with malnutrition. We aimed at defining a sarcopenia index derived from malnutrition parameters for use in elderly haemodialysis patients. (2) Methods: A retrospective study of 60 patients aged 75 to 95 years treated with chronic hemodialysis was conducted. Anthropometric and analytical variables, EWGSOP2 sarcopenia criteria and other nutrition-related variables were collected. Binomial logistic regressions were used to define the combination of anthropometric and nutritional parameters that best predict moderate or severe sarcopenia according to EWGSOP2, and performance for moderate and severe sarcopenia was assessed by the area under the curve (AUC) of receiver operating characteristic (ROC) curves. (3) Results: The combination of loss of strength, loss of muscle mass and low physical performance correlated with malnutrition. We developed regression-equation-related nutrition criteria that predicted moderate sarcopenia (elderly hemodialysis sarcopenia index-moderate, EHSI-M) and severe sarcopenia (EHSI-S) diagnosed according to EWGSOP2 with an AUC of 0.80 and 0.866, respectively. (4) Conclusions: There is a close relationship between nutrition and sarcopenia. The EHSI may identify EWGSOP2-diagnosed sarcopenia from easily accessible anthropometric and nutritional parameters.
Collapse
Affiliation(s)
| | - S. Mas-Fontao
- Servicio de Nefrología e Hipertensión, Fundación Jiménez Díaz, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), 28029 Madrid, Spain
| | - C. Gracia-Iguacel
- Servicio de Nefrología e Hipertensión, Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - M. Pereira
- Fundación Renal Íñigo Álvarez de Toledo, 28003 Madrid, Spain
| | - I. González-Ibarguren
- Servicio de Geriatría, Hospital Universitario de Guadalajara, 19002 Guadalajara, Spain
| | - A. Ortiz
- Servicio de Nefrología e Hipertensión, Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - M. D. Arenas
- Fundación Renal Íñigo Álvarez de Toledo, 28003 Madrid, Spain
| | - E. González Parra
- Servicio de Nefrología e Hipertensión, Fundación Jiménez Díaz, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
12
|
Sahinovic A, Irwin C, Doohan PT, Kevin RC, Cox AJ, Lau NS, Desbrow B, Johnson NA, Sabag A, Hislop M, Haber PS, McGregor IS, McCartney D. Effects of Cannabidiol on Exercise Physiology and Bioenergetics: A Randomised Controlled Pilot Trial. SPORTS MEDICINE - OPEN 2022; 8:27. [PMID: 35235092 PMCID: PMC8891421 DOI: 10.1186/s40798-022-00417-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/01/2022] [Indexed: 11/10/2022]
Abstract
Background Cannabidiol (CBD) has demonstrated anti-inflammatory, analgesic, anxiolytic and neuroprotective effects that have the potential to benefit athletes. This pilot study investigated the effects of acute, oral CBD treatment on physiological and psychological responses to aerobic exercise to determine its practical utility within the sporting context. Methods On two occasions, nine endurance-trained males (mean ± SD V̇O2max: 57.4 ± 4.0 mL·min−1·kg−1) ran for 60 min at a fixed intensity (70% V̇O2max) (RUN 1) before completing an incremental run to exhaustion (RUN 2). Participants received CBD (300 mg; oral) or placebo 1.5 h before exercise in a randomised, double-blind design. Respiratory gases (V̇O2), respiratory exchange ratio (RER), heart rate (HR), blood glucose (BG) and lactate (BL) concentrations, and ratings of perceived exertion (RPE) and pleasure–displeasure were measured at three timepoints (T1–3) during RUN 1. V̇O2max, RERmax, HRmax and time to exhaustion (TTE) were recorded during RUN 2. Venous blood was drawn at Baseline, Pre- and Post-RUN 1, Post-RUN 2 and 1 h Post-RUN 2. Data were synthesised using Cohen’s dz effect sizes and 85% confidence intervals (CIs). Effects were considered worthy of further investigation if the 85% CI included ± 0.5 but not zero. Results CBD appeared to increase V̇O2 (T2: + 38 ± 48 mL·min−1, dz: 0.25–1.35), ratings of pleasure (T1: + 0.7 ± 0.9, dz: 0.22–1.32; T2: + 0.8 ± 1.1, dz: 0.17–1.25) and BL (T2: + 3.3 ± 6.4 mmol·L−1, dz: > 0.00–1.03) during RUN 1 compared to placebo. No differences in HR, RPE, BG or RER were observed between treatments. CBD appeared to increase V̇O2max (+ 119 ± 206 mL·min−1, dz: 0.06–1.10) and RERmax (+ 0.04 ± 0.05 dz: 0.24–1.34) during RUN 2 compared to placebo. No differences in TTE or HRmax were observed between treatments. Exercise increased serum interleukin (IL)-6, IL-1β, tumour necrosis factor-α, lipopolysaccharide and myoglobin concentrations (i.e. Baseline vs. Post-RUN 1, Post-RUN 2 and/or 1-h Post-RUN 2, p’s < 0.05). However, the changes were small, making it difficult to reliably evaluate the effect of CBD, where an effect appeared to be present. Plasma concentrations of the endogenous cannabinoid, anandamide (AEA), increased Post-RUN 1 and Post-RUN 2, relative to Baseline and Pre-RUN 1 (p’s < 0.05). CBD appeared to reduce AEA concentrations Post-RUN 2, compared to placebo (− 0.95 ± 0.64 pmol·mL−1, dz: − 2.19, − 0.79). Conclusion CBD appears to alter some key physiological and psychological responses to aerobic exercise without impairing performance. Larger studies are required to confirm and better understand these preliminary findings. Trial Registration This investigation was approved by the Sydney Local Health District’s Human Research Ethics Committee (2020/ETH00226) and registered with the Australia and New Zealand Clinical Trials Registry (ACTRN12620000941965). Supplementary Information The online version contains supplementary material available at 10.1186/s40798-022-00417-y.
Collapse
|
13
|
Metcalfe NB, Olsson M. How telomere dynamics are influenced by the balance between mitochondrial efficiency, reactive oxygen species production and DNA damage. Mol Ecol 2022; 31:6040-6052. [PMID: 34435398 DOI: 10.1111/mec.16150] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023]
Abstract
It is well known that oxidative stress is a major cause of DNA damage and telomere attrition. Most endogenous reactive oxygen species (ROS) are produced in the mitochondria, producing a link between mitochondrial function, DNA integrity and telomere dynamics. In this review we will describe how ROS production, rates of damage to telomeric DNA and DNA repair are dynamic processes. The rate of ROS production depends on mitochondrial features such as the level of inner membrane uncoupling and the proportion of time that ATP is actively being produced. However, the efficiency of ATP production (the ATP/O ratio) is positively related to the rate of ROS production, so leading to a trade-off between the body's energy requirements and its need to prevent oxidative stress. Telomeric DNA is especially vulnerable to oxidative damage due to features such as its high guanine content; while repair to damaged telomere regions is possible through a range of mechanisms, these can result in more rapid telomere shortening. There is increasing evidence that mitochondrial efficiency varies over time and with environmental context, as do rates of DNA repair. We argue that telomere dynamics can only be understood by appreciating that the optimal solution to the trade-off between energetic efficiency and telomere protection will differ between individuals and will change over time, depending on resource availability, energetic demands and life history strategy.
Collapse
Affiliation(s)
- Neil B Metcalfe
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Mats Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Sánchez-Tocino ML, Miranda-Serrano B, Gracia-Iguacel C, de-Alba-Peñaranda AM, Mas-Fontao S, López-González A, Villoria-González S, Pereira-García M, Ortíz A, González-Parra E. Sarcopenia assessed by 4-step EWGSOP2 in elderly hemodialysis patients: Feasibility and limitations. PLoS One 2022; 17:e0261459. [PMID: 35025892 PMCID: PMC8758069 DOI: 10.1371/journal.pone.0261459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/02/2021] [Indexed: 01/06/2023] Open
Abstract
Background In 2019, EWGSOP2 proposed 4 steps to diagnose and assess sarcopenia. We aimed to quantify the prevalence of sarcopenia according to the EWGSOP2 diagnostic algorithm and to assess its applicability in elderly patients on hemodialysis. Methods Prospective study of 60 outpatients on chronic hemodialysis aged 75- to 95-years, sarcopenia was assessed according to the 4-step EWGSOP2: Find: Strength, Assistance walking, Rise from a chair, Climb stairs, and Falls (SARC-F); Assess: grip strength by dynamometry (GSD) and sit to stand to sit 5 (STS5); Confirm: appendicular skeletal muscle mass (ASM) by bioimpedance; Severity: gait speed (GS), Timed-Up and Go (TUG), and Short Physical Performance Battery (SPPB). Results The sequential four steps resulted in a prevalence of confirmed or severe sarcopenia of 20%. Most (97%) patients fulfilled at least one criterion for probable sarcopenia. The sensitivity of SARC-F for confirmed sarcopenia was low (46%). Skipping the SARC-F step increased the prevalence of confirmed and severe sarcopenia to 40% and 37%, respectively. However, 78% of all patients had evidence of dynapenia consistent with severe sarcopenia. Muscle mass (ASM) was normal in 60% of patients, while only 25% had normal muscle strength values (GSD). Conclusions According to the 4-step EWGSOP2, the prevalence of confirmed or severe sarcopenia was low in elderly hemodialysis patients. The diagnosis of confirmed sarcopenia underestimated the prevalence of dynapenia consistent with severe sarcopenia. Future studies should address whether a 2-step EWGSOP2 assessment (Assess-Severity) is simpler to apply and may provide better prognostic information than 4-step EWGSOP2 in elderly persons on hemodialysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Alberto Ortíz
- Servicio de Nefrología e Hipertensión, Fundación Jiménez Díaz, IIS-FJD UAM, Madrid, Spain
| | - Emilio González-Parra
- Servicio de Nefrología e Hipertensión, Fundación Jiménez Díaz, IIS-FJD UAM, Madrid, Spain
- * E-mail:
| |
Collapse
|
15
|
Grevendonk L, Connell NJ, McCrum C, Fealy CE, Bilet L, Bruls YMH, Mevenkamp J, Schrauwen-Hinderling VB, Jörgensen JA, Moonen-Kornips E, Schaart G, Havekes B, de Vogel-van den Bosch J, Bragt MCE, Meijer K, Schrauwen P, Hoeks J. Impact of aging and exercise on skeletal muscle mitochondrial capacity, energy metabolism, and physical function. Nat Commun 2021; 12:4773. [PMID: 34362885 PMCID: PMC8346468 DOI: 10.1038/s41467-021-24956-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
The relationship between the age-associated decline in mitochondrial function and its effect on skeletal muscle physiology and function remain unclear. In the current study, we examined to what extent physical activity contributes to the decline in mitochondrial function and muscle health during aging and compared mitochondrial function in young and older adults, with similar habitual physical activity levels. We also studied exercise-trained older adults and physically impaired older adults. Aging was associated with a decline in mitochondrial capacity, exercise capacity and efficiency, gait stability, muscle function, and insulin sensitivity, even when maintaining an adequate daily physical activity level. Our data also suggest that a further increase in physical activity level, achieved through regular exercise training, can largely negate the effects of aging. Finally, mitochondrial capacity correlated with exercise efficiency and insulin sensitivity. Together, our data support a link between mitochondrial function and age-associated deterioration of skeletal muscle. Aging is associated with a progressive loss of muscle function. Here the authors characterize mitochondrial capacity and muscle function in young and older adults with similar habitual physical activity and also compared to older adults with exercise training or with physical impairment.
Collapse
Affiliation(s)
- L Grevendonk
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,TI Food and Nutrition, Wageningen, The Netherlands
| | - N J Connell
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,TI Food and Nutrition, Wageningen, The Netherlands
| | - C McCrum
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - C E Fealy
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,TI Food and Nutrition, Wageningen, The Netherlands
| | - L Bilet
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,TI Food and Nutrition, Wageningen, The Netherlands
| | - Y M H Bruls
- Department of Radiology and Nuclear Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J Mevenkamp
- Department of Radiology and Nuclear Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - V B Schrauwen-Hinderling
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J A Jörgensen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - E Moonen-Kornips
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - G Schaart
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - B Havekes
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Internal Medicine, Division of Endocrinology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | - M C E Bragt
- Friesland-Campina, Amersfoort, The Netherlands
| | - K Meijer
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - P Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,TI Food and Nutrition, Wageningen, The Netherlands
| | - J Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands. .,TI Food and Nutrition, Wageningen, The Netherlands.
| |
Collapse
|
16
|
Liu SZ, Valencia AP, VanDoren MP, Shankland EG, Roshanravan B, Conley KE, Marcinek DJ. Astaxanthin supplementation enhances metabolic adaptation with aerobic training in the elderly. Physiol Rep 2021; 9:e14887. [PMID: 34110707 PMCID: PMC8191397 DOI: 10.14814/phy2.14887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 01/16/2023] Open
Abstract
Endurance training (ET) is recommended for the elderly to improve metabolic health and aerobic capacity. However, ET-induced adaptations may be suboptimal due to oxidative stress and exaggerated inflammatory response to ET. The natural antioxidant and anti-inflammatory dietary supplement astaxanthin (AX) has been found to increase endurance performance among young athletes, but limited investigations have focused on the elderly. We tested a formulation of AX in combination with ET in healthy older adults (65-82 years) to determine if AX improves metabolic adaptations with ET, and if AX effects are sex-dependent. Forty-two subjects were randomized to either placebo (PL) or AX during 3 months of ET. Specific muscle endurance was measured in ankle dorsiflexors. Whole body exercise endurance and fat oxidation (FATox) was assessed with a graded exercise test (GXT) in conjunction with indirect calorimetry. Results: ET led to improved specific muscle endurance only in the AX group (Pre 353 ± 26 vs. Post 472 ± 41 contractions), and submaximal GXT duration improved in both groups (PL 40.8 ± 9.1% and AX 41.1 ± 6.3%). The increase in FATox at lower intensity after ET was greater in AX (PL 0.23 ± 0.15 g vs. AX 0.76 ± 0.18 g) and was associated with reduced carbohydrate oxidation and increased exercise efficiency in males but not in females.
Collapse
Affiliation(s)
- Sophia Z. Liu
- Department of RadiologyUniversity of WashingtonSeattleWAUSA
| | | | - Matt P. VanDoren
- Exercise Research CenterFred Hutchinson Cancer Research CenterSeattleWAUSA
| | | | - Baback Roshanravan
- Department of Internal Medicine, Division of NephrologyUniversity of California DavisSacramentoCAUSA
| | - Kevin E. Conley
- Department of RadiologyUniversity of WashingtonSeattleWAUSA
- Department of Physiology & BiophysicsUniversity of WashingtonSeattleWAUSA
- Department of BioengineeringUniversity of WashingtonSeattleWAUSA
| | - David J. Marcinek
- Department of RadiologyUniversity of WashingtonSeattleWAUSA
- Department of BioengineeringUniversity of WashingtonSeattleWAUSA
- Department of MedicineUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
17
|
Thoral E, Queiros Q, Roussel D, Dutto G, Gasset E, McKenzie DJ, Romestaing C, Fromentin JM, Saraux C, Teulier L. Changes in foraging mode caused by a decline in prey size have major bioenergetic consequences for a small pelagic fish. J Anim Ecol 2021; 90:2289-2301. [PMID: 34013518 DOI: 10.1111/1365-2656.13535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/10/2021] [Indexed: 12/13/2022]
Abstract
Global warming is causing profound modifications of aquatic ecosystems and one major outcome appears to be a decline in adult size of many fish species. Over the last decade, sardine populations in the Gulf of Lions (NW Mediterranean Sea) have shown severe declines in body size and condition as well as disappearance of the oldest individuals, which could not be related to overfishing, predation pressure or epizootic diseases. In this study, we investigated whether this situation reflects a bottom-up phenomenon caused by reduced size and availability of prey that could lead to energetic constraints. We fed captive sardines with food items of two different sizes eliciting a change in feeding mode (filter-feeding on small items and directly capturing larger ones) at two different rations for several months, and then assessed their muscle bioenergetics to test for changes in cellular function. Feeding on smaller items was associated with a decline in body condition, even at high ration, and almost completely inhibited growth by comparison to sardines fed large items at high ration. Sardines fed on small items presented specific mitochondrial adjustments for energy sparing, indicating a major bioenergetic challenge. Moreover, mitochondria from sardines in poor condition had low basal oxidative activity but high efficiency of ATP production. Notably, when body condition was below a threshold value of 1.07, close to the mean observed in the wild, it was directly correlated with basal mitochondrial activity in muscle. The results show a link between whole-animal condition and cellular bioenergetics in the sardine, and reveal physiological consequences of a shift in feeding mode. They demonstrate that filter-feeding on small prey leads to poor growth, even under abundant food and an increase in the efficiency of ATP production. These findings may partially explain the declines in sardine size and condition observed in the wild.
Collapse
Affiliation(s)
- Elisa Thoral
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | | | - Damien Roussel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Gilbert Dutto
- Ifremer (Institut Français de Recherche pour l'Exploitation de la MER), Laboratoire SEA, Palavas-Les-Flots, France
| | - Eric Gasset
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Palavas-Les-Flots, France
| | - David J McKenzie
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Caroline Romestaing
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | | | - Claire Saraux
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Sète, France.,IPHC, UMR7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Loïc Teulier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| |
Collapse
|
18
|
Capper TE, Houghton D, Stewart CJ, Blain AP, McMahon N, Siervo M, West DJ, Stevenson EJ. Whole beetroot consumption reduces systolic blood pressure and modulates diversity and composition of the gut microbiota in older participants. NFS JOURNAL 2020. [DOI: 10.1016/j.nfs.2020.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Lewsey SC, Weiss K, Schär M, Zhang Y, Bottomley PA, Samuel TJ, Xue QL, Steinberg A, Walston JD, Gerstenblith G, Weiss RG. Exercise intolerance and rapid skeletal muscle energetic decline in human age-associated frailty. JCI Insight 2020; 5:141246. [PMID: 32941181 PMCID: PMC7605538 DOI: 10.1172/jci.insight.141246] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Physical frailty in older individuals is characterized by subjective symptoms of fatigue and exercise intolerance (EI). Objective abnormalities in skeletal muscle (SM) mitochondrial high-energy phosphate (HEP) metabolism contribute to EI in inherited myopathies; however, their presence or link to EI in the frail older adult is unknown. METHODS Here, we studied 3 groups of ambulatory, community-dwelling adults with no history of significant coronary disease: frail older (FO) individuals (81 ± 2.7 years, mean ± SEM), nonfrail older (NFO) individuals (79 ± 2.0 years), and healthy middle-aged individuals, who served as controls (CONT, 51 ± 2.1 years). Lower extremity SM HEP levels and mitochondrial function were measured with 31P magnetic resonance (MR) techniques during graded multistage plantar flexion exercise (PFE). EI was quantified by a 6-minute walk (6MW) and peak oxygen consumption during cardiopulmonary testing (peak VO2). RESULTS During graded exercise, FO, NFO, and CONT individuals all fatigued at similar SM HEP levels, as measured by 31P-MR. However, FO individuals fatigued fastest, with several-fold higher rates of PFE-induced HEP decline that correlated closely with shorter exercise duration in the MR scanner and with 6MW distance and lower peak oxygen consumption on cardiopulmonary testing (P < 0.001 for all). SM mitochondrial oxidative capacity was lower in older individuals and correlated with rapid HEP decline but less closely with EI. CONCLUSION Several-fold faster SM energetic decline during exercise occurs in FO individuals and correlates closely with multiple measures of EI. Rapid energetic decline represents an objective, functional measure of SM metabolic changes and a potential new target for mitigating frailty-associated physical limitations. FUNDING This work was supported by NIH R21 AG045634, R01 AG063661, R01 HL61912, the Johns Hopkins University Claude D. Pepper Older Americans Independence Center P30AG021334, and the Clarence Doodeman Endowment in Cardiology at Johns Hopkins. Rapid exercise-induced skeletal muscle high-energy phosphate decline occurs in frail, older individuals and is closely linked to exercise intolerance and fatigue.
Collapse
Affiliation(s)
| | - Kilian Weiss
- Division of Cardiology, Department of Medicine, and.,Division of Magnetic Resonance Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Philips Healthcare Germany, Hamburg, Germany
| | - Michael Schär
- Division of Magnetic Resonance Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yi Zhang
- Division of Magnetic Resonance Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Paul A Bottomley
- Division of Magnetic Resonance Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Qian-Li Xue
- Divison of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Jeremy D Walston
- Divison of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
20
|
Bicycling Exercise Helps Maintain a Youthful Metabolic Cost of Walking in Older Adults. J Aging Phys Act 2020; 29:36-42. [PMID: 32723930 DOI: 10.1123/japa.2019-0327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/29/2020] [Accepted: 04/29/2020] [Indexed: 11/18/2022]
Abstract
The decline of walking performance is a key determinant of morbidity among older adults. Healthy older adults have been shown to have a 15-20% lower walking economy compared with young adults. However, older adults who run for exercise have a higher walking economy compared with older adults who walk for exercise. Yet, it remains unclear if other aerobic exercises yield similar improvements on walking economy. The purpose of this study was to determine if regular bicycling exercise affects walking economy in older adults. We measured metabolic rate while 33 older adult "bicyclists" or "walkers" and 16 young adults walked on a level treadmill at four speeds between (0.75-1.75 m/s). Across the range of speeds, older bicyclists had a 9-17% greater walking economy compared with older walkers (p = .009). In conclusion, bicycling exercise mitigates the age-related deterioration of walking economy, whereas walking for exercise has a minimal effect on improving walking economy.
Collapse
|
21
|
Masuki S, Morikawa M, Nose H. Internet of Things (IoT) System and Field Sensors for Exercise Intensity Measurements. Compr Physiol 2020; 10:1207-1240. [PMID: 32941686 DOI: 10.1002/cphy.c190010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Although exercise training according to individual peak aerobic capacity ( V ˙ o2peak ) has been recommended at all ages, sensors available in the field are limited. The most popular sensors in the field are pedometers, but they cannot be used to monitor exercise intensity. Instead, although heart rate (HR) monitors are broadly available in the field to estimate exercise intensity, HR responses to exercise vary by individual according to physical fitness and environmental conditions, which hinders the precise measurement of energy expenditure. These issues make it difficult for exercise physiologists to collaborate with geneticists, nutritionists, and clinicians using the internet of things (IoT). To conquer these problems, we have developed a device that is equipped with a triaxial accelerometer and a barometer to measure energy expenditure during interval walking training (IWT) in the field with inclines. IWT is a training regimen to repeat fast and slow walking for 3 min each, equivalent to greater than 70% and approximately 40% of individual V ˙ o2peak , respectively. Additionally, we developed an IoT system that enables users to receive instructions from trainers according to their walking records even if they live far away. Since the system is available at low cost with minimum personnel, we can investigate any factors affecting the adherence to and effects of IWT in a large population for a long period. This system was also used to verify any effects of nutritional supplements during IWT and to examine the value of applying IWT to clinical medicine. © 2020 American Physiological Society. Compr Physiol 10:1207-1240, 2020.
Collapse
Affiliation(s)
- Shizue Masuki
- Department of Sports Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto, Japan.,Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan
| | - Mayuko Morikawa
- Department of Sports Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto, Japan.,Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan.,Jukunen Taiikudaigaku Research Center, Matsumoto, Japan
| | - Hiroshi Nose
- Department of Sports Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto, Japan.,Jukunen Taiikudaigaku Research Center, Matsumoto, Japan
| |
Collapse
|
22
|
Otto JM, Levett DZH, Grocott MPW. Cardiopulmonary Exercise Testing for Preoperative Evaluation: What Does the Future Hold? CURRENT ANESTHESIOLOGY REPORTS 2020. [DOI: 10.1007/s40140-020-00373-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
Purpose of Review
Cardiopulmonary exercise testing (CPET) informs the preoperative evaluation process by providing individualised risk profiles; guiding shared decision-making, comorbidity optimisation and preoperative exercise training; and informing perioperative patient management. This review summarises evidence on the role of CPET in preoperative evaluation and explores the role of novel and emerging CPET variables and alternative testing protocols that may improve the precision of preoperative evaluation in the future.
Recent Findings
CPET provides a wealth of physiological data, and to date, much of this is underutilised clinically. For example, impaired chronotropic responses during and after CPET are simple to measure and in recent studies are predictive of both cardiac and noncardiac morbidity following surgery but are rarely reported. Exercise interventions are increasingly being used preoperatively, and endurance time derived from a high intensity constant work rate test should be considered as the most sensitive method of evaluating the response to training. Further research is required to identify the clinically meaningful difference in endurance time. Measuring efficiency may have utility, but this requires exploration in prospective studies.
Summary
Further work is needed to define contemporaneous risk thresholds, to explore the role of other CPET variables in risk prediction, to better characterise CPET’s role in combination with other tools in multifactorial risk stratification and increasingly to evaluate CPET’s utility for preoperative exercise prescription in prehabilitation.
Collapse
|
23
|
Salin K, Villasevil EM, Anderson GJ, Lamarre SG, Melanson CA, McCarthy I, Selman C, Metcalfe NB. Differences in mitochondrial efficiency explain individual variation in growth performance. Proc Biol Sci 2019; 286:20191466. [PMID: 31431161 DOI: 10.1098/rspb.2019.1466] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The physiological causes of intraspecific differences in fitness components such as growth rate are currently a source of debate. It has been suggested that differences in energy metabolism may drive variation in growth, but it remains unclear whether covariation between growth rates and energy metabolism is: (i) a result of certain individuals acquiring and consequently allocating more resources to growth, and/or is (ii) determined by variation in the efficiency with which those resources are transformed into growth. Studies of individually housed animals under standardized nutritional conditions can help shed light on this debate. Here we quantify individual variation in metabolic efficiency in terms of the amount of adenosine triphosphate (ATP) generated per molecule of oxygen consumed by liver and muscle mitochondria and examine its effects, both on the rate of protein synthesis within these tissues and on the rate of whole-body growth of individually fed juvenile brown trout (Salmo trutta) receiving either a high or low food ration. As expected, fish on the high ration on average gained more in body mass and protein content than those maintained on the low ration. Yet, growth performance varied more than 10-fold among individuals on the same ration, resulting in some fish on low rations growing faster than others on the high ration. This variation in growth for a given ration was related to individual differences in mitochondrial properties: a high whole-body growth performance was associated with high mitochondrial efficiency of ATP production in the liver. Our results show for the first time, to our knowledge, that among-individual variation in the efficiency with which substrates are converted into ATP can help explain marked variation in growth performance, independent of food intake. This study highlights the existence of inter-individual differences in mitochondrial efficiency and its potential importance in explaining intraspecific variation in whole-animal performance.
Collapse
Affiliation(s)
- Karine Salin
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Eugenia M Villasevil
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Graeme J Anderson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Simon G Lamarre
- Département de Biologie, Université de Moncton, Moncton, New Brunswick, Canada E1A 3E9
| | - Chloé A Melanson
- Département de Biologie, Université de Moncton, Moncton, New Brunswick, Canada E1A 3E9
| | - Ian McCarthy
- School of Ocean Sciences, Bangor University, Menai Bridge LL59 5AB, UK
| | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
24
|
Salin K, Villasevil EM, Anderson GJ, Selman C, Chinopoulos C, Metcalfe NB. The RCR and ATP/O Indices Can Give Contradictory Messages about Mitochondrial Efficiency. Integr Comp Biol 2019; 58:486-494. [PMID: 29982616 DOI: 10.1093/icb/icy085] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial efficiency is typically taken to represent an animal's capacity to convert its resources into ATP. However, the term mitochondrial efficiency, as currently used in the literature, can be calculated as either the respiratory control ratio, RCR (ratio of mitochondrial respiration supporting ATP synthesis to that required to offset the proton leak) or as the amount of ATP generated per unit of oxygen consumed, ATP/O ratio. The question of how flexibility in mitochondrial energy properties (i.e., in rates of respiration to support ATP synthesis and offset proton leak, and in the rate of ATP synthesis) affects these indices of mitochondrial efficiency has tended to be overlooked. Furthermore, little is known of whether the RCR and ATP/O ratio vary in parallel, either among individuals or in response to environmental conditions. Using data from brown trout Salmo trutta we show that experimental conditions affect mitochondrial efficiency, but the apparent direction of change depends on the index chosen: a reduction in food availability was associated with an increased RCR (i.e., increased efficiency) but a decreased ATP/O ratio (decreased efficiency) in liver mitochondria. Moreover, there was a negative correlation across individuals held in identical conditions between their RCR and their ATP/O ratio. These results show that the choice of index of mitochondrial efficiency can produce different, even opposing, conclusions about the capacity of the mitochondria to produce ATP. Neither ratio is necessarily a complete measure of efficiency of ATP production in the living animal (RCR because it contains no assessment of ATP production, and ATP/O because it contains no assessment of respiration to offset the proton leak). Consequently, we suggest that a measure of mitochondrial efficiency obtained nearer to conditions where respiration simultaneously offsets the proton leak and produce ATP would be sensitive to changes in both proton leakage and ATP production, and is thus likely to be more representative of the state of the mitochondria in vivo.
Collapse
Affiliation(s)
- Karine Salin
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK.,Ifremer, Unité de Physiologie Fonctionnelle des Organismes Marins-LEMAR UMR 6530, BP70, Plouzané 29280, France
| | - Eugenia M Villasevil
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Graeme J Anderson
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest 1094, Hungary.,MTA-SE Lendület Neurobiochemistry Research Group, Budapest 1094, Hungary
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
25
|
Bourgeois B, Fan B, Johannsen N, Gonzalez MC, Ng BK, Sommer MJ, Shepherd JA, Heymsfield SB. Improved strength prediction combining clinically available measures of skeletal muscle mass and quality. J Cachexia Sarcopenia Muscle 2019; 10:84-94. [PMID: 30371008 PMCID: PMC6438415 DOI: 10.1002/jcsm.12353] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/28/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Measures of skeletal muscle function decline at a faster rate with ageing than do indices of skeletal muscle mass. These observations have been attributed to age-related changes in muscle quality, another functional determinant separate from skeletal muscle mass. This study tested the hypothesis that improved predictions of skeletal muscle strength can be accomplished by combining clinically available measures of skeletal muscle mass and quality. METHODS The participants included 146 healthy adult (age ≥ 18 years, range 18-77 years; X ± SD 47 ± 17 years and body mass index 16.5-51.8 kg/m2 ; 27.7 ± 6.2 kg/m2 ) men (n = 60) and women (n = 86) in whom skeletal muscle mass was estimated as appendicular lean soft tissue (LST) measured by dual-energy X-ray absorptiometry and skeletal muscle quality as bioimpedance analysis-derived phase angle and B-mode-evaluated echogenicity of mid-thigh skeletal muscle. Strength of the right leg and both arms was quantified as knee isokinetic extension and handgrip strength using dynamometers. The statistical significance of adding phase angle or echogenicity to strength prediction multiple regression models that included extremity-specific LST and other covariates (e.g. age and sex) was evaluated to test the study hypothesis. RESULTS Right leg LST mass alone was significantly (P < 0.0001) correlated with isokinetic right leg strength (R2 = 0.57). The addition of segmental phase angle measured in the right leg at 50 kHz increased the R2 of this model to 0.66 (P < 0.0001); other phase angle frequencies (5 and 250 kHz) did not contribute significantly to these models. Results were similar for both right and left arm handgrip strength prediction models. Adding age and sex as model covariates increased the R2 values of these models further (e.g. right leg strength model R2 increased to 0.71), but phase angle continued to remain a significant (all P < 0.01) predictor of extremity strength. Similarly, when predicting isokinetic right leg strength, mid-thigh skeletal muscle echogenicity added significantly (P < 0.0001) to right leg LST, increasing R2 from 0.57 to 0.64; age was a significant (P < 0.0001) covariate in this model, increasing R2 further to 0.68. CONCLUSIONS The hypothesis of the current study was confirmed, strongly supporting and extending earlier reports by quantifying the combined independent effects of skeletal muscle mass and quality on lower-body and upper-body measures of strength. These observations provide a clinically available method for future research aimed at optimizing sarcopenia and frailty risk prediction models.
Collapse
Affiliation(s)
- Brianna Bourgeois
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLAUSA
| | - Bo Fan
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCAUSA
| | - Neil Johannsen
- Pennington Biomedical Research CenterLouisiana State UniversityBaton RougeLAUSA
| | | | - Bennett K. Ng
- Graduate Program in BioengineeringUniversity of California, BerkeleyBerkeleyCAUSA
| | - Markus J. Sommer
- Department of Radiology and Biomedical ImagingUniversity of CaliforniaSan FranciscoCAUSA
| | | | | |
Collapse
|
26
|
Szeto HH, Liu S. Cardiolipin-targeted peptides rejuvenate mitochondrial function, remodel mitochondria, and promote tissue regeneration during aging. Arch Biochem Biophys 2018; 660:137-148. [DOI: 10.1016/j.abb.2018.10.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022]
|
27
|
Wilkins HM, Morris JK. New Therapeutics to Modulate Mitochondrial Function in Neurodegenerative Disorders. Curr Pharm Des 2018; 23:731-752. [PMID: 28034353 DOI: 10.2174/1381612822666161230144517] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Mitochondrial function and energy metabolism are impaired in neurodegenerative diseases. There is evidence for these functional declines both within the brain and systemically in Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Due to these observations, therapeutics targeted to alter mitochondrial function and energy pathways are increasingly studied in pre-clinical and clinical settings. METHODS The goal of this article was to review therapies with specific implications on mitochondrial energy metabolism published through May 2016 that have been tested for treatment of neurodegenerative diseases. RESULTS We discuss implications for mitochondrial dysfunction in neurodegenerative diseases and how this drives new therapeutic initiatives. CONCLUSION Thus far, treatments have achieved varying degrees of success. Further investigation into the mechanisms driving mitochondrial dysfunction and bioenergetic failure in neurodegenerative diseases is warranted.
Collapse
Affiliation(s)
- Heather M Wilkins
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jill K Morris
- University of Kansas School of Medicine, University of Kansas Alzheimer's Disease Center MS 6002, 3901 Rainbow Blvd, Kansas City, KS 66160. United States
| |
Collapse
|
28
|
Distefano G, Standley RA, Zhang X, Carnero EA, Yi F, Cornnell HH, Coen PM. Physical activity unveils the relationship between mitochondrial energetics, muscle quality, and physical function in older adults. J Cachexia Sarcopenia Muscle 2018; 9:279-294. [PMID: 29368427 PMCID: PMC5879963 DOI: 10.1002/jcsm.12272] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/01/2017] [Accepted: 10/24/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The concept of mitochondrial dysfunction in ageing muscle is highly controversial. In addition, emerging evidence suggests that reduced muscle oxidative capacity and efficiency underlie the aetiology of mobility loss in older adults. Here, we hypothesized that studying well-phenotyped older cohorts across a wide range of physical activity would unveil a range of mitochondrial function in skeletal muscle and in turn allow us to more clearly examine the impact of age per se on mitochondrial energetics. This also enabled us to more clearly define the relationships between mitochondrial energetics and muscle lipid content with clinically relevant assessments of muscle and physical function. METHODS Thirty-nine volunteers were recruited to the following study groups: young active (YA, n = 2 women/8 men, age = 31.2 ± 5.4 years), older active (OA, n = 2 women/8 men, age = 67.5 ± 2.7 years), and older sedentary (OS, n = 8 women/11 men, age = 70.7 ± 4.7 years). Participants completed a graded exercise test to determine fitness (VO2 peak), a submaximal exercise test to determine exercise efficiency, and daily physical activity was recorded using a tri-axial armband accelerometer. Mitochondrial energetics were determined by (i) 31 P magnetic resonance spectroscopy and (ii) respirometry of fibre bundles from vastus lateralis biopsies. Quadriceps function was assessed by isokinetic dynamometry and physical function by the short physical performance battery and stair climb test. RESULTS Daily physical activity energy expenditure was significantly lower in OS, compared with YA and OA groups. Despite fitness being higher in YA compared with OA and OS, mitochondrial respiration, maximum mitochondrial capacity, Maximal ATP production/Oxygen consumption (P/O) ratio, and exercise efficiency were similar in YA and OA groups and were significantly lower in OS. P/O ratio was correlated with exercise efficiency. Time to complete the stair climb and repeated chair stand tests were significantly greater for OS. Interestingly, maximum mitochondrial capacity was related to muscle contractile performance and physical function. CONCLUSIONS Older adults who maintain a high amount of physical activity have better mitochondrial capacity, similar to highly active younger adults, and this is related to their better muscle quality, exercise efficiency, and physical performance. This suggests that mitochondria could be an important therapeutic target for sedentary ageing associated conditions including sarcopenia, dynapenia, and loss of physical function.
Collapse
Affiliation(s)
- Giovanna Distefano
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 East Princeton Street, Orlando, FL, 32804, USA
| | - Robert A Standley
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 East Princeton Street, Orlando, FL, 32804, USA
| | - Xiaolei Zhang
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 East Princeton Street, Orlando, FL, 32804, USA
| | - Elvis A Carnero
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 East Princeton Street, Orlando, FL, 32804, USA
| | - Fanchao Yi
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 East Princeton Street, Orlando, FL, 32804, USA
| | - Heather H Cornnell
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 East Princeton Street, Orlando, FL, 32804, USA
| | - Paul M Coen
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, 301 East Princeton Street, Orlando, FL, 32804, USA.,Sanford Burnham Prebys Medical Discovery Institute at Lake Nona, 6400 Sanger Rd, Orlando, FL, 32827, USA
| |
Collapse
|
29
|
Pathophysiology of Chronic Systolic Heart Failure. A View from the Periphery. Ann Am Thorac Soc 2018; 15:S38-S41. [DOI: 10.1513/annalsats.201710-789kv] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
30
|
Gaesser GA, Tucker WJ, Sawyer BJ, Bhammar DM, Angadi SS. Cycling efficiency and energy cost of walking in young and older adults. J Appl Physiol (1985) 2018; 124:414-420. [PMID: 29146688 PMCID: PMC5867372 DOI: 10.1152/japplphysiol.00789.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/30/2017] [Accepted: 11/14/2017] [Indexed: 11/22/2022] Open
Abstract
To determine whether age affects cycling efficiency and the energy cost of walking (Cw), 190 healthy adults, ages 18-81 yr, cycled on an ergometer at 50 W and walked on a treadmill at 1.34 m/s. Ventilation and gas exchange at rest and during exercise were used to calculate net Cw and net efficiency of cycling. Compared with the 18-40 yr age group (2.17 ± 0.33 J·kg-1·m-1), net Cw was not different in the 60-64 yr (2.20 ± 0.40 J·kg-1·m-1) and 65-69 yr (2.20 ± 0.28 J·kg-1·m-1) age groups, but was significantly ( P < 0.03) higher in the ≥70 yr (2.37 ± 0.33 J·kg-1·m-1) age group. For subjects >60 yr, net Cw was significantly correlated with age ( R2 = 0.123; P = 0.002). Cycling net efficiency was not different between 18-40 yr (23.5 ± 2.9%), 60-64 yr (24.5 ± 3.6%), 65-69 yr (23.3 ± 3.6%) and ≥70 yr (24.7 ± 2.7%) age groups. Repeat tests on a subset of subjects (walking, n = 43; cycling, n = 37) demonstrated high test-retest reliability [intraclass correlation coefficients (ICC), 0.74-0.86] for all energy outcome measures except cycling net energy expenditure (ICC = 0.54) and net efficiency (ICC = 0.50). Coefficients of variation for all variables ranged from 3.1 to 7.7%. Considerable individual variation in Cw and efficiency was evident, with a ~2-fold difference between the least and most economical/efficient subjects. We conclude that, between 18 and 81 yr, net Cw was only higher for ages ≥70 yr, and that cycling net efficiency was not different across age groups. NEW & NOTEWORTHY This study illustrates that the higher energy cost of walking in older adults is only evident for ages ≥70 yr. For older adults ages 60-69 yr, the energy cost of walking is similar to that of young adults. Cycling efficiency, by contrast, is not different across age groups. Considerable individual variation (∼2-fold) in cycling efficiency and energy cost of walking is observed in young and older adults.
Collapse
Affiliation(s)
- Glenn A Gaesser
- School of Nutrition and Health Promotion, Healthy Lifestyles Research Center, Arizona State University , Phoenix, Arizona
| | - Wesley J Tucker
- School of Nutrition and Health Promotion, Healthy Lifestyles Research Center, Arizona State University , Phoenix, Arizona
| | - Brandon J Sawyer
- School of Nutrition and Health Promotion, Healthy Lifestyles Research Center, Arizona State University , Phoenix, Arizona
| | - Dharini M Bhammar
- School of Nutrition and Health Promotion, Healthy Lifestyles Research Center, Arizona State University , Phoenix, Arizona
| | - Siddhartha S Angadi
- School of Nutrition and Health Promotion, Healthy Lifestyles Research Center, Arizona State University , Phoenix, Arizona
| |
Collapse
|
31
|
Masuki S, Morikawa M, Nose H. Interval Walking Training Can Increase Physical Fitness in Middle-Aged and Older People. Exerc Sport Sci Rev 2017; 45:154-162. [PMID: 28418999 DOI: 10.1249/jes.0000000000000113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
No long-term exercise training regimen with high adherence and effectiveness for middle-aged and older individuals is currently broadly available in the field. To address this problem, we developed an exercise training system comprising interval walking training and an information technology network that requires only minimal staff support. We hypothesized that our training system could increase physical fitness in older people.
Collapse
Affiliation(s)
- Shizue Masuki
- 1Department of Sports Medical Sciences, Graduate School of Medicine, 2Institute for Biomedical Sciences, Shinshu University; and 3Jukunen Taiikudaigaku Research Center, Matsumoto, Japan
| | | | | |
Collapse
|
32
|
Roshanravan B, Gamboa J, Wilund K. Exercise and CKD: Skeletal Muscle Dysfunction and Practical Application of Exercise to Prevent and Treat Physical Impairments in CKD. Am J Kidney Dis 2017; 69:837-852. [PMID: 28427790 PMCID: PMC5441955 DOI: 10.1053/j.ajkd.2017.01.051] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/04/2017] [Indexed: 12/25/2022]
Abstract
Patients with chronic kidney disease experience substantial loss of muscle mass, weakness, and poor physical performance. As kidney disease progresses, skeletal muscle dysfunction forms a common pathway for mobility limitation, loss of functional independence, and vulnerability to disease complications. Screening for those at high risk for mobility disability by self-reported and objective measures of function is an essential first step in developing an interdisciplinary approach to treatment that includes rehabilitative therapies and counseling on physical activity. Exercise has beneficial effects on systemic inflammation, muscle, and physical performance in chronic kidney disease. Kidney health providers need to identify patient and care delivery barriers to exercise in order to effectively counsel patients on physical activity. A thorough medical evaluation and assessment of baseline function using self-reported and objective function assessment is essential to guide an effective individualized exercise prescription to prevent function decline in persons with kidney disease. This review focuses on the impact of kidney disease on skeletal muscle dysfunction in the context of the disablement process and reviews screening and treatment strategies that kidney health professionals can use in clinical practice to prevent functional decline and disability.
Collapse
Affiliation(s)
- Baback Roshanravan
- Division of Nephrology, Department of Medicine, University of Washington Kidney Research Institute, Seattle, WA.
| | - Jorge Gamboa
- Vanderbilt University Medical Center, Nashville, TN
| | - Kenneth Wilund
- Department of Kinesiology and Community Health, University of Illinois, Urbana, IL
| |
Collapse
|
33
|
Miller B, Hamilton K, Boushel R, Williamson K, Laner V, Gnaiger E, Davis M. Mitochondrial respiration in highly aerobic canines in the non-raced state and after a 1600-km sled dog race. PLoS One 2017; 12:e0174874. [PMID: 28445477 PMCID: PMC5405936 DOI: 10.1371/journal.pone.0174874] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 03/16/2017] [Indexed: 11/23/2022] Open
Abstract
At the annual Iditarod Race, Alaskan Huskies repeatedly run for up to 8 hours at 16 km/h to complete 1600 km. We previously demonstrated high rates of mitochondrial protein synthesis in Alaskan Huskies, which we suspected allowed rapid remodeling of mitochondrial proteins in response to energetic stress. The purpose of this study was to examine mitochondrial respiration in permeabilized skeletal muscle fibers of Alaskan Huskies in the offseason (Non-raced) and following the 1600 km Iditarod Sled Dog Race (Raced). We hypothesized that compared to Non-raced Huskies, raced Huskies that completed a 1600 km race would have greater mitochondrial respiratory capacities, and improvements in capacities of oxidative phosphorylation (OXPHOS) based on NADH-generating substrates as compared to fatty acids. Using high-resolution respirometry (HRR) we investigated the respiration of permeabilized muscle fibers from Alaskan Huskies. Maximum capacities were 254±26 pmol.s-1.mg-1 for OXPHOS (coupled, P) and 254±37 pmol.s-1.mg-1 for the electron transfer system (ETS; non-coupled, E). After racing respiratory capacities from NADH-linked substrates, but not fat-derived substrates increased. Finally, the OXPHOS to ETS capacity ratio (P/E) increased after racing from 0.90±0.03 to 0.97±0.02. From our previous studies and the current study, we conclude that Alaskan Huskies maintain high mitochondrial protein turnover to facilitate rapid adaptation to environmental extremes and energetic challenges.
Collapse
Affiliation(s)
- Benjamin Miller
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States of America
| | - Karyn Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States of America
| | - Robert Boushel
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Erich Gnaiger
- Department of Visceral, Transplant and Thoracic Surgery, D. Swarvoski Research Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Davis
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
34
|
Wang E, Nyberg SK, Hoff J, Zhao J, Leivseth G, Tørhaug T, Husby OS, Helgerud J, Richardson RS. Impact of maximal strength training on work efficiency and muscle fiber type in the elderly: Implications for physical function and fall prevention. Exp Gerontol 2017; 91:64-71. [PMID: 28232199 DOI: 10.1016/j.exger.2017.02.071] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 01/26/2017] [Accepted: 02/14/2017] [Indexed: 11/25/2022]
Abstract
Although aging is typically associated with a decreased efficiency of locomotion, somewhat surprisingly, there is also a reduction in the proportion of less efficient fast-twitch Type II skeletal muscle fibers and subsequently a greater propensity for falls. Maximal strength training (MST), with an emphasis on velocity in the concentric phase, improves maximal strength, the rate of force development (RFD), and work efficiency, but the impact on muscle morphology in the elderly is unknown. Therefore we evaluated force production, walking work efficiency, and muscle morphology in 11 old (72±3years) subjects before and after MST of the legs. Additionally, for reference, the MST-induced morphometric changes were compared with 7 old (74±6years) subjects who performed conventional strength training (CST), with focus on hypertrophy, as well as 13 young (24±2years) controls. As expected, MST in the old improved maximal strength (68%), RFD (48%), and work efficiency (12%), restoring each to a level similar to the young. However, of importance, these MST-induced functional changes were accompanied by a significant increase in the size (66%) and shift toward a larger percentage (56%) of Type II skeletal muscle fibers, mirroring the adaptations in the hypertrophy trained old subjects, with muscle composition now being similar to the young. In conclusion, MST can increase both work efficiency and Type II skeletal muscle fiber size and percentage in the elderly, supporting the potential role of MST as a countermeasure to maintain both physical function and fall prevention in this population.
Collapse
Affiliation(s)
- Eivind Wang
- Department of Circulation and Medical Imaging, Faculty of Medicine, The Norwegian University of Science and Technology, Trondheim, Norway; Department of Medicine, University of Utah, Salt Lake City, UT, USA; Department of Research and Development, St. Olav's University Hospital, Trondheim, Norway.
| | - Stian Kwak Nyberg
- Department of Circulation and Medical Imaging, Faculty of Medicine, The Norwegian University of Science and Technology, Trondheim, Norway
| | - Jan Hoff
- Department of Circulation and Medical Imaging, Faculty of Medicine, The Norwegian University of Science and Technology, Trondheim, Norway; Department of Physical Medicine and Rehabilitation, St.Olavs University Hospital, Trondheim, Norway
| | - Jia Zhao
- Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Gunnar Leivseth
- Department of Physical Medicine and Rehabilitation, St.Olavs University Hospital, Trondheim, Norway; Department of Clinical Medicine, Faculty of Medicine, The Arctic University of Norway, Trondheim, Norway
| | - Tom Tørhaug
- Department of Physical Medicine and Rehabilitation, St.Olavs University Hospital, Trondheim, Norway; Department of Neuroscience, Faculty of Medicine, The Norwegian University of Science and Technology. Trondheim, Norway
| | - Otto Schnell Husby
- Department of Orthopedics, St.Olavs University Hospital, Trondheim, Norway
| | - Jan Helgerud
- Department of Circulation and Medical Imaging, Faculty of Medicine, The Norwegian University of Science and Technology, Trondheim, Norway
| | - Russell S Richardson
- Department of Medicine, University of Utah, Salt Lake City, UT, USA; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, Salt Lake City VAMC, UT, USA
| |
Collapse
|
35
|
Sasaki K, Kimura T, Kojima S, Higuchi H. The temporal relationship of thresholds between muscle activity and ventilation during bicycle ramp exercise in community dwelling elderly males. J Phys Ther Sci 2016; 28:3213-3219. [PMID: 27942152 PMCID: PMC5140832 DOI: 10.1589/jpts.28.3213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/29/2016] [Indexed: 11/24/2022] Open
Abstract
[Purpose] To compare the appearance time of the ventilatory threshold point and the electromyographic threshold in the activity of the vastus lateralis, rectus femoris, biceps femoris long head and gastrocnemius lateral head muscles during ramp cycling exercise in elderly males. [Subjects and Methods] Eleven community dwelling elderly males participated in this study. Subjects performed exercise testing with an expiratory gas analyzer and surface electromyography to evaluate the tested muscle activities during ramp exercise. [Results] The electromyographic threshold for rectus femoris was not valid because the slope after electromyographic threshold was not significant as compared to that before electromyographic threshold. The slope of the regression line for vastus lateralis was significantly decreased after electromyographic threshold while biceps femoris and gastrocnemius were increased. The electromyographic threshold appearance times for vastus lateralis and gastrocnemius were significantly earlier than ventilatory threshold point. There were no difference in electromyographic threshold appearance times among three muscles. [Conclusion] These results suggest that the increase in the slope of the regression line after electromyographic threshold for vastus lateralis was decreased, possibly indicating to postpone muscular fatigue resulting from the activation of biceps femoris and gastrocnemius as biarticular antagonists. This recruitment pattern might be an elderly-specific strategy.
Collapse
Affiliation(s)
- Kentaro Sasaki
- Department of Physical Therapy, Kinjo University, Japan; Graduate School of Health Sciences (Division of Distance Education), Kyushu University of Health and Welfare, Japan
| | - Tsuyoshi Kimura
- Department of Social Welfare, Faculty of Social Welfare, Kinjo University, Japan
| | | | - Hiroyuki Higuchi
- Graduate School of Health Sciences (Division of Distance Education), Kyushu University of Health and Welfare, Japan
| |
Collapse
|
36
|
Conley KE. Mitochondria to motion: optimizing oxidative phosphorylation to improve exercise performance. ACTA ACUST UNITED AC 2016; 219:243-9. [PMID: 26792336 DOI: 10.1242/jeb.126623] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondria oxidize substrates to generate the ATP that fuels muscle contraction and locomotion. This review focuses on three steps in oxidative phosphorylation that have independent roles in setting the overall mitochondrial ATP flux and thereby have direct impact on locomotion. The first is the electron transport chain, which sets the pace for oxidation. New studies indicate that the electron transport chain capacity per mitochondria declines with age and disease, but can be revived by both acute and chronic treatments. The resulting higher ATP production is reflected in improved muscle power output and locomotory performance. The second step is the coupling of ATP supply from O2 uptake (mitochondrial coupling efficiency). Treatments that elevate mitochondrial coupling raise both exercise efficiency and the capacity for sustained exercise in both young and old muscle. The final step is ATP synthesis itself, which is under dynamic control at multiple sites to provide the 50-fold range of ATP flux between resting muscle and exercise at the mitochondrial capacity. Thus, malleability at sites in these subsystems of oxidative phosphorylation has an impact on ATP flux, with direct effects on exercise performance. Interventions are emerging that target these three independent subsystems to provide many paths to improve ATP flux and elevate the muscle performance lost to inactivity, age or disease.
Collapse
Affiliation(s)
- Kevin E Conley
- Departments of Radiology, Physiology & Biophysics, and Bioengineering, University of Washington Medical Center, Seattle, WA 98195, USA
| |
Collapse
|
37
|
Salin K, Villasevil EM, Auer SK, Anderson GJ, Selman C, Metcalfe NB, Chinopoulos C. Simultaneous measurement of mitochondrial respiration and ATP production in tissue homogenates and calculation of effective P/O ratios. Physiol Rep 2016; 4:e13007. [PMID: 27798358 PMCID: PMC5099967 DOI: 10.14814/phy2.13007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 01/30/2023] Open
Abstract
The use of tissue homogenate has greatly aided the study of the functioning of mitochondria. However, the amount of ATP produced per oxygen molecule consumed, that is, the effective P/O ratio, has never been measured directly in tissue homogenate. Here we combine and refine existing methods previously used in permeabilized cells and isolated mitochondria to simultaneously measure mitochondrial ATP production (JATP) and oxygen consumption (JO2) in tissue homogenate. A major improvement over existing methods is in the control of ATPases that otherwise interfere with the ATP assay: our modified technique facilitates simultaneous measurement of the rates of "uncorrected" ATP synthesis and of ATP hydrolysis, thus minimizing the amount of tissue and time needed. Finally, we develop a novel method of calculating effective P/O ratios which corrects measurements of JATP and JO2 for rates of nonmitochondrial ATP hydrolysis and respiration, respectively. Measurements of JATP and JO2 in liver homogenates from brown trout (Salmo trutta) were highly reproducible, although activity declined once homogenates were 2 h old. We compared mitochondrial properties from fed and food-deprived animals to demonstrate that the method can detect mitochondrial flexibility in P/O ratios in response to nutritional state. This method simplifies studies examining the mitochondrial bioenergetics of tissue homogenates, obviating the need for differential centrifugation or chemical permeabilization and avoiding the use of nonmitochondrial ATPase inhibitors. We conclude that our approach for characterizing effective P/O ratio opens up new possibilities in the study of mitochondrial function in very small samples, where the use of other methods is limited.
Collapse
Affiliation(s)
- Karine Salin
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Eugenia M Villasevil
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Sonya K Auer
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Graeme J Anderson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Colin Selman
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Christos Chinopoulos
- Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary
- MTA-SE Lendület Neurobiochemistry Research Group, Budapest, Hungary
| |
Collapse
|
38
|
Roshanravan B, Kestenbaum B, Gamboa J, Jubrias SA, Ayers E, Curtin L, Himmelfarb J, de Boer IH, Conley KE. CKD and Muscle Mitochondrial Energetics. Am J Kidney Dis 2016; 68:658-659. [PMID: 27312460 DOI: 10.1053/j.ajkd.2016.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/06/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Baback Roshanravan
- University of Washington Kidney Research Institute, Seattle, Washington.
| | - Bryan Kestenbaum
- University of Washington Kidney Research Institute, Seattle, Washington
| | - Jorge Gamboa
- Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Ernest Ayers
- University of Washington Kidney Research Institute, Seattle, Washington
| | - Laura Curtin
- University of Washington Kidney Research Institute, Seattle, Washington
| | | | - Ian H de Boer
- University of Washington Kidney Research Institute, Seattle, Washington
| | | |
Collapse
|
39
|
Perkisas S, De Cock A, Verhoeven V, Vandewoude M. Physiological and architectural changes in the ageing muscle and their relation to strength and function in sarcopenia. Eur Geriatr Med 2016. [DOI: 10.1016/j.eurger.2015.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
40
|
The relationship between mitochondrial function and walking performance in older adults with a wide range of physical function. Exp Gerontol 2016; 81:1-7. [PMID: 27084585 DOI: 10.1016/j.exger.2016.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND Age related declines in walking performance may be partly attributable to skeletal muscle mitochondrial dysfunction as mitochondria produce over 90% of ATP needed for movement and the capacity for oxidative phosphorylation decreases with age. METHODS Participants were from two studies: an ancillary to the Lifestyle Interventions and Independence for Elders (LIFE) Study (n=33), which recruited lower functioning participants (Short Physical Performance Battery [SPPB], 7.8±1.2), and the Study of Energy and Aging-Pilot (SEA, n=29), which enrolled higher functioning (SPPB, 10.8±1.4). Physical activity was measured objectively using the Actigraph accelerometer (LIFE) and SenseWear Pro armband (SEA). Phosphocreatine recovery following muscle contraction of the quadriceps was measured using (31)P magnetic resonance spectroscopy and ATPmax (mM ATP/s) was calculated. Walking performance was defined as time (s) to walk 400m at a usual-pace. The cross-sectional association between mitochondrial function and walking performance was assessed using multivariable linear regression. RESULTS Participants were 77.6±5.3years, 64.2% female and 67.2% white. ATPmax was similar in LIFE vs. SEA (0.52±0.14 vs. 0.55±0.14, p=0.31), despite different function and activity levels (1.6±2.2 vs.77.4±73.3min of moderate activity/day, p<0.01). Higher ATPmax was related to faster walk-time in SEA (r(2)=0.19, p=0.02,); but not the LIFE (r(2)<0.01, p=0.74) cohort. CONCLUSIONS Mitochondrial function was associated with walking performance in higher functioning, active older adults, but not lower functioning, sedentary older adults.
Collapse
|
41
|
van Beek JHGM, Kirkwood TBL, Bassingthwaighte JB. Understanding the physiology of the ageing individual: computational modelling of changes in metabolism and endurance. Interface Focus 2016; 6:20150079. [PMID: 27051508 DOI: 10.1098/rsfs.2015.0079] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ageing and lifespan are strongly affected by metabolism. The maximal possible uptake of oxygen is not only a good predictor of performance in endurance sports, but also of life expectancy. Figuratively speaking, healthy ageing is a competitive sport. Although the root cause of ageing is damage to macromolecules, it is the balance with repair processes that is decisive. Reduced or intermittent nutrition, hormones and intracellular signalling pathways that regulate metabolism have strong effects on ageing. Homeostatic regulatory processes tend to keep the environment of the cells within relatively narrow bounds. On the other hand, the body is constantly adapting to physical activity and food consumption. Spontaneous fluctuations in heart rate and other processes indicate youth and health. A (homeo)dynamic aspect of homeostasis deteriorates with age. We are now in a position to develop computational models of human metabolism and the dynamics of heart rhythm and oxygen transport that will advance our understanding of ageing. Computational modelling of the connections between dietary restriction, metabolism and protein turnover may increase insight into homeostasis of the proteins in our body. In this way, the computational reconstruction of human physiological processes, the Physiome, can help prevent frailty and age-related disease.
Collapse
Affiliation(s)
- Johannes H G M van Beek
- Section Functional Genomics, Department of Clinical Genetics , VU University medical centre , Amsterdam , The Netherlands
| | - Thomas B L Kirkwood
- Newcastle University Institute for Ageing , Newcastle upon Tyne NE4 5PL , UK
| | | |
Collapse
|
42
|
Masuki S, Morita A, Kamijo YI, Ikegawa S, Kataoka Y, Ogawa Y, Sumiyoshi E, Takahashi K, Tanaka T, Nakajima M, Nose H. Impact of 5-aminolevulinic acid with iron supplementation on exercise efficiency and home-based walking training achievement in older women. J Appl Physiol (1985) 2016; 120:87-96. [PMID: 26514619 PMCID: PMC4698441 DOI: 10.1152/japplphysiol.00582.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/25/2015] [Indexed: 11/22/2022] Open
Abstract
A reduction in exercise efficiency with aging limits daily living activities. We examined whether 5-aminolevulinic acid (ALA) with sodium ferrous citrate (SFC) increased exercise efficiency and voluntary achievement of interval walking training (IWT) in older women. Ten women [65 ± 3(SD) yr] who had performed IWT for >12 mo and were currently performing IWT participated in this study. The study was conducted in a placebo-controlled, double-blind crossover design. All subjects underwent two trials for 7 days each in which they performed IWT with ALA+SFC (100 and 115 mg/day, respectively) or placebo supplement intake (CNT), intermittently with a 2-wk washout period. Before and after each trial, subjects underwent a graded cycling test at 27.0 °C atmospheric temperature and 50% relative humidity, and oxygen consumption rate, carbon dioxide production rate, and lactate concentration in plasma were measured. Furthermore, for the first 6 days of each trial, exercise intensity for IWT was measured by accelerometry. We found that, in the ALA+SFC trial, oxygen consumption rate and carbon dioxide production rate during graded cycling decreased by 12% (P < 0.001) and 11% (P = 0.001) at every workload, respectively, accompanied by a 16% reduction in lactate concentration in plasma (P < 0.001), although all remained unchanged in the CNT trial (P > 0.2). All of the reductions were significantly greater in the ALA+SFC than the CNT trial (P < 0.05). Furthermore, the training days, impulse, and time at fast walking were 42% (P = 0.028), 102% (P = 0.027), and 69% (P = 0.039) higher during the ALA+SFC than the CNT intake period, respectively. Thus ALA+SFC supplementation augmented exercise efficiency and thereby improved IWT achievement in older women.
Collapse
Affiliation(s)
- Shizue Masuki
- Department of Sports Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto, Japan; Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan; and
| | - Atsumi Morita
- Department of Sports Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Yoshi-ichiro Kamijo
- Department of Sports Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto, Japan; Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan; and
| | - Shigeki Ikegawa
- Department of Sports Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Yufuko Kataoka
- Department of Sports Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Yu Ogawa
- Department of Sports Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | - Eri Sumiyoshi
- Department of Sports Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto, Japan
| | | | - Tohru Tanaka
- Department of R&D, SBI Pharmaceuticals Co., Ltd., Tokyo, Japan
| | - Motowo Nakajima
- Department of R&D, SBI Pharmaceuticals Co., Ltd., Tokyo, Japan
| | - Hiroshi Nose
- Department of Sports Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto, Japan; Institute for Biomedical Sciences, Shinshu University, Matsumoto, Japan; and
| |
Collapse
|
43
|
Abizanda P, Romero L, Sánchez-Jurado PM, Ruano TF, Ríos SS, Sánchez MF. Energetics of Aging and Frailty: The FRADEA Study. J Gerontol A Biol Sci Med Sci 2015; 71:787-96. [PMID: 26463762 DOI: 10.1093/gerona/glv182] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 09/24/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Resting metabolic rate (RMR) and total daily energy expenditure (TDEE) decrease with aging, but it is not known whether frailty modulates this association. We hypothesize that RMR and TDEE values are similar between younger and older nonfrail older adults, whereas they are lower in older prefrail and frail compared with younger adults. METHODS A cross-sectional analysis of the FRADEA study, Albacete (Spain), including 402 participants (213 women) older than 70 years (mean age 76 years; range 70-91), was conducted. Estimated RMR (eRMR), oxygen consumption (VO2), expired volume (Ve), and respiratory frequency (RF) were determined using indirect calorimetry; TDEE was determined with the Calcumed instrument; and fat-free mass was determined by bioimpedanciometry. General linear models were used for analysis. RESULTS Mean TDEE was 1,889 (SD 470) kcal and eRMR was 1,071 (SD 323) kcal. Both TDEE (B = -24 kcal/day; 95% confidence interval: -35.4 to -14.2; p < .001) and eRMR (B= -15.8 kcal/day; 95% confidence interval: -23.1 to -8.5; p < .001) diminished linearly with age, with lower values in frail and prefrail participants. There was a strong trend between frailty and lower eRMR (F = 2.9; p = .058), with a modifying effect between age and frailty (F = 3.6; p = .002). eRMR in prefrail and frail participants were on average 160 and 114 kcal/day less than that in the nonfrail participants, respectively, and taken together, 154 kcal/day less (F = 5.4; p = .020). Frail and prefrail participants also presented lower Ve and VO2 values that were partially compensated by an RF increase. CONCLUSION Frailty status modulates the energy requirements of aging. Frail and prefrail older adults present lower eRMR than nonfrail adults.
Collapse
Affiliation(s)
- Pedro Abizanda
- Department of Geriatrics Department, Complejo Hospitalario Universitario de Albacete, Spain.
| | - Luis Romero
- Department of Geriatrics Department, Complejo Hospitalario Universitario de Albacete, Spain
| | - Pedro M Sánchez-Jurado
- Department of Geriatrics Department, Complejo Hospitalario Universitario de Albacete, Spain
| | - Teresa Flores Ruano
- Department of Geriatrics Department, Complejo Hospitalario Universitario de Albacete, Spain
| | - Sergio Salmerón Ríos
- Department of Geriatrics Department, Complejo Hospitalario Universitario de Albacete, Spain
| | | |
Collapse
|
44
|
Gram M, Vigelsø A, Yokota T, Helge JW, Dela F, Hey-Mogensen M. Skeletal muscle mitochondrial H2 O2 emission increases with immobilization and decreases after aerobic training in young and older men. J Physiol 2015; 593:4011-27. [PMID: 26096818 PMCID: PMC4575583 DOI: 10.1113/jp270211] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/04/2015] [Indexed: 12/14/2022] Open
Abstract
Currently, it is not known whether impaired mitochondrial function contributes to human ageing or whether potential impairments in mitochondrial function with age are secondary to physical inactivity. The present study investigated mitochondrial respiratory function and reactive oxygen species emission at a predefined membrane potential in young and older men subjected to 2 weeks of one-leg immobilization followed by 6 weeks of aerobic cycle training. Immobilization increased reactive oxygen species emission and decreased ATP generating respiration. Subsequent aerobic training reversed these effects. By contrast, age had no effect on the measured variables. The results of the present study support the notion that increased mitochondrial reactive oxygen species production mediates the detrimental effects seen after physical inactivity and that ageing per se does not cause mitochondrial dysfunction. Mitochondrial dysfunction, defined as increased oxidative stress and lower capacity for energy production, may be seen with ageing and may cause frailty, or it could be that it is secondary to physical inactivity. We studied the effect of 2 weeks of one-leg immobilization followed by 6 weeks of supervised cycle training on mitochondrial function in 17 young (mean ± SEM: 23 ± 1 years) and 15 older (68 ± 1 years) healthy men. Submaximal H2 O2 emission and respiration were measured simultaneously at a predefined membrane potential in isolated mitochondria from skeletal muscle using two protocols: pyruvate + malate (PM) and succinate + rotenone (SR). This allowed measurement of leak and ATP generating respiration from which the coupling efficiency can be calculated. The protein content of the anti-oxidants manganese superoxide dismuthase (MnSOD), CuZn superoxide dismuthase, catalase and gluthathione peroxidase 1 was measured by western blotting. Immobilization decreased ATP generating respiration using PM and increased H2 O2 emission using both PM and SR similarly in young and older men. Both were restored to baseline after the training period. Furthermore, MnSOD and catalase content increased with endurance training. The young men had a higher leak respiration at inclusion using PM and a higher membrane potential in State 3 using both substrate combinations. Collectively, the findings of the present study support the notion that increased mitochondrial reactive oxygen species mediates the detrimental effects seen after physical inactivity. Age, on the other hand, was not associated with impairments in anti-oxidant protein levels, mitochondrial respiration or H2 O2 emission using either protocol.
Collapse
Affiliation(s)
- Martin Gram
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of CopenhagenCopenhagen, Denmark
| | - Andreas Vigelsø
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of CopenhagenCopenhagen, Denmark
| | - Takashi Yokota
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of CopenhagenCopenhagen, Denmark,Department of Cardiovascular Medicine, Hokkaido University Graduate School of MedicineSapporo, Japan
| | - Jørn Wulff Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of CopenhagenCopenhagen, Denmark
| | - Flemming Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of CopenhagenCopenhagen, Denmark,Corresponding author F. Dela: Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200, Copenhagen, Denmark.
| | - Martin Hey-Mogensen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of CopenhagenCopenhagen, Denmark,Present address: Diabetes Research Unit, Novo Nordisk A/SNovo Nordisk Park, Måløv, Denmark
| |
Collapse
|
45
|
Nyberg M, Piil P, Egelund J, Sprague RS, Mortensen SP, Hellsten Y. Potentiation of cGMP signaling increases oxygen delivery and oxidative metabolism in contracting skeletal muscle of older but not young humans. Physiol Rep 2015; 3:3/8/e12508. [PMID: 26272735 PMCID: PMC4562591 DOI: 10.14814/phy2.12508] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Aging is associated with progressive loss of cardiovascular and skeletal muscle function. The impairment in physical capacity with advancing age could be related to an insufficient peripheral O2 delivery to the exercising muscles. Furthermore, the mechanisms underlying an impaired blood flow regulation remain unresolved. Cyclic guanosine monophosphate (cGMP) is one of the main second messengers that mediate smooth muscle vasodilation and alterations in cGMP signaling could, therefore, be one mechanism by which skeletal muscle perfusion is impaired with advancing age. The current study aimed to evaluate the effect of inhibiting the main enzyme involved in cGMP degradation, phosphodiesterase 5 (PDE5), on blood flow and O2 delivery in contracting skeletal muscle of young and older humans. A group of young (23 ± 1 years) and a group of older (72 ± 2 years) male human subjects performed submaximal knee-extensor exercise in a control setting and following intake of the highly selective PDE5 inhibitor sildenafil. Sildenafil increased leg O2 delivery (6-9%) and leg O2 uptake (10-12%) at all three exercise intensities in older but not young subjects. The increase in leg O2 delivery with sildenafil in the older subjects correlated with the increase in leg O2 uptake (r (2) = 0.843). These findings suggest an insufficient O2 delivery to the contracting skeletal muscle of aged individuals and that reduced cGMP availability is a novel mechanism underlying impaired skeletal muscle perfusion with advancing age.
Collapse
Affiliation(s)
- Michael Nyberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Peter Piil
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jon Egelund
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Randy S Sprague
- Department of Pharmacological and Physiological Science, Saint Louis, Missouri, USA
| | - Stefan P Mortensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet University of Copenhagen, Copenhagen, Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Hey-Mogensen M, Gram M, Jensen MB, Lund MT, Hansen CN, Scheibye-Knudsen M, Bohr VA, Dela F. A novel method for determining human ex vivo submaximal skeletal muscle mitochondrial function. J Physiol 2015; 593:3991-4010. [PMID: 26096709 DOI: 10.1113/jp270204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/04/2015] [Indexed: 12/23/2022] Open
Abstract
The present study utilized a novel method aiming to investigate mitochondrial function in human skeletal muscle at submaximal levels and at a predefined membrane potential. The effect of age and training status was investigated using a cross-sectional design. Ageing was found to be related to decreased leak regardless of training status. Increased training status was associated with increased mitochondrial hydrogen peroxide emission. Despite numerous studies, there is no consensus about whether mitochondrial function is altered with increased age. The novelty of the present study is the determination of mitochondrial function at submaximal activity rates, which is more physiologically relevant than the ex vivo functionality protocols used previously. Muscle biopsies were taken from 64 old or young male subjects (aged 60-70 or 20-30 years). Aged subjects were recruited as trained or untrained. Muscle biopsies were used for the isolation of mitochondria and subsequent measurements of DNA repair, anti-oxidant capacity and mitochondrial protein levels (complexes I-V). Mitochondrial function was determined by simultaneous measurement of oxygen consumption, membrane potential and hydrogen peroxide emission using pyruvate + malate (PM) or succinate + rotenone (SR) as substrates. Proton leak was lower in aged subjects when determined at the same membrane potential and was unaffected by training status. State 3 respiration was lower in aged untrained subjects. This effect, however, was alleviated in aged trained subjects. H2 O2 emission with PM was higher in aged subjects, and was exacerbated by training, although it was not changed when using SR. However, with a higher manganese superoxide dismuthase content, the trained aged subjects may actually have lower or similar mitochondrial superoxide emission compared to the untrained subjects. We conclude that ageing and the physical activity level in aged subjects are both related to changes in the intrinsic functionality of the mitochondrion in skeletal muscle. Both of these changes could be important factors in determining the metabolic health of the aged skeletal muscle cell.
Collapse
Affiliation(s)
- Martin Hey-Mogensen
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Present address: Diabetes Research Unit, Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - Martin Gram
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Borch Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Present address: Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, USA
| | - Michael Taulo Lund
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Neigaard Hansen
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Scheibye-Knudsen
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Vilhelm A Bohr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Flemming Dela
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
Nyberg M, Hellsten Y. Reduced blood flow to contracting skeletal muscle in ageing humans: is it all an effect of sand through the hourglass? J Physiol 2015; 594:2297-305. [PMID: 26095873 DOI: 10.1113/jp270594] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 06/05/2015] [Indexed: 01/27/2023] Open
Abstract
The ability to sustain a given absolute submaximal workload declines with advancing age, likely to be due to a lower level of blood flow and O2 delivery to the exercising muscles. Given that physical inactivity mimics many of the physiological changes associated with ageing, separating the physiological consequences of ageing and physical inactivity can be challenging; yet, observations from cross-sectional and longitudinal studies on the effects of physical activity have provided some insight. Physical activity has the potential to offset the age-related decline in blood flow to contracting skeletal muscle during exercise where systemic blood flow is not limited by cardiac output, thereby improving O2 delivery and allowing for an enhanced energy production from oxidative metabolism. The mechanisms underlying the increase in blood flow with regular physical activity include improved endothelial function and the ability for functional sympatholysis - an attenuation of the vasoconstrictor effect of sympathetic nervous activity. These vascular adaptations with physical activity are likely to be an effect of improved nitric oxide and ATP signalling. Collectively, precise matching of blood flow and O2 delivery to meet the O2 demand of the active skeletal muscle of aged individuals during conditions where systemic blood flow is not limited by cardiac output seems to a large extent to be related to the level of physical activity.
Collapse
Affiliation(s)
- Michael Nyberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| |
Collapse
|
48
|
Broskey NT, Boss A, Fares EJ, Greggio C, Gremion G, Schlüter L, Hans D, Kreis R, Boesch C, Amati F. Exercise efficiency relates with mitochondrial content and function in older adults. Physiol Rep 2015; 3:3/6/e12418. [PMID: 26059033 PMCID: PMC4510622 DOI: 10.14814/phy2.12418] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chronic aerobic exercise has been shown to increase exercise efficiency, thus allowing less energy expenditure for a similar amount of work. The extent to which skeletal muscle mitochondria play a role in this is not fully understood, particularly in an elderly population. The purpose of this study was to determine the relationship of exercise efficiency with mitochondrial content and function. We hypothesized that the greater the mitochondrial content and/or function, the greater would be the efficiencies. Thirty-eight sedentary (S, n = 23, 10F/13M) or athletic (A, n = 15, 6F/9M) older adults (66.8 ± 0.8 years) participated in this cross sectional study. O2peak was measured with a cycle ergometer graded exercise protocol (GXT). Gross efficiency (GE, %) and net efficiency (NE, %) were estimated during a 1-h submaximal test (55% O2peak). Delta efficiency (DE, %) was calculated from the GXT. Mitochondrial function was measured as ATPmax (mmol/L/s) during a PCr recovery protocol with 31P-MR spectroscopy. Muscle biopsies were acquired for determination of mitochondrial volume density (MitoVd, %). Efficiencies were 17% (GE), 14% (NE), and 16% (DE) higher in A than S. MitoVD was 29% higher in A and ATPmax was 24% higher in A than in S. All efficiencies positively correlated with both ATPmax and MitoVd. Chronically trained older individuals had greater mitochondrial content and function, as well as greater exercise efficiencies. GE, NE, and DE were related to both mitochondrial content and function. This suggests a possible role of mitochondria in improving exercise efficiency in elderly athletic populations and allowing conservation of energy at moderate workloads.
Collapse
Affiliation(s)
- Nicholas T Broskey
- Department of Physiology, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Andreas Boss
- Department of Clinical Research & Institute of Interventional, Diagnostic and Pediatric Radiology, University of Bern, Bern, Switzerland
| | - Elie-Jacques Fares
- Department of Physiology, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Chiara Greggio
- Department of Physiology, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Gerald Gremion
- Sports Medicine Unit, University Hospital, Lausanne, Switzerland
| | - Leo Schlüter
- Service of Cardiology, University Hospital, Lausanne, Switzerland
| | - Didier Hans
- Center for Bone Disease, Bone & Joint Department, University Hospital, Lausanne, Switzerland
| | - Roland Kreis
- Department of Clinical Research & Institute of Interventional, Diagnostic and Pediatric Radiology, University of Bern, Bern, Switzerland
| | - Chris Boesch
- Department of Clinical Research & Institute of Interventional, Diagnostic and Pediatric Radiology, University of Bern, Bern, Switzerland
| | - Francesca Amati
- Department of Physiology, School of Biology and Medicine, University of Lausanne, Lausanne, Switzerland Sports Medicine Unit, University Hospital, Lausanne, Switzerland
| |
Collapse
|
49
|
Layec G, Trinity JD, Hart CR, Kim SE, Groot HJ, Le Fur Y, Sorensen JR, Jeong EK, Richardson RS. Impact of age on exercise-induced ATP supply during supramaximal plantar flexion in humans. Am J Physiol Regul Integr Comp Physiol 2015; 309:R378-88. [PMID: 26041112 DOI: 10.1152/ajpregu.00522.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 06/02/2015] [Indexed: 11/22/2022]
Abstract
Currently, the physiological factors responsible for exercise intolerance and bioenergetic alterations with age are poorly understood due, at least in art, to the confounding effect of reduced physical activity in the elderly. Thus, in 40 healthy young (22 ± 2 yr) and old (74 ± 8 yr) activity-matched subjects, we assessed the impact of age on: 1) the relative contribution of the three major pathways of ATP synthesis (oxidative ATP synthesis, glycolysis, and the creatine kinase reaction) and 2) the ATP cost of contraction during high-intensity exercise. Specifically, during supramaximal plantar flexion (120% of maximal aerobic power), to stress the functional limits of the skeletal muscle energy systems, we used (31)P-labeled magnetic resonance spectroscopy to assess metabolism. Although glycolytic activation was delayed in the old, ATP synthesis from the main energy pathways was not significantly different between groups. Similarly, the inferred peak rate of mitochondrial ATP synthesis was not significantly different between the young (25 ± 8 mM/min) and old (24 ± 6 mM/min). In contrast, the ATP cost of contraction was significantly elevated in the old compared with the young (5.1 ± 2.0 and 3.7 ± 1.7 mM·min(-1)·W(-1), respectively; P < 0.05). Overall, these findings suggest that, when young and old subjects are activity matched, there is no evidence of age-related mitochondrial and glycolytic dysfunction. However, this study does confirm an abnormal elevation in exercise-induced skeletal muscle metabolic demand in the old that may contribute to the decline in exercise capacity with advancing age.
Collapse
Affiliation(s)
- Gwenael Layec
- Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah;
| | - Joel D Trinity
- Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Corey R Hart
- Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Seong-Eun Kim
- Department of Radiology and Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah; and
| | - H Jonathan Groot
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Yann Le Fur
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France
| | - Jacob R Sorensen
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Eun-Kee Jeong
- Department of Radiology and Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah; and
| | - Russell S Richardson
- Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| |
Collapse
|
50
|
Hanna JS. Sarcopenia and critical illness: a deadly combination in the elderly. JPEN J Parenter Enteral Nutr 2015; 39:273-81. [PMID: 25591973 DOI: 10.1177/0148607114567710] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sarcopenia is the age-associated loss of lean skeletal muscle mass. It is the result of multiple physiologic derangements, ultimately resulting in an insidious functional decline. Frailty, the clinical manifestation of sarcopenia and physical infirmity, is associated with significant morbidity and mortality in the elderly population. The underlying pathology results in a disruption of the individual's ability to tolerate internal and external stressors such as injury or illness. This infirmity results in a markedly increased risk of falls and subsequent morbidity and mortality from the resulting traumatic injury, as well as an inability to recover from medical insults, resulting in critical illness. The increasing prevalence of sarcopenia and critical illness in the elderly has resulted in a deadly intersection of disease processes. The lethality of this combination appears to be the result of altered muscle metabolism, decreased mitochondrial energetics needed to survive critical illness, and a chronically activated catabolic state likely mediated by tumor necrosis factor-α. Furthermore, these underlying derangements are independently associated with an increased incidence of critical illness, resulting in a progressive downward spiral. Considerable evidence has been gathered supporting the role of aggressive nutrition support and physical therapy in improving outcomes. Critical care practitioners must consider sarcopenia and the resulting frailty phenotype a comorbid condition so that the targeted interventions can be instituted and research efforts focused.
Collapse
Affiliation(s)
- Joseph S Hanna
- Department of Surgery, Division of Acute Care Surgery, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|