1
|
Weston ME, Armstrong N, Bond B, Tomlinson OW, Williams CA, Barker AR. The Influence of Acute Hypoxia on Oxygen Uptake and Muscle Oxygenation Kinetics During Cycling Exercise in Prepubertal Boys. Pediatr Exerc Sci 2024:1-8. [PMID: 38925533 DOI: 10.1123/pes.2023-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 06/28/2024]
Abstract
PURPOSE To examine the effect of normobaric hypoxia on pulmonary oxygen uptake (V˙O2) and muscle oxygenation kinetics during incremental and moderate-intensity exercise in children. METHODS Eight prepubertal boys (9-11 y) performed incremental cycle tests to exhaustion in both normoxia and hypoxia (fraction of inspired O2 of 15%) followed by repeat 6-minute transitions of moderate-intensity exercise in each condition over subsequent visits. RESULTS Maximal oxygen uptake (V˙O2max) was reduced in hypoxia compared with normoxia (1.69 [0.20] vs 1.87 [0.26] L·min-1, P = .028), although the gas exchange threshold was not altered in absolute terms (P = .33) or relative to V˙O2max (P = .78). During moderate-intensity exercise, the phase II V˙O2 time constant (τ) was increased in hypoxia (18 [9] vs 24 [8] s, P = .025), with deoxyhemoglobin τ unchanged (17 [8] vs 16 [6], P ≥ .28). CONCLUSIONS In prepubertal boys, hypoxia reduced V˙O2max and slowed V˙O2 phase II kinetics during moderate-intensity exercise, despite unchanged deoxyhemoglobin kinetics. These data suggest an oxygen delivery dependence of V˙O2max and moderate-intensity V˙O2 kinetics under conditions of reduced oxygen availability in prepubertal boys.
Collapse
Affiliation(s)
- Max E Weston
- Children's Health and Exercise Research Center, Public Health and Sports Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter,United Kingdom
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin,Ireland
| | - Neil Armstrong
- Children's Health and Exercise Research Center, Public Health and Sports Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter,United Kingdom
| | - Bert Bond
- Children's Health and Exercise Research Center, Public Health and Sports Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter,United Kingdom
| | - Owen W Tomlinson
- Children's Health and Exercise Research Center, Public Health and Sports Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter,United Kingdom
| | - Craig A Williams
- Children's Health and Exercise Research Center, Public Health and Sports Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter,United Kingdom
| | - Alan R Barker
- Children's Health and Exercise Research Center, Public Health and Sports Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter,United Kingdom
| |
Collapse
|
2
|
Yoon S, Cederbaum LA, Côté JN. Females show less decline in contractile function than males after repeated all-out cycling. Appl Physiol Nutr Metab 2024; 49:199-212. [PMID: 37820383 DOI: 10.1139/apnm-2023-0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Females demonstrate greater fatigue resistance during a range of exercise modalities; however, this may be confounded by the lower mechanical work completed. Accordingly, this study examined the sex-specific peripheral and central fatigue mechanisms during repeated all-out cycling and whether they are affected by total mechanical work performed. A total of 26 healthy young adults (12 females) performed 10 × 10 s all-out cycling interspersed by 30 s passive recovery. Metabolic responses, peripheral and central fatigue, were quantified via changes in pre- to post-exercise blood lactate, potentiated quadriceps twitch force (and contractile properties) evoked via supramaximal electrical stimulation of the femoral nerve, and voluntary activation of the knee extensors, respectively. During exercise, mechanical work, vastus lateralis muscle activation (via surface electromyography), and deoxygenation (via near-infrared spectroscopy) were recorded. Sex comparison analyses were performed before and after statistically controlling for total mechanical work (via ANCOVA). Mechanical work and muscle activation plateaued at similar sprint repetition (sprint 5) and voluntary activation change (pre vs. post) was similar between the sexes. Females, however, showed lower %work decrement (i.e., fatigability; P = 0.037) and peripheral responses as evident by lower reductions in quadriceps twitch force (P < 0.001) and muscle deoxygenation (P = 0.001). Adjusting for total mechanical work did not change these sex comparison results. We show that females' greater fatigue resistance during repeated all-out cycling may not be attributed to the greater total mechanical work performed but could be mediated by lower peripheral fatigue in the knee extensor muscles.
Collapse
Affiliation(s)
- SangHoon Yoon
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montreal, QC H2W 1S4, Canada
| | - Lauren A Cederbaum
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montreal, QC H2W 1S4, Canada
| | - Julie N Côté
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Avenue West, Montreal, QC H2W 1S4, Canada
| |
Collapse
|
3
|
Love LK, Hodgson MD, Keir DA, Kowalchuk JM. The effect of increasing work rate amplitudes from a common metabolic baseline on the kinetic response of V̇o 2p, blood flow, and muscle deoxygenation. J Appl Physiol (1985) 2023; 135:584-600. [PMID: 37439241 DOI: 10.1152/japplphysiol.00566.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023] Open
Abstract
A step-transition in external work rate (WR) increases pulmonary O2 uptake (V̇o2p) in a monoexponential fashion. Although the rate of this increase, quantified by the time constant (τ), has frequently been shown to be similar between multiple different WR amplitudes (ΔWR), the adjustment of O2 delivery to the muscle (via blood flow; BF), a potential regulator of V̇o2p kinetics, has not been extensively studied. To investigate the role of BF on V̇o2p kinetics, 10 participants performed step-transitions on a knee-extension ergometer from a common baseline WR (3 W) to: 24, 33, 45, 54, and 66 W. Each transition lasted 8 min and was repeated four to six times. Volume turbinometry and mass spectrometry, Doppler ultrasound, and near-infrared spectroscopy were used to measure V̇o2p, BF, and muscle deoxygenation (deoxy[Hb + Mb]), respectively. Similar transitions were ensemble-averaged, and phase II V̇o2p, BF, and deoxy[Hb + Mb] were fit with a monoexponential nonlinear least squares regression equation. With increasing ΔWR, τV̇o2p became larger at the higher ΔWRs (P < 0.05), while τBF did not change significantly, and the mean response time (MRT) of deoxy[Hb + Mb] became smaller. These findings that V̇o2p kinetics become slower with increasing ΔWR, while BF kinetics are not influenced by ΔWR, suggest that O2 delivery could not limit V̇o2p in this situation. However, the speeding of deoxy[Hb + Mb] kinetics with increasing ΔWR does imply that the O2 delivery-to-O2 utilization of the microvasculature decreases at higher ΔWRs. This suggests that the contribution of O2 delivery and O2 extraction to V̇O2 in the muscle changes with increasing ΔWR.NEW & NOTEWORTHY A step increase in work rate produces a monoexponential increase in V̇o2p and blood flow to a new steady-state. We found that step transitions from a common metabolic baseline to increasing work rate amplitudes produced a slowing of V̇o2p kinetics, no change in blood flow kinetics, and a speeding of muscle deoxygenation kinetics. As work rate amplitude increased, the ratio of blood flow to V̇o2p became smaller, while the amplitude of muscle deoxygenation became greater. The gain in vascular conductance became smaller, while kinetics tended to become slower at higher work rate amplitudes.
Collapse
Affiliation(s)
- Lorenzo K Love
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
- Department of Kinesiology and Physical Education, Redeemer University, Ancaster, Ontario, Canada
| | - Michael D Hodgson
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
| | - Daniel A Keir
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
- Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| | - John M Kowalchuk
- Canadian Centre for Activity and Aging, The University of Western Ontario, London, Ontario, Canada
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
- Department of Kinesiology and Physical Education, Redeemer University, Ancaster, Ontario, Canada
| |
Collapse
|
4
|
Goulding RP, Burnley M, Wüst RCI. How Priming Exercise Affects Oxygen Uptake Kinetics: From Underpinning Mechanisms to Endurance Performance. Sports Med 2023; 53:959-976. [PMID: 37010782 PMCID: PMC10115720 DOI: 10.1007/s40279-023-01832-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 04/04/2023]
Abstract
The observation that prior heavy or severe-intensity exercise speeds overall oxygen uptake ([Formula: see text]O2) kinetics, termed the "priming effect", has garnered significant research attention and its underpinning mechanisms have been hotly debated. In the first part of this review, the evidence for and against (1) lactic acidosis, (2) increased muscle temperature, (3) O2 delivery, (4) altered motor unit recruitment patterns and (5) enhanced intracellular O2 utilisation in underpinning the priming effect is discussed. Lactic acidosis and increased muscle temperature are most likely not key determinants of the priming effect. Whilst priming increases muscle O2 delivery, many studies have demonstrated that an increased muscle O2 delivery is not a prerequisite for the priming effect. Motor unit recruitment patterns are altered by prior exercise, and these alterations are consistent with some of the observed changes in [Formula: see text]O2 kinetics in humans. Enhancements in intracellular O2 utilisation likely play a central role in mediating the priming effect, probably related to elevated mitochondrial calcium levels and parallel activation of mitochondrial enzymes at the onset of the second bout. In the latter portion of the review, the implications of priming on the parameters of the power-duration relationship are discussed. The effect of priming on subsequent endurance performance depends critically upon which phases of the [Formula: see text]O2 response are altered. A reduced [Formula: see text]O2 slow component or increased fundamental phase amplitude tend to increase the work performable above critical power (i.e. W´), whereas a reduction in the fundamental phase time constant following priming results in an increased critical power.
Collapse
Affiliation(s)
- Richie P Goulding
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.
| | - Mark Burnley
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Rob C I Wüst
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| |
Collapse
|
5
|
KATO T, MUROGA S, YAMASHIRO SM, MATSUMOTO T. Effect of 3% CO2 inhalation on pulmonary gas exchange kinetics during constant work-rate exercise. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2022. [DOI: 10.23736/s0393-3660.20.04529-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Alharbi AAD, Iwamoto N, Ebine N, Nakae S, Hojo T, Fukuoka Y. The Acute Effects of a Single Dose of Molecular Hydrogen Supplements on Responses to Ergogenic Adjustments during High-Intensity Intermittent Exercise in Humans. Nutrients 2022; 14:nu14193974. [PMID: 36235628 PMCID: PMC9571546 DOI: 10.3390/nu14193974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
This research examined the effects of single-dose molecular hydrogen (H2) supplements on acid-base status and local muscle deoxygenation during rest, high-intensity intermittent training (HIIT) performance, and recovery. Ten healthy, trained subjects in a randomized, double-blind, crossover design received H2-rich calcium powder (HCP) (1500 mg, containing 2.544 μg of H2) or H2-depleted placebo (1500 mg) supplements 1 h pre-exercise. They performed six bouts of 7 s all-out pedaling (HIIT) at 7.5% of body weight separated by 40 s pedaling intervals, followed by a recovery period. Blood gases’ pH, PCO2, and HCO3− concentrations were measured at rest. Muscle deoxygenation (deoxy[Hb + Mb]) and tissue O2 saturation (StO2) were determined via time-resolved near-infrared spectroscopy in the vastus lateralis (VL) and rectus femoris (RF) muscles from rest to recovery. At rest, the HCP group had significantly higher PCO2 and HCO3− concentrations and a slight tendency toward acidosis. During exercise, the first HIIT bout’s peak power was significantly higher in HCP (839 ± 112 W) vs. Placebo (816 ± 108 W, p = 0.001), and HCP had a notable effect on significantly increased deoxy[Hb + Mb] concentration during HIIT exercise, despite no differences in heart rate response. The HCP group showed significantly greater O2 extraction in VL and microvascular (Hb) volume in RF during HIIT exercise. The HIIT exercise provided significantly improved blood flow and muscle reoxygenation rates in both the RF and VL during passive recovery compared to rest in all groups. The HCP supplement might exert ergogenic effects on high-intensity exercise and prove advantageous for improving anaerobic HIIT exercise performance.
Collapse
Affiliation(s)
| | - Noriaki Iwamoto
- Graduate School of Health and Sports Science, Doshisha University, Kyoto 610-0396, Japan
| | - Naoyuki Ebine
- Graduate School of Health and Sports Science, Doshisha University, Kyoto 610-0396, Japan
| | - Satoshi Nakae
- Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology, Kashiwa II Campus, The University of Tokyo, Chiba 277-0882, Japan
| | - Tatsuya Hojo
- Graduate School of Health and Sports Science, Doshisha University, Kyoto 610-0396, Japan
| | - Yoshiyuki Fukuoka
- Graduate School of Health and Sports Science, Doshisha University, Kyoto 610-0396, Japan
- Correspondence: ; Tel.: +81-774-65-7530; Fax: +81-774-65-6029
| |
Collapse
|
7
|
Yoon S, Bailey CA, Côté JN. Sex-specific muscle activation and oxygenation kinetics during a repetitive forward pointing task. Appl Physiol Nutr Metab 2022; 47:502-516. [PMID: 35050824 DOI: 10.1139/apnm-2021-0664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We compared the minute-by-minute muscle activity and oxygenation responses to a repetitive arm motion-induced fatiguing task between the sexes in order to address the literature gap on these time-dependent fatigue responses. Twenty-six (13 females) healthy adults performed a repetitive pointing task (RPT) with the arm moving forward/backward at shoulder height until reaching 8/10 (Borg CR10) for neck/shoulder perceived exertion (RPE). Neck/shoulder RPE, oxygenation and electromyography were recorded every minute and compared between first and second half of the task and between the sexes. Greater changes in oxygen supply and activation amplitude occurred during the second half of the task. Despite similar time to fatigue-terminal (p > 0.05), females showed greater anterior deltoid activation amplitude at all time points than males, and only the males showed increases in anterior and posterior deltoid activation amplitudes. In females, middle (ρ = -0.34, p = 0.04) and posterior (ρ = -0.44, p = 0.01) deltoid amplitudes were negatively correlated with perceived exertion during the first half of the task. Results suggest that reduced modulation of anterior deltoid activation amplitude in females may reflect a sub-optimal fatigue-mitigation mechanism compared with males and may help explain their greater susceptibility to neck/shoulder musculoskeletal disorders. Novelty: Despite similar fatigability and trapezius oxygenation, females showed greater deltoid activation throughout the task. Deltoid activation increased in males but not in females. The results support the important role of the deltoid in sex-specific neck/shoulder injury mechanisms.
Collapse
Affiliation(s)
- SangHoon Yoon
- Department of Kinesiology and Physical Education, McGill University, Montréal, QC H2W 1S4, Canada.,Department of Kinesiology and Physical Education, McGill University, Montréal, QC H2W 1S4, Canada
| | - Christopher A Bailey
- Department of Kinesiology and Physical Education, McGill University, Montréal, QC H2W 1S4, Canada.,Department of Kinesiology and Physical Education, McGill University, Montréal, QC H2W 1S4, Canada
| | - Julie N Côté
- Department of Kinesiology and Physical Education, McGill University, Montréal, QC H2W 1S4, Canada.,Department of Kinesiology and Physical Education, McGill University, Montréal, QC H2W 1S4, Canada
| |
Collapse
|
8
|
Goulding RP, Marwood S, Lei TH, Okushima D, Poole DC, Barstow TJ, Kondo N, Koga S. Dissociation between exercise intensity thresholds: mechanistic insights from supine exercise. Am J Physiol Regul Integr Comp Physiol 2021; 321:R712-R722. [PMID: 34431402 DOI: 10.1152/ajpregu.00096.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study tested the hypothesis that the respiratory compensation point (RCP) and breakpoint in deoxygenated [heme] [deoxy[heme]BP, assessed via near-infrared spectroscopy (NIRS)] during ramp incremental exercise would occur at the same metabolic rate in the upright (U) and supine (S) body positions. Eleven healthy men completed ramp incremental exercise tests in U and S. Gas exchange was measured breath-by-breath and time-resolved-NIRS was used to measure deoxy[heme] in the vastus lateralis (VL) and rectus femoris (RF). RCP (S: 2.56 ± 0.39, U: 2.86 ± 0.40 L·min-1, P = 0.02) differed from deoxy[heme]BP in the VL in U (3.10 ± 0.44 L·min-1, P = 0.002), but was not different in S in the VL (2.70 ± 0.50 L·min-1, P = 0.15). RCP was not different from the deoxy[heme]BP in the RF for either position (S: 2.34 ± 0.48 L·min-1, U: 2.76 ± 0.53 L·min-1, P > 0.05). However, the deoxy[heme]BP differed between muscles in both positions (P < 0.05), and changes in deoxy[heme]BP did not relate to ΔRCP between positions (VL: r = 0.55, P = 0.080, RF: r = 0.26, P = 0.44). The deoxy[heme]BP was consistently preceded by a breakpoint in total[heme], and was, in turn, itself preceded by a breakpoint in muscle surface electromyography (EMG). RCP and the deoxy[heme]BP can be dissociated across muscles and different body positions and, therefore, do not represent the same underlying physiological phenomenon. The deoxy[heme]BP may, however, be mechanistically related to breakpoints in total[heme] and muscle activity.
Collapse
Affiliation(s)
- Richie P Goulding
- Laboratory for Myology, Vrije Universiteit, Amsterdam, The Netherlands.,Applied Physiology Laboratory, Kobe Design University, Kobe, Japan.,Japan Society for Promotion of Sciences, Tokyo, Japan
| | - Simon Marwood
- School of Health Sciences, Liverpool Hope University, Liverpool, United Kingdom
| | - Tze-Huan Lei
- College of Physical Education, Hubei Normal University, Huangshi, People's Republic of China
| | - Dai Okushima
- Osaka International University, Moriguchi, Japan
| | - David C Poole
- Departments of Anatomy and Physiology, and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Thomas J Barstow
- Departments of Anatomy and Physiology, and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Narihiko Kondo
- Applied Physiology Laboratory, Kobe University, Kobe, Japan
| | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| |
Collapse
|
9
|
Salzmann K, Sanchez AMJ, Borrani F. Effects of Blood Flow Restriction on O 2 Muscle Extraction and O 2 Pulmonary Uptake Kinetics During Heavy Exercise. Front Physiol 2021; 12:722848. [PMID: 34539445 PMCID: PMC8441002 DOI: 10.3389/fphys.2021.722848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to determine the effects of three levels of blood flow restriction (BFR) onV ˙ O 2 and O 2 extraction kinetics during heavy cycling exercise transitions. Twelve healthy trained males completed two bouts of 10 min heavy intensity exercise without BFR (CON), with 40% or 50% BFR (BFR40 and BFR50, respectively).V ˙ O 2 and tissue saturation index (TSI) were continuously measured and modelled using multiexponential functions. The time constant of theV ˙ O 2 primary phase was significantly slowed in BFR40 (26.4 ± 2.0s; p < 0.001) and BFR50 (27.1 ± 2.1s; p = 0.001) compared to CON (19.0 ± 1.1s). The amplitude of theV ˙ O 2 slow component was significantly increased (p < 0.001) with BFR in a pressure-dependent manner 3.6 ± 0.7, 6.7 ± 0.9 and 9.7 ± 1.0 ml·min-1·kg-1 for CON, BFR40, and BFR50, respectively. While no acceleration of the primary component of the TSI kinetics was observed, there was an increase (p < 0.001) of the phase 3 amplitude with BFR (CON -0.8 ± 0.3% VS BFR40 -2.9 ± 0.9%, CON VS BFR50 -2.8 ± 0.8%). It may be speculated that BFR applied during cycling exercise in the heavy intensity domain shifted the working muscles to an O 2 dependent situation. The acceleration of the extraction kinetics could have reached a plateau, hence not permitting compensation for the slowdown of the blood flow kinetics, and slowingV ˙ O 2 kinetics.
Collapse
Affiliation(s)
- Killian Salzmann
- Institute of Sport Sciences of University of Lausanne (ISSUL), University of Lausanne, Lausanne, Switzerland
| | - Anthony M. J. Sanchez
- University of Perpignan Via Domitia (UPVD), Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Santé Environnement De Montagne (LIPSEM), Font-Romeu, France
| | - Fabio Borrani
- Institute of Sport Sciences of University of Lausanne (ISSUL), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Rokkedal-Lausch T, Franch J, Poulsen MK, Thomsen LP, Weitzberg E, Kamavuako EN, Karbing DS, Larsen RG. Multiple-day high-dose beetroot juice supplementation does not improve pulmonary or muscle deoxygenation kinetics of well-trained cyclists in normoxia and hypoxia. Nitric Oxide 2021; 111-112:37-44. [PMID: 33831566 DOI: 10.1016/j.niox.2021.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Dietary nitrate (NO3-) supplementation via beetroot juice (BR) has been reported to lower oxygen cost (i.e., increased exercise efficiency) and speed up oxygen uptake (VO2) kinetics in untrained and moderately trained individuals, particularly during conditions of low oxygen availability (i.e., hypoxia). However, the effects of multiple-day, high dose (12.4 mmol NO3- per day) BR supplementation on exercise efficiency and VO2 kinetics during normoxia and hypoxia in well-trained individuals are not resolved. In a double-blinded, randomized crossover study, 12 well-trained cyclists (66.4 ± 5.3 ml min-1∙kg-1) completed three transitions from rest to moderate-intensity (~70% of gas exchange threshold) cycling in hypoxia and normoxia with supplementation of BR or nitrate-depleted BR as placebo. Continuous measures of VO2 and muscle (vastus lateralis) deoxygenation (ΔHHb, using near-infrared spectroscopy) were acquired during all transitions. Kinetics of VO2 and deoxygenation (ΔHHb) were modeled using mono-exponential functions. Our results showed that BR supplementation did not alter the primary time constant for VO2 or ΔHHb during the transition from rest to moderate-intensity cycling. While BR supplementation lowered the amplitude of the VO2 response (2.1%, p = 0.038), BR did not alter steady state VO2 derived from the fit (p = 0.258), raw VO2 data (p = 0.231), moderate intensity exercise efficiency (p = 0.333) nor steady state ΔHHb (p = 0.224). Altogether, these results demonstrate that multiple-day, high-dose BR supplementation does not alter exercise efficiency or oxygen uptake kinetics during normoxia and hypoxia in well-trained athletes.
Collapse
Affiliation(s)
- Torben Rokkedal-Lausch
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, DK-9220, Aalborg, Denmark.
| | - Jesper Franch
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, DK-9220, Aalborg, Denmark
| | - Mathias K Poulsen
- Respiratory and Critical Care Group, Department of Health Science and Technology, Aalborg University, DK-9220, Aalborg, Denmark
| | - Lars P Thomsen
- Respiratory and Critical Care Group, Department of Health Science and Technology, Aalborg University, DK-9220, Aalborg, Denmark
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Ernest N Kamavuako
- Center for Robotics Research, Department of Engineering, King's College London, London, United Kingdom
| | - Dan S Karbing
- Respiratory and Critical Care Group, Department of Health Science and Technology, Aalborg University, DK-9220, Aalborg, Denmark
| | - Ryan G Larsen
- Sport Sciences - Performance and Technology, Department of Health Science and Technology, Aalborg University, DK-9220, Aalborg, Denmark
| |
Collapse
|
11
|
Endo T, Kime R, Fuse S, Murase N, Kurosawa Y, Hamaoka T. Changes in Optical Path Length Reveal Significant Potential Errors of Muscle Oxygenation Evaluation during Exercise in Humans. Med Sci Sports Exerc 2021; 53:853-859. [PMID: 33017349 DOI: 10.1249/mss.0000000000002530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Near-infrared spectroscopy (NIRS), performed with a commonly available noninvasive tissue oxygenation monitoring device, is based on the modified Beer-Lambert law (MBLL). Although NIRS based on MBLL (NIRSMBLL) assumes that the optical path length (PL) is constant, the effects of changes in PL during exercise on muscle oxygenation calculated by MBLL are still incompletely understood. Thus, the purposes of this study were to examine the changes in optical properties during ramp incremental exercise and to compare muscle oxygen dynamics measured by time-resolved NIRS with those calculated based on MBLL. METHODS Twenty-two healthy young men performed ramp incremental cycling exercise until exhaustion. Optical properties (reduced scattering coefficient and PL) and absolute oxygenated, deoxygenated, and total hemoglobin and myoglobin concentrations (oxy[Hb + Mb], deoxy[Hb + Mb], and total[Hb + Mb], respectively) at the vastus lateralis were continuously monitored by a three-wavelength (763, 801, and 836) time-resolved NIRS device. The values of oxy-, deoxy-, and total[Hb + Mb] were then recalculated by assuming constant PL. RESULTS PL at all wavelengths statistically significantly shortened during exercise. In particular, PL at 763 nm was greatly shortened, and the average changes during exercise were a 9.8% ± 3.1% reduction. In addition, significant differences in the kinetics of oxy-, deoxy-, and total[Hb + Mb] between directly measuring PL and assuming constant PL were found. The average changes in measured PL and assuming constant PL-deoxy[Hb + Mb] were increases of 28.8 ± 16.0 μM and increases of 16.4 ± 9.3 μM, respectively. CONCLUSION Assuming constant PL in NIRSMBLL significantly underestimated actual muscle oxy/deoxygenation as compared with measurements obtained by real-time PL determination. The percent degree of the underestimated oxy/deoxygenation was greater than the percent degree of the changes in PL.
Collapse
Affiliation(s)
- Tasuki Endo
- Department of Sports Medicine for Health Promotion, Tokyo Medical University, Tokyo, JAPAN
| | | | | | | | | | | |
Collapse
|
12
|
Impact of supine versus upright exercise on muscle deoxygenation heterogeneity during ramp incremental cycling is site specific. Eur J Appl Physiol 2021; 121:1283-1296. [PMID: 33575912 PMCID: PMC8064998 DOI: 10.1007/s00421-021-04607-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/17/2021] [Indexed: 10/24/2022]
Abstract
PURPOSE We tested the hypothesis that incremental ramp cycling exercise performed in the supine position (S) would be associated with an increased reliance on muscle deoxygenation (deoxy[heme]) in the deep and superficial vastus lateralis (VLd and VLs, respectively) and the superficial rectus femoris (RFs) when compared to the upright position (U). METHODS 11 healthy men completed ramp incremental exercise tests in S and U. Pulmonary [Formula: see text]O2 was measured breath-by-breath; deoxy[heme] was determined via time-resolved near-infrared spectroscopy in the VLd, VLs and RFs. RESULTS Supine exercise increased the overall change in deoxy[heme] from baseline to maximal exercise in the VLs (S: 38 ± 23 vs. U: 26 ± 15 μM, P < 0.001) and RFs (S: 36 ± 21 vs. U: 25 ± 15 μM, P < 0.001), but not in the VLd (S: 32 ± 23 vs. U: 29 ± 26 μM, P > 0.05). CONCLUSIONS The present study supports that the impaired balance between O2 delivery and O2 utilization observed during supine exercise is a regional phenomenon within superficial muscles. Thus, deep muscle defended its O2 delivery/utilization balance against the supine-induced reductions in perfusion pressure. The differential responses of these muscle regions may be explained by a regional heterogeneity of vascular and metabolic control properties, perhaps related to fiber type composition.
Collapse
|
13
|
Application of Molecular Hydrogen as an Antioxidant in Responses to Ventilatory and Ergogenic Adjustments during Incremental Exercise in Humans. Nutrients 2021; 13:nu13020459. [PMID: 33573133 PMCID: PMC7911623 DOI: 10.3390/nu13020459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
We investigated effects of molecular hydrogen (H2) supplementation on acid-base status, pulmonary gas exchange responses, and local muscle oxygenation during incremental exercise. Eighteen healthy, trained subjects in a randomized, double-blind, crossover design received H2-rich calcium powder (HCP) (1500 mg/day, containing 2.544 µg/day of H2) or H2-depleted placebo (1500 mg/day) for three consecutive days. They performed cycling incremental exercise starting at 20-watt work rate, increasing by 20 watts/2 min until exhaustion. Breath-by-breath pulmonary ventilation (V˙E) and CO2 output (V˙CO2) were measured and muscle deoxygenation (deoxy[Hb + Mb]) was determined via time-resolved near-infrared spectroscopy in the vastus lateralis (VL) and rectus femoris (RF). Blood gases' pH, lactate, and bicarbonate (HCO3-) concentrations were measured at rest and 120-, 200-, and 240-watt work rates. At rest, the HCP group had significantly lower V˙E, V˙CO2, and higher HCO3-, partial pressures of CO2 (PCO2) versus placebo. During exercise, a significant pH decrease and greater HCO3- continued until 240-watt workload in HCP. The V˙E was significantly lower in HCP versus placebo, but HCP did not affect the gas exchange status of V˙CO2 or oxygen uptake (V˙O2). HCP increased absolute values of deoxy[Hb + Mb] at the RF but not VL. Thus, HCP-induced hypoventilation would lead to lower pH and secondarily impaired balance between O2 delivery and utilization in the local RF during exercise, suggesting that HCP supplementation, which increases the at-rest antioxidant potential, affects the lower ventilation and pH status during incremental exercise. HPC induced a significantly lower O2 delivery/utilization ratio in the RF but not the VL, which may be because these regions possess inherently different vascular/metabolic control properties, perhaps related to fiber-type composition.
Collapse
|
14
|
Goulding RP, Roche DM, Marwood S. Effect of Hyperoxia on Critical Power and V˙O2 Kinetics during Upright Cycling. Med Sci Sports Exerc 2020; 52:1041-1049. [PMID: 31815830 DOI: 10.1249/mss.0000000000002234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
INTRODUCTION/PURPOSE Critical power (CP) is a fundamental parameter defining high-intensity exercise tolerance; however, its physiological determinants are incompletely understood. The present study determined the impact of hyperoxia on CP, the time constant of phase II pulmonary oxygen uptake kinetics (τV˙O2), and muscle oxygenation (assessed by near-infrared spectroscopy) in nine healthy men performing upright cycle ergometry. METHODS Critical power was determined in normoxia and hyperoxia (fraction of inspired O2 = 0.5) via four severe-intensity constant load exercise tests to exhaustion on a cycle ergometer, repeated once in each condition. During each test, τV˙O2 and the time constant of muscle deoxyhemoglobin kinetics (τ[HHb]), alongside absolute concentrations of muscle oxyhemoglobin ([HbO2]), were determined. RESULTS Critical power was greater (hyperoxia, 216 ± 30 W vs normoxia, 197 ± 29 W; P < 0.001), whereas W' was reduced (hyperoxia, 15.4 ± 5.2 kJ; normoxia, 17.5 ± 4.3 W; P = 0.037) in hyperoxia compared with normoxia. τV˙O2 (hyperoxia, 35 ± 12 s vs normoxia, 33 ± 10 s; P = 0.33) and τ[HHb] (hyperoxia, 11 ± 5 s vs normoxia, 14 ± 5 s; P = 0.65) were unchanged between conditions, whereas [HbO2] during exercise was greater in hyperoxia compared with normoxia (hyperoxia, 73 ± 20 vs normoxia, 66 ± 15 μM; P < 0.001). CONCLUSIONS This study provides novel insights into the physiological determinants of CP and by extension, exercise tolerance. Microvascular oxygenation and CP were improved during exercise in hyperoxia compared with normoxia. Importantly, the improved microvascular oxygenation afforded by hyperoxia did not alter τV˙O2, suggesting that microvascular O2 availability is an independent determinant of the upper limit for steady-state exercise, that is, CP.
Collapse
Affiliation(s)
- Richie P Goulding
- School of Health Sciences, Liverpool Hope University, Liverpool, UNITED KINGDOM
| | | | | |
Collapse
|
15
|
Ansdell P, Škarabot J, Atkinson E, Corden S, Tygart A, Hicks KM, Thomas K, Hunter SK, Howatson G, Goodall S. Sex differences in fatigability following exercise normalised to the power-duration relationship. J Physiol 2020; 598:5717-5737. [PMID: 32964441 DOI: 10.1113/jp280031] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/07/2020] [Indexed: 01/24/2023] Open
Abstract
KEY POINTS Knee-extensors demonstrate greater fatigue resistance in females compared to males during single-limb and whole-body exercise. For single-limb exercise, the intensity-duration relationship is different between sexes, with females sustaining a greater relative intensity of exercise. This study established the power-duration relationship during cycling, then assessed fatigability during critical power-matched exercise within the heavy and severe intensity domains. When critical power and the curvature constant were expressed relative to maximal ramp test power, no sex difference was observed. No sex difference in time to task failure was observed in either trial. During heavy and severe intensity cycling, females experienced lesser muscle de-oxygenation. Following both trials, females experienced lesser reductions in knee-extensor contractile function, and following heavy intensity exercise, females experienced less reduction in voluntary activation. These data demonstrate that whilst the relative power-duration relationship is not different between males and females, the mechanisms of fatigability during critical power-matched exercise are mediated by sex. ABSTRACT Due to morphological differences, females demonstrate greater fatigue resistance of locomotor muscle during single-limb and whole-body exercise modalities. Whilst females sustain a greater relative intensity of single-limb, isometric exercise than males, limited investigation has been performed during whole-body exercise. Accordingly, this study established the power-duration relationship during cycling in 18 trained participants (eight females). Subsequently, constant-load exercise was performed at critical power (CP)-matched intensities within the heavy and severe domains, with the mechanisms of fatigability assessed via non-invasive neurostimulation, near-infrared spectroscopy and pulmonary gas exchange during and following exercise. Relative CP (72 ± 5 vs. 74 ± 2% Pmax , P = 0.210) and curvature constant (51 ± 11 vs. 52 ± 10 J Pmax -1 , P = 0.733) of the power-duration relationship were similar between males and females. Subsequent heavy (P = 0.758) and severe intensity (P = 0.645) exercise time to task failures were not different between sexes. However, females experienced lesser reductions in contractile function at task failure (P ≤ 0.020), and greater vastus lateralis oxygenation (P ≤ 0.039) during both trials. Reductions in voluntary activation occurred following both trials (P < 0.001), but were less in females following the heavy trial (P = 0.036). Furthermore, during the heavy intensity trial only, corticospinal excitability was reduced at the cortical (P = 0.020) and spinal (P = 0.036) levels, but these reductions were not sex-dependent. Other than a lower respiratory exchange ratio in the heavy trial for females (P = 0.039), no gas exchange variables differed between sexes (P ≥ 0.052). Collectively, these data demonstrate that whilst the relative power-duration relationship is not different between males and females, the mechanisms of fatigability during CP-matched exercise above and below CP are mediated by sex.
Collapse
Affiliation(s)
- Paul Ansdell
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Jakob Škarabot
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK.,School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Elliott Atkinson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Sarah Corden
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Amber Tygart
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Kirsty M Hicks
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Kevin Thomas
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Sandra K Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK.,Water Research Group, School of Environmental Sciences and Development, North-West University, Potchefstroom, South Africa
| | - Stuart Goodall
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
16
|
Goulding RP, Okushima D, Marwood S, Poole DC, Barstow TJ, Lei TH, Kondo N, Koga S. Impact of supine exercise on muscle deoxygenation kinetics heterogeneity: mechanistic insights into slow pulmonary oxygen uptake dynamics. J Appl Physiol (1985) 2020; 129:535-546. [PMID: 32702271 DOI: 10.1152/japplphysiol.00213.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Oxygen uptake (V̇o2) kinetics are slowed in the supine (S) position purportedly due to impaired muscle O2 delivery ([Formula: see text]); however, these conclusions are predicated on single-site measurements in superficial muscle using continuous-wave near-infrared spectroscopy (NIRS). This study aimed to determine the impact of body position [i.e., upright (U) versus S] on deep and superficial muscle deoxygenation (deoxy[heme]) using time-resolved (TR-) NIRS, and how these relate to slowed pulmonary V̇o2 kinetics. Seventeen healthy men completed constant power tests during 1) S heavy-intensity exercise and 2) U exercise at the same absolute work rate, with a subset of 10 completing additional tests at the same relative work rate as S. Pulmonary V̇o2 was measured breath-by-breath and, deoxy- and total[heme] were resolved via TR-NIRS in the superficial and deep vastus lateralis and superficial rectus femoris. The fundamental phase V̇o2 time constant was increased during S compared with U (S: 36 ± 10 vs. U: 27 ± 8 s; P < 0.001). The deoxy[heme] amplitude (S: 25-28 vs. U: 13-18 µM; P < 0.05) and total[heme] amplitude (S: 17-20 vs. U: 9-16 µM; P < 0.05) were greater in S compared with U and were consistent for the same absolute (above data) and relative work rates (n = 10, all P < 0.05). The greater deoxy- and total[heme] amplitudes in S vs. U supports that reduced perfusive [Formula: see text] in S, even within deep muscle, necessitated a greater reliance on fractional O2 extraction and diffusive [Formula: see text]. The slower V̇o2 kinetics in S versus U demonstrates that, ultimately, these adjustments were insufficient to prevent impairments in whole body oxidative metabolism.NEW & NOTEWORTHY We show that supine exercise causes a greater degree of muscle deoxygenation in both deep and superficial muscle and increases the spatial heterogeneity of muscle deoxygenation. Therefore, this study suggests that any O2 delivery gradient toward deep versus superficial muscle is insufficient to mitigate impairments in oxidative function in response to reduced whole muscle O2 delivery. More heterogeneous muscle deoxygenation is associated with slower V̇o2 kinetics.
Collapse
Affiliation(s)
- Richie P Goulding
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan.,International Research Fellow of Japan Society for Promotion of Sciences, Tokyo, Japan
| | - Dai Okushima
- Osaka International University, Moriguchi, Japan
| | - Simon Marwood
- School of Health Sciences, Liverpool Hope University, Liverpool, Merseyside, United Kingdom
| | - David C Poole
- Departments of Anatomy and Physiology, and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Thomas J Barstow
- Departments of Anatomy and Physiology, and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Tze-Huan Lei
- International Research Fellow of Japan Society for Promotion of Sciences, Tokyo, Japan.,Applied Physiology Laboratory, Kobe University, Kobe, Japan
| | - Narihiko Kondo
- Applied Physiology Laboratory, Kobe University, Kobe, Japan
| | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| |
Collapse
|
17
|
Goulding RP, Marwood S, Okushima D, Poole DC, Barstow TJ, Lei TH, Kondo N, Koga S. Effect of priming exercise and body position on pulmonary oxygen uptake and muscle deoxygenation kinetics during cycle exercise. J Appl Physiol (1985) 2020; 129:810-822. [PMID: 32758041 DOI: 10.1152/japplphysiol.00478.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We hypothesized that the performance of prior heavy exercise would speed pulmonary oxygen uptake (V̇o2) kinetics (i.e., as described by the time constant, [Formula: see text]) and reduce the amplitude of muscle deoxygenation (deoxy[heme]) kinetics in the supine (S) but not upright (U) body position. Seventeen healthy men completed heavy-intensity constant-work rate exercise tests in S and U consisting of two bouts of 6-min cycling separated by 6-min cycling at 20 W. Pulmonary V̇o2 was measured breath by breath; total and deoxy[heme] were determined via time-resolved near-infrared spectroscopy (NIRS) at three muscle sites. Priming exercise reduced [Formula: see text] in S (bout 1: 36 ± 10 vs. bout 2: 28 ± 10 s, P < 0.05) but not U (bout 1: 27 ± 8 s vs. bout 2: 25 ± 7 s, P > 0.05). Deoxy[heme] amplitude was increased after priming in S (bout 1: 25-28 μM vs. bout 2: 30-35 μM, P < 0.05) and U (bout 1: 13-18 μM vs. bout 2: 17-25 μM, P > 0.05), whereas baseline total[heme] was enhanced in S (bout 1: 110-179 μM vs. bout 2: 121-193 μM, P < 0.05) and U (bout 1: 123-186 μM vs. bout 2: 137-197 μM, P < 0.05). Priming exercise increased total[heme] in both S and U, likely indicating enhanced diffusive O2 delivery. However, the observation that after priming the amplitude of the deoxy[heme] response was increased in S suggests that the reduction in [Formula: see text] subsequent to priming was related to a combination of both enhanced intracellular O2 utilization and increased O2 delivery.NEW & NOTEWORTHY Here we show that oxygen uptake (V̇o2) kinetics are slower in the supine compared with upright body position, an effect that is associated with an increased amplitude of skeletal muscle deoxygenation in the supine position. After priming in the supine position, the amplitude of muscle deoxygenation remained markedly elevated above that observed during upright exercise. Hence, the priming effect cannot be solely attributed to enhanced O2 delivery, and enhancements to intracellular O2 utilization must also be contributory.
Collapse
Affiliation(s)
- Richie P Goulding
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan.,Japan Society for Promotion of Science, Tokyo, Japan
| | - Simon Marwood
- School of Health Sciences, Liverpool Hope University, Liverpool, United Kingdom
| | - Dai Okushima
- Osaka International University, Moriguchi, Japan
| | - David C Poole
- Department of Anatomy and Physiology and Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Thomas J Barstow
- Department of Anatomy and Physiology and Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Tze-Huan Lei
- Japan Society for Promotion of Science, Tokyo, Japan.,Applied Physiology Laboratory, Kobe University, Kobe, Japan
| | - Narihiko Kondo
- Applied Physiology Laboratory, Kobe University, Kobe, Japan
| | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| |
Collapse
|
18
|
Goulding RP, Roche DM, Scott SN, Koga S, Weston PJ, Marwood S. Limitations to exercise tolerance in type 1 diabetes: the role of pulmonary oxygen uptake kinetics and priming exercise. J Appl Physiol (1985) 2020; 128:1299-1309. [PMID: 32213117 DOI: 10.1152/japplphysiol.00892.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We compared the time constant (τV̇O2) of the fundamental phase of pulmonary oxygen uptake (V̇o2) kinetics between young adult men with type 1 diabetes and healthy control subjects. We also assessed the impact of priming exercise on τV̇O2, critical power, and muscle deoxygenation in a subset of participants with type 1 diabetes. Seventeen men with type 1 diabetes and 17 healthy male control subjects performed moderate-intensity exercise to determine τV̇O2. A subset of seven participants with type 1 diabetes performed an additional eight visits, in which critical power, τV̇O2, and muscle deoxyhemoglobin + myoglobin ([HHb+Mb], via near-infrared spectroscopy) kinetics (described by a time constant, τ[HHb+Mb]) were determined with (PRI) and without (CON) a prior 6-min bout of heavy exercise. τV̇O2 was greater in participants with type 1 diabetes compared with control subjects (type 1 diabetes 50 ± 13 vs. control 32 ± 12 s; P < 0.001). Critical power was greater in PRI compared with CON (PRI 161 ± 25 vs. CON 149 ± 22 W; P < 0.001), whereas τV̇O2 (PRI 36 ± 15 vs. CON 50 ± 21 s; P = 0.006) and τ[HHb+Mb] (PRI 10 ± 5 vs. CON 17 ± 11 s; P = 0.037) were reduced in PRI compared with CON. Type 1 diabetes patients showed slower pulmonary V̇o2 kinetics compared with control subjects; priming exercise speeded V̇o2 and [HHb + Mb] kinetics and increased critical power in a subgroup with type 1 diabetes. These data therefore represent the first characterization of the power-duration relationship in type 1 diabetes and the first experimental evidence that τV̇O2 is an independent determinant of critical power in this population.NEW & NOTEWORTHY Patients with type 1 diabetes demonstrated slower oxygen uptake (V̇o2) kinetics compared with healthy control subjects. Furthermore, a prior bout of high-intensity exercise speeded V̇o2 kinetics and increased critical power in people with type 1 diabetes. Prior exercise speeded muscle deoxygenation kinetics, indicating that V̇o2 kinetics in type 1 diabetes are limited primarily by oxygen extraction and/or intracellular factors. These findings highlight the potential for interventions that decrease metabolic inertia for enhancing exercise tolerance in this condition.
Collapse
Affiliation(s)
- Richie P Goulding
- School of Health Sciences, Liverpool Hope University, Liverpool, United Kingdom.,Japan Society for Promotion of Science, Tokyo, Japan.,Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| | - Denise M Roche
- School of Health Sciences, Liverpool Hope University, Liverpool, United Kingdom
| | - Sam N Scott
- University Department of Diabetes, Endocrinology, Nutritional Medicine, and Metabolism, University Hospital and University of Bern, Bern, Switzerland.,Team Novo Nordisk Professional Cycling Team, Atlanta, Georgia
| | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| | - Philip J Weston
- Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
| | - Simon Marwood
- School of Health Sciences, Liverpool Hope University, Liverpool, United Kingdom
| |
Collapse
|
19
|
Okushima D, Poole DC, Barstow TJ, Kondo N, Chin LMK, Koga S. Effect of differential muscle activation patterns on muscle deoxygenation and microvascular haemoglobin regulation. Exp Physiol 2020; 105:531-541. [PMID: 31944446 PMCID: PMC10466155 DOI: 10.1113/ep088322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/14/2020] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does the presence and extent of heterogeneity in the ratio of O2 delivery to uptake across human muscles relate specifically to different muscle activation patterns? What is the main finding and its importance? During ramp incremental knee-extension and cycling exercise, the profiles of muscle deoxygenation (deoxy[haemoglobin + myoglobin]) and diffusive O2 potential (total[haemoglobin + myoglobin]) in the vastus lateralis corresponded to different muscle activation strategies. However, this was not the case for the rectus femoris, where muscle activation and deoxygenation profiles were dissociated and might therefore be determined by other structural and/or functional attributes (e.g. arteriolar vascular regulation and control of red blood cell flux). ABSTRACT Near-infrared spectroscopy has revealed considerable heterogeneity in the ratio of O2 delivery to uptake as identified by disparate deoxygenation {deoxy[haemoglobin + myoglobin] (deoxy[Hb + Mb])} values in the exercising quadriceps. However, whether this represents a recruitment phenomenon or contrasting vascular and metabolic control, as seen among fibre types, has not been established. We used knee-extension (KE) and cycling (CE) incremental exercise protocols to examine whether differential muscle activation profiles could account for the heterogeneity of deoxy[Hb + Mb] and microvascular haemoconcentration (i.e. total[Hb + Mb]). Using time-resolved near-infrared spectroscopy for the quadriceps femoris (vastus lateralis and rectus femoris) during exhaustive ramp exercise in eight participants, we tested the following hypotheses: (i) the deoxy[Hb + Mb] (i.e. fractional O2 extraction) would relate to muscle activation levels across exercise protocols; and (ii) KE would induce greater total[Hb + Mb] (i.e. diffusive O2 potential) at task failure (i.e. peak O2 uptake) than CE irrespective of muscle site. At a given level of muscle activation, as assessed by the relative integrated EMG normalized to maximal voluntary contraction (%iEMGmax ), the vastus lateralis deoxy[Hb + Mb] profile was not different between exercise protocols. However, at peak O2 uptake and until 20% iEMGmax for CE, rectus femoris exhibited a lower deoxy[Hb + Mb] (83.2 ± 15.5 versus 98.2 ± 19.4 μm) for KE than for CE (P < 0.05). The total[Hb + Mb] at peak O2 uptake was not different between exercise protocols for either muscle site. These data support the hypothesis that the contrasting patterns of convective and diffusive O2 transport correspond to different muscle activation patterns in vastus lateralis but not rectus femoris. Thus, the differential deoxygenation profiles for rectus femoris across exercise protocols might be dependent upon specific facets of muscle architecture and functional haemodynamic events.
Collapse
Affiliation(s)
- Dai Okushima
- Applied Physiology Laboratory, Kobe Design University, Kobe, Hyogo, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
- Osaka International University, Moriguchi, Japan
| | - David C. Poole
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Thomas J. Barstow
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | | | - Lisa M. K. Chin
- Rehabilitation Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Hyogo, Japan
| |
Collapse
|
20
|
Wakabayashi H, Osawa M, Koga S, Li K, Sakaue H, Sengoku Y, Takagi H. Effects of muscle cooling on kinetics of pulmonary oxygen uptake and muscle deoxygenation at the onset of exercise. Physiol Rep 2019; 6:e13910. [PMID: 30381894 PMCID: PMC6209689 DOI: 10.14814/phy2.13910] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/03/2018] [Indexed: 11/24/2022] Open
Abstract
This study investigated effects of skeletal muscle cooling on the metabolic response and kinetics of pulmonary oxygen uptake (V˙O2) and skeletal muscle deoxygenation during submaximal exercise. In the cooling condition (C), after immersion of the lower body into 12°C water for 30 min, eight healthy males performed 30‐min cycling exercise at the lactate threshold while undergoing thigh cooling by a water‐circulating pad. In the normal condition (N) as control, they conducted the same exercise protocol without cooling. Blood lactate concentration was significantly higher in C than N at 10 min after onset of exercise (4.0 ± 1.7 and 2.4 ± 1.2 mmol/L in C and N, P < 0.05). The percent change in the tissue oxygen saturation of the vastus lateralis, measured by a near‐infrared spectroscopy, was significantly lower in C at 2, 8, 10, and 20 min after the exercise onset compared with N (P < 0.05). The percent change in deoxy hemoglobin+myoglobin concentration (Deoxy[Hb+Mb]) showed a transient peak at the onset of exercise and significantly higher value in C at 10, 20, and 30 min after the exercise onset (P < 0.05). Compared to N, slower V˙O2 kinetics (mean response time) was observed in C (45.6 ± 7.8 and 36.1 ± 7.7 sec in C and N, P < 0.05). The mean response time in C relative to N was significantly correlated with the transient peak of Deoxy[Hb+Mb] in C (r = 0.84, P < 0.05). These results suggest that lower oxygen delivery to the hypothermic skeletal muscle might induce greater glycolytic metabolism during exercise and slower V˙O2 kinetics at the onset of exercise.
Collapse
Affiliation(s)
| | - Mizuki Osawa
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| | - Ke Li
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hiroyuki Sakaue
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yasuo Sengoku
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hideki Takagi
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
21
|
Porcelli S, Grassi B, Poole DC, Marzorati M. Exercise intolerance in patients with mitochondrial myopathies: perfusive and diffusive limitations in the O2 pathway. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
22
|
Koga S, Okushima D, Poole DC, Rossiter HB, Kondo N, Barstow TJ. Unaltered V̇o 2 kinetics despite greater muscle oxygenation during heavy-intensity two-legged knee extension versus cycle exercise in humans. Am J Physiol Regul Integr Comp Physiol 2019; 317:R203-R213. [PMID: 31042412 DOI: 10.1152/ajpregu.00015.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Relative perfusion of active muscles is greater during knee extension ergometry (KE) than cycle ergometry (CE). This provides the opportunity to investigate the effects of increased O2 delivery (Q̇o2) on deoxygenation heterogeneity among quadriceps muscles and pulmonary oxygen uptake (V̇o2) kinetics. Using time-resolved near-infrared spectroscopy, we hypothesized that compared with CE the superficial vastus lateralis (VL), superficial rectus femoris, and deep VL in KE would have 1) a smaller amplitude of the exercise-induced increase in deoxy[Hb + Mb] (related to the balance between V̇o2 and Q̇o2); 2) a greater amplitude of total[Hb + Mb] (related to the diffusive O2 conductance); 3) a greater homogeneity of regional muscle deoxy[Hb + Mb]; and 4) no difference in pulmonary V̇o2 kinetics. Eight participants performed square-wave KE and CE exercise from 20 W to heavy work rates. Deoxy[Hb + Mb] amplitude was less for all muscle regions in KE (P < 0.05: superficial, KE 17-24 vs. CE 19-40; deep, KE 19 vs. CE 26 μM). Furthermore, the amplitude of total[Hb + Mb] was greater for KE than CE at all muscle sites (P < 0.05: superficial, KE, 7-21 vs. CE, 1-16; deep, KE, 11 vs. CE, -3 μM). Although the amplitude and heterogeneity of deoxy[Hb + Mb] were significantly lower in KE than CE during the first minute of exercise, the pulmonary V̇o2 kinetics was not different for KE and CE. These data show that the microvascular Q̇o2 to V̇o2 ratio, and thus tissue oxygenation, was greater in KE than CE. This suggests that pulmonary and muscle V̇o2 kinetics in young healthy humans are not limited by Q̇o2 during heavy-intensity cycling.
Collapse
Affiliation(s)
- Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University , Kobe , Japan
| | - Dai Okushima
- Applied Physiology Laboratory, Kobe Design University , Kobe , Japan
| | - David C Poole
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University , Manhattan, Kansas.,Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Harry B Rossiter
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California, Los Angeles Medical Center , Torrance, California.,Faculty of Biological Sciences, University of Leeds , Leeds , United Kingdom
| | - Narihiko Kondo
- Applied Physiology Laboratory, Kobe University , Kobe , Japan
| | - Thomas J Barstow
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
23
|
Barstow TJ. Understanding near infrared spectroscopy and its application to skeletal muscle research. J Appl Physiol (1985) 2019; 126:1360-1376. [PMID: 30844336 DOI: 10.1152/japplphysiol.00166.2018] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Near infrared spectroscopy (NIRS) is a powerful noninvasive tool with which to study the matching of oxygen delivery to oxygen utilization and the number of new publications utilizing this technique has increased exponentially in the last 20 yr. By measuring the state of oxygenation of the primary heme compounds in skeletal muscle (hemoglobin and myoglobin), greater understanding of the underlying control mechanisms that couple perfusive and diffusive oxygen delivery to oxidative metabolism can be gained from the laboratory to the athletic field to the intensive care unit or emergency room. However, the field of NIRS has been complicated by the diversity of instrumentation, the inherent limitations of some of these technologies, the associated diversity of terminology, and a general lack of standardization of protocols. This Cores of Reproducibility in Physiology (CORP) will describe in basic but important detail the most common methodologies of NIRS, their strengths and limitations, and discuss some of the potential confounding factors that can affect the quality and reproducibility of NIRS data. Recommendations are provided to reduce the variability and errors in data collection, analysis, and interpretation. The goal of this CORP is to provide readers with a greater understanding of the methodology, limitations, and best practices so as to improve the reproducibility of NIRS research in skeletal muscle.
Collapse
Affiliation(s)
- Thomas J Barstow
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| |
Collapse
|
24
|
Goulding RP, Roche DM, Marwood S. "Work-to-Work" exercise slows pulmonary oxygen uptake kinetics, decreases critical power, and increases W' during supine cycling. Physiol Rep 2018; 6:e13916. [PMID: 30426722 PMCID: PMC6234148 DOI: 10.14814/phy2.13916] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 01/21/2023] Open
Abstract
We have previously demonstrated that the phase II time constant of pulmonary oxygen uptake kinetics ( τ v ˙ o 2 ) is an independent determinant of critical power (CP) when O2 availability is not limiting, that is, during upright cycle exercise in young, healthy individuals. Whether this causative relationship remains when O2 availability is impaired remains unknown. During supine exercise, which causes an O2 availability limitation during the exercise transition, we therefore determined the impact of a raised baseline work rate on τ v ˙ o 2 and CP. CP, τ v ˙ o 2 , and muscle oxygenation status (the latter via near-infrared spectroscopy) were determined via four severe-intensity constant-power exercise tests completed in two conditions: (1) with exercise initiated from an unloaded cycling baseline (U→S), and (2) with exercise initiated from a moderate-intensity baseline work rate of 90% of the gas exchange threshold (M→S). In M→S, critical power was lower (U→S = 146 ± 39 W vs. M→S = 132 ± 33 W, P = 0.023) and τ v ˙ o 2 was greater (U→S = 45 ± 16 sec, vs. M→S = 69 ± 129 sec, P = 0.001) when compared to U→S. There was no difference in tissue oxyhemoglobin concentration ([HbO2 + MbO2 ]) at baseline or during exercise. The concomitant increase in τ v ˙ o 2 and reduction in CP during M→S compared to U→S shows for the first time that τ v ˙ o 2 is an independent determinant of CP in conditions where O2 availability is limiting.
Collapse
Affiliation(s)
- Richie P. Goulding
- School of Health SciencesLiverpool Hope UniversityLiverpoolUnited Kingdom
| | - Denise M. Roche
- School of Health SciencesLiverpool Hope UniversityLiverpoolUnited Kingdom
| | - Simon Marwood
- School of Health SciencesLiverpool Hope UniversityLiverpoolUnited Kingdom
| |
Collapse
|
25
|
Koga S, Okushima D, Barstow TJ, Rossiter HB, Kondo N, Poole DC. Near-infrared spectroscopy of superficial and deep rectus femoris reveals markedly different exercise response to superficial vastus lateralis. Physiol Rep 2018; 5:5/17/e13402. [PMID: 28912130 PMCID: PMC5599862 DOI: 10.14814/phy2.13402] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 08/08/2017] [Accepted: 08/08/2017] [Indexed: 12/13/2022] Open
Abstract
To date our knowledge of skeletal muscle deoxygenation as measured by near-infrared spectroscopy (NIRS) is predicated almost exclusively on sampling of superficial muscle(s), most commonly the vastus lateralis (VL-s). Recently developed high power NIRS facilitates simultaneous sampling of deep (i.e., rectus femoris, RF-d) and superficial muscles of RF (RF-s) and VL-s. Because deeper muscle is more oxidative with greater capillarity and sustains higher blood flows than superficial muscle, we used time-resolved NIRS to test the hypotheses that, following exercise onset, the RF-d has slower deoxy[Hb+Mb] kinetics with reduced amplitude than superficial muscles. Thirteen participants performed cycle exercise transitions from unloaded to heavy work rates. Within the same muscle (RF-s vs. RF-d) deoxy[Hb+Mb] kinetics (mean response time, MRT) and amplitudes were not different. However, compared with the kinetics of VL-s, deoxy[Hb+Mb] of RF-s and RF-d were slower (MRT: RF-s, 51 ± 23; RF-d, 55 ± 29; VL-s, 18 ± 6 s; P < 0.05). Moreover, the amplitude of total[Hb+Mb] was greater for VL-s than both RF-s and RF-d (P < 0.05). Whereas pulmonary V˙O2 kinetics (i.e., on vs. off) were symmetrical in heavy exercise, there was a marked on-off asymmetry of deoxy[Hb+Mb] for all three sites i.e., MRT-off > MRT-on (P < 0.05). Collectively these data reveal profoundly different O2 transport strategies, with the RF-s and RF-d relying proportionately more on elevated perfusive and the VL-s on diffusive O2 transport. These disparate O2 transport strategies and their temporal profiles across muscles have previously been concealed within the "global" pulmonary V˙O2 response.
Collapse
Affiliation(s)
- Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| | - Dai Okushima
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| | - Thomas J Barstow
- Departments of Anatomy and Physiology, and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Harry B Rossiter
- Rehabilitation Clinical Trials Center, Division of Respiratory & Critical Care Physiology & Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California.,Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Narihiko Kondo
- Applied Physiology Laboratory, Kobe University, Kobe, Japan
| | - David C Poole
- Departments of Anatomy and Physiology, and Kinesiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
26
|
Breese BC, Poole DC, Okushima D, Bailey SJ, Jones AM, Kondo N, Amano T, Koga S. The effect of dietary nitrate supplementation on the spatial heterogeneity of quadriceps deoxygenation during heavy-intensity cycling. Physiol Rep 2018; 5:5/14/e13340. [PMID: 28743821 PMCID: PMC5532482 DOI: 10.14814/phy2.13340] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 12/31/2022] Open
Abstract
This study investigated the influence of dietary inorganic nitrate (NO3−) supplementation on pulmonary O2 uptake (V˙O2) and muscle deoxyhemoglobin/myoglobin (i.e. deoxy [Hb + Mb]) kinetics during submaximal cycling exercise. In a randomized, placebo‐controlled, cross‐over study, eight healthy and physically active male subjects completed two step cycle tests at a work rate equivalent to 50% of the difference between the gas exchange threshold and peak V˙O2 over separate 4‐day supplementation periods with NO3−‐rich (BR; providing 8.4 mmol NO3−∙day−1) and NO3−‐depleted (placebo; PLA) beetroot juice. Pulmonary V˙O2 was measured breath‐by‐breath and time‐resolved near‐infrared spectroscopy was utilized to quantify absolute deoxy [Hb + Mb] and total [Hb + Mb] within the rectus femoris, vastus lateralis, and vastus medialis. There were no significant differences (P > 0.05) in the primary deoxy [Hb + Mb] mean response time or amplitude between the PLA and BR trials at each muscle site. BR significantly increased the mean (three‐site) end‐exercise deoxy [Hb + Mb] (PLA: 91 ± 9 vs. BR: 95 ± 12 μmol/L, P < 0.05), with a tendency to increase the mean (three‐site) area under the curve for total [Hb + Mb] responses (PLA: 3650 ± 1188 vs. BR: 4467 ± 1315 μmol/L sec−1, P = 0.08). The V˙O2 slow component reduction after BR supplementation (PLA: 0.27 ± 0.07 vs. BR: 0.23 ± 0.08 L min−1, P = 0.07) correlated inversely with the mean increases in deoxy [Hb + Mb] and total [Hb + Mb] across the three muscle regions (r2 = 0.62 and 0.66, P < 0.05). Dietary NO3− supplementation increased O2 diffusive conductance across locomotor muscles in association with improved V˙O2 dynamics during heavy‐intensity cycling transitions.
Collapse
Affiliation(s)
- Brynmor C Breese
- School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth, United Kingdom
| | - David C Poole
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Dai Okushima
- Applied Physiology Laboratory, Kobe Design University, Kobe, Hyogo, Japan
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences Loughborough University, Loughborough, United Kingdom
| | - Andrew M Jones
- Sport and Health Sciences, College of Life and Environmental Sciences University of Exeter, Exeter, United Kingdom
| | - Narihiko Kondo
- Faculty of Global Human Sciences, Kobe University, Kobe, Japan
| | - Tatsuro Amano
- Faculty of Education, Niigata University, Niigata, Japan
| | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Hyogo, Japan
| |
Collapse
|
27
|
Hammer SM, Alexander AM, Didier KD, Smith JR, Caldwell JT, Sutterfield SL, Ade CJ, Barstow TJ. The noninvasive simultaneous measurement of tissue oxygenation and microvascular hemodynamics during incremental handgrip exercise. J Appl Physiol (1985) 2018; 124:604-614. [DOI: 10.1152/japplphysiol.00815.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Limb blood flow increases linearly with exercise intensity; however, invasive measurements of muscle microvascular blood flow during incremental exercise have demonstrated submaximal plateaus. We tested the hypotheses that 1) brachial artery blood flow (Q̇BA) would increase with increasing exercise intensity until task failure, 2) blood flow index of the flexor digitorum superficialis (BFIFDS) measured noninvasively via diffuse correlation spectroscopy would plateau at a submaximal work rate, and 3) muscle oxygenation characteristics (total-[heme], deoxy-[heme], and percentage saturation) measured noninvasively with near-infrared spectroscopy would demonstrate a plateau at a similar work rate as BFIFDS. Sixteen subjects (23.3 ± 3.9 yr, 170.8 ± 1.9 cm, 72.8 ± 3.4 kg) participated in this study. Peak power (Ppeak) was determined for each subject (1.8 ± 0.4 W) via an incremental handgrip exercise test. Q̇BA, BFIFDS, total-[heme], deoxy-[heme], and percentage saturation were measured during each stage of the exercise test. On a subsequent testing day, muscle activation measurements of the FDS (RMSFDS) were collected during each stage of an identical incremental handgrip exercise test via electromyography from a subset of subjects ( n = 7). Q̇BA increased with exercise intensity until the final work rate transition ( P < 0.05). No increases in BFIFDS or muscle oxygenation characteristics were observed at exercise intensities greater than 51.5 ± 22.9% of Ppeak. No submaximal plateau in RMSFDS was observed. Whereas muscle activation of the FDS increased until task failure, noninvasively measured indices of perfusive and diffusive muscle microvascular oxygen delivery demonstrated submaximal plateaus. NEW & NOTEWORTHY Invasive measurements of muscle microvascular blood flow during incremental exercise have demonstrated submaximal plateaus. We demonstrate that indices of perfusive and diffusive microvascular oxygen transport to skeletal muscle, measured completely noninvasively, plateau at submaximal work rates during incremental exercise, even though limb blood flow and muscle recruitment continued to increase.
Collapse
Affiliation(s)
- Shane M. Hammer
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | | | - Kaylin D. Didier
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Joshua R. Smith
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Jacob T. Caldwell
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | | | - Carl J. Ade
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Thomas J. Barstow
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
28
|
Slow V˙O 2 kinetics in acute hypoxia are not related to a hyperventilation-induced hypocapnia. Respir Physiol Neurobiol 2018; 251:41-49. [PMID: 29477729 DOI: 10.1016/j.resp.2018.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/01/2018] [Accepted: 02/16/2018] [Indexed: 11/21/2022]
Abstract
We examined whether slower pulmonary O2 uptake (V˙O2p) kinetics in hypoxia is a consequence of: a) hypoxia alone (lowered arterial O2 pressure), b) hyperventilation-induced hypocapnia (lowered arterial CO2 pressure), or c) a combination of both. Eleven participants performed 3-5 repetitions of step-changes in cycle ergometer power output from 20W to 80% lactate threshold in the following conditions: i) normoxia (CON; room air); ii) hypoxia (HX, inspired O2 = 12%; lowered end-tidal O2 pressure [PETO2] and end-tidal CO2 pressure [PETCO2]); iii) hyperventilation (HV; increased PETO2 and lowered PETCO2); and iv) normocapnic hypoxia (NC-HX; lowered PETO2 and PETCO2 matched to CON). Ventilation was increased (relative to CON) and matched between HX, HV, and NC-HX conditions. During each condition VO2p˙ was measured and phase II V˙O2p kinetics were modeled with a mono-exponential function. The V˙O2p time constant was different (p < 0.05) amongst all conditions: CON, 26 ± 11s; HV, 36 ± 14s; HX, 46 ± 14s; and NC-HX, 52 ± 13s. Hypocapnia may prevent further slowing of V˙O2p kinetics in hypoxic exercise.
Collapse
|
29
|
Okushima D, Poole DC, Barstow TJ, Rossiter HB, Kondo N, Bowen TS, Amano T, Koga S. Greater V˙O2peak is correlated with greater skeletal muscle deoxygenation amplitude and hemoglobin concentration within individual muscles during ramp-incremental cycle exercise. Physiol Rep 2018; 4:4/23/e13065. [PMID: 27986837 PMCID: PMC5260088 DOI: 10.14814/phy2.13065] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 11/03/2016] [Indexed: 11/24/2022] Open
Abstract
It is axiomatic that greater aerobic fitness (V˙O2peak) derives from enhanced perfusive and diffusive O2 conductances across active muscles. However, it remains unknown how these conductances might be reflected by regional differences in fractional O2 extraction (i.e., deoxy [Hb+Mb] and tissue O2 saturation [StO2]) and diffusive O2 potential (i.e., total[Hb+Mb]) among muscles spatially heterogeneous in blood flow, fiber type, and recruitment (vastus lateralis, VL; rectus femoris, RF). Using quantitative time‐resolved near‐infrared spectroscopy during ramp cycling in 24 young participants (V˙O2peak range: ~37.4–66.4 mL kg−1 min−1), we tested the hypotheses that (1) deoxy[Hb+Mb] and total[Hb+Mb] at V˙O2peak would be positively correlated with V˙O2peak in both VL and RF muscles; (2) the pattern of deoxygenation (the deoxy[Hb+Mb] slopes) during submaximal exercise would not differ among subjects differing in V˙O2peak. Peak deoxy [Hb+Mb] and StO2 correlated with V˙O2peak for both VL (r = 0.44 and −0.51) and RF (r = 0.49 and −0.49), whereas for total[Hb+Mb] this was true only for RF (r = 0.45). Baseline deoxy[Hb+Mb] and StO2 correlated with V˙O2peak only for RF (r = −0.50 and 0.54). In addition, the deoxy[Hb+Mb] slopes were not affected by aerobic fitness. In conclusion, while the pattern of deoxygenation (the deoxy[Hb+Mb] slopes) did not differ between fitness groups the capacity to deoxygenate [Hb+Mb] (index of maximal fractional O2 extraction) correlated significantly with V˙O2peak in both RF and VL muscles. However, only in the RF did total[Hb+Mb] (index of diffusive O2 potential) relate to fitness.
Collapse
Affiliation(s)
- Dai Okushima
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| | - David C Poole
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Thomas J Barstow
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Harry B Rossiter
- Rehabilitation Clinical Trials Center, Division of Respiratory & Critical Care Physiology & Medicine Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment Kobe University, Kobe, Japan
| | - T Scott Bowen
- Department of Internal Medicine & Cardiology, Heart Center, Leipzig University, Leipzig, Germany
| | - Tatsuro Amano
- Faculty of Education Niigata University, Niigata, Japan
| | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| |
Collapse
|
30
|
Craig JC, Broxterman RM, Wilcox SL, Chen C, Barstow TJ. Effect of adipose tissue thickness, muscle site, and sex on near-infrared spectroscopy derived total-[hemoglobin + myoglobin]. J Appl Physiol (1985) 2017; 123:1571-1578. [PMID: 28935822 DOI: 10.1152/japplphysiol.00207.2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Craig JC, Broxterman RM, Wilcox SL, Chen C, Barstow TJ. Effect of adipose tissue thickness, muscle site, and sex on near-infrared spectroscopy derived total-[hemoglobin + myoglobin]. J Appl Physiol 123: 1571-1578, 2017. First published September 21, 2017; doi: 10.1152/japplphysiol.00207.2017 .-Adipose tissue thickness (ATT) attenuates signals from near-infrared spectroscopy (NIRS) and diminishes the absolute quantification of underlying tissues by contemporary NIRS devices. Based on the relationship between NIRS-derived total-[hemoglobin + myoglobin] (total-[Hb + Mb]) and ATT, we tested the hypotheses that the correction factor for ATT 1) is muscle site specific; 2) does not differ between men and women; and that 3) exclusion of the shortest source-detector distance from data analysis increases total-[Hb + Mb]. Fourteen healthy subjects (7 men) rested in a neutral body position (supine or prone) while measurements of total-[Hb + Mb] and ATT were taken at four muscles common to resting and exercise studies: vastus lateralis (VL), rectus femoris (RF), gastrocnemius (GS), and flexor digitorum superficialis (FDS). ATT averaged 6.0 ± 0.4 mm across all muscles. Every muscle showed a negative slope ( r2: 0.6-0.94; P < 0.01) for total-[Hb + Mb] as a function of ATT: VL (-34 μM/mm), RF (-26 μM/mm), GS (-54 μM/mm), and FDS (-33 μM/mm). The projected total-[Hb + Mb] at 0 mm ATT ( y-intercept) was 452, 372, 620, and 456 μM for VL, RF, GS, and FDS, respectively. No differences were found between the sexes within VL, RF, or FDS, but men had a greater projected total-[Hb + Mb] at 0 mm for GS (688 ± 44 vs. 552 ± 40 μM; P < 0.05). Exclusion of the shortest source-detector distance increased total-[Hb + Mb] by 12 ± 1 μM ( P < 0.05). The present findings demonstrate that total-[Hb + Mb] should be corrected for ATT using muscle site-specific factors which are not sex specific, except in the case of GS. NEW & NOTEWORTHY Near-infrared spectroscopy (NIRS) is an important tool for physiologists and clinicians. However, adipose tissue greatly attenuates the signals from these devices. Correcting for this attenuation has been suggested based on the strength of the relationship between NIRS-derived measurements and the adipose tissue thickness. We show that this relationship is unique to the muscle site of interest but may not be sex specific. Accurate quantification of underlying tissue mandates researchers correct for adipose tissue thickness.
Collapse
Affiliation(s)
- Jesse C Craig
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Ryan M Broxterman
- Department of Kinesiology, Kansas State University , Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| | - Samuel L Wilcox
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Chixiang Chen
- Department of Statistics, Kansas State University , Manhattan, Kansas
| | - Thomas J Barstow
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| |
Collapse
|
31
|
Inglis EC, Iannetta D, Murias JM. The plateau in the NIRS-derived [HHb] signal near the end of a ramp incremental test does not indicate the upper limit of O 2 extraction in the vastus lateralis. Am J Physiol Regul Integr Comp Physiol 2017; 313:R723-R729. [PMID: 28931547 DOI: 10.1152/ajpregu.00261.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 01/08/2023]
Abstract
This study aimed to examine, at the level of the active muscles, whether the plateau in oxygen (O2) extraction normally observed near the end of a ramp incremental (RI) exercise test to exhaustion is caused by the achievement of an upper limit in O2 extraction. Eleven healthy men (27.3 ± 3.0 yr, 81.6 ± 8.1 kg, 183.9 ± 6.3 cm) performed a RI cycling test to exhaustion. O2 extraction of the vastus lateralis (VL) was measured continuously throughout the test using the near-infrared spectroscopy (NIRS)-derived deoxygenated hemoglobin [HHb] signal. A leg blood flow occlusion was performed at rest (LBFOCC1) and immediately after the RI test (LBFOCC2). The [HHb] values during the resting occlusion (108.1 ± 21.7%; LBFOCC1) and the peak values during exercise (100 ± 0%; [HHb]plateau) were significantly greater than those observed at baseline (0.84 ± 10.6% at baseline 1 and 0 ± 0% at baseline 2) (P < 0.05). No significant difference was found between LBFOCC1 and [HHb]plateau (P > 0.05) or between the baseline measurements (P > 0.05). [HHb] values at LBFOCC2 (130.5 ± 19.7%) were significantly greater than all other time points (P < 0.05). These results support the existence of an O2 extraction reserve in the VL muscle at the end of a RI cycling test and suggest that the observed plateau in the [HHb] signal toward the end of a RI test is not representative of an upper limit in O2 extraction.
Collapse
Affiliation(s)
| | - Danilo Iannetta
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
32
|
Beltrame T, Hughson RL. Linear and non-linear contributions to oxygen transport and utilization during moderate random exercise in humans. Exp Physiol 2017; 102:563-577. [PMID: 28240387 DOI: 10.1113/ep086145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/23/2017] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The pulmonary oxygen uptake (pV̇O2) data used to study the muscle aerobic system dynamics during moderate-exercise transitions is classically described as a mono-exponential function controlled by a complex interaction of the oxygen delivery-utilization balance. This elevated complexity complicates the acquisition of relevant information regarding aerobic system dynamics based on pV̇O2 data during a varying exercise stimulus. What is the main finding and its importance? The elevated complexity of pV̇O2 dynamics is a consequence of a multiple-order interaction between muscle oxygen uptake and circulatory distortion. Our findings challenge the use of a first-order function to study the influences of the oxygen delivery-utilization balance over the pV̇O2 dynamics. The assumption of aerobic system linearity implies that the pulmonary oxygen uptake (pV̇O2) dynamics during exercise transitions present a first-order characteristic. The main objective of this study was to test the linearity of the oxygen delivery-utilization balance during random moderate exercise. The cardiac output (Q̇) and deoxygenated haemoglobin concentration ([HHb]) were measured to infer the central and local O2 availability, respectively. Thirteen healthy men performed two consecutive pseudorandom binary sequence cycling exercises followed by an incremental protocol. The system input and the outputs pV̇O2, [HHb] and Q̇ were submitted to frequency-domain analysis. The linearity of the variables was tested by computing the ability of the response at a specific frequency to predict the response at another frequency. The predictability levels were assessed by the coefficient of determination. In a first-order system, a participant who presents faster dynamics at a specific frequency should also present faster dynamics at any other frequency. All experimentally obtained variables (pV̇O2, [HHb] and Q̇) presented a certainly degree of non-linearity. The local O2 availability, evaluated by the ratio pV̇O2/[HHb], presented the most irregular behaviour. The overall [HHb] kinetics were faster than pV̇O2 and Q̇ kinetics. In conclusion, the oxygen delivery-utilization balance behaved as a non-linear phenomenon. Therefore, the elevated complexity of the pulmonary oxygen uptake dynamics is governed by a complex multiple-order interaction between the oxygen delivery and utilization systems.
Collapse
Affiliation(s)
- T Beltrame
- Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada.,Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Distrito Federal, Brazil
| | - R L Hughson
- Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Ontario, Canada.,Schlegel-University of Waterloo Research Institute for Aging, Waterloo, Ontario, Canada
| |
Collapse
|
33
|
Niemeijer VM, Jansen JP, van Dijk T, Spee RF, Meijer EJ, Kemps HMC, Wijn PFF. The influence of adipose tissue on spatially resolved near-infrared spectroscopy derived skeletal muscle oxygenation: the extent of the problem. Physiol Meas 2017; 38:539-554. [PMID: 28151429 DOI: 10.1088/1361-6579/aa5dd5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Near-infrared spectroscopy (NIRS) measurements of tissue oxygen saturation (StO2) are useful for the assessment of skeletal muscle perfusion and function during exercise, however, they are influenced by overlying skin and adipose tissue. This study explored the extent and nature of the influence of adipose tissue thickness (ATT) on StO2. APPROACH NIR spatially resolved spectroscopy (SRS) derived oxygenation was measured on vastus lateralis in 56 patients with chronic heart failure (CHF) and 20 healthy control (HC) subjects during rest and moderate intensity exercise with simultaneous assessment of oxygen uptake kinetics (τ [Formula: see text]). In vitro measurements were performed on a flow cell with a blood mixture with full oxygen saturation (100%), which was gradually decreased to 0% by adding sodium metabisulfite. Experiments were repeated with 2 mm increments of porcine fat layer between the NIRS device and flow cell up to 14 mm. MAIN RESULTS Lower ATT, higher τ [Formula: see text], and CHF were independently associated with lower in vivo StO2 in multiple regression analysis, whereas age and gender showed no independent relationship. With greater ATT, in vitro StO2 was reduced from 100% to 74% for fully oxygenated blood and increased from 0% to 68% for deoxygenated blood. SIGNIFICANCE This study shows that ATT independently confounds NIR-SRS derived StO2 by overestimating actual skeletal muscle oxygenation and by decreasing its sensitivity for deoxygenation. Because physiological properties (e.g. presence of disease and slowing of τ [Formula: see text]) also influence NIR-SRS, a correction based on optical properties is needed to interpret calculated values as absolute StO2.
Collapse
Affiliation(s)
- Victor M Niemeijer
- Department of Cardiology, Máxima Medical Centre, PO Box 7777, 5500 MB Veldhoven, Netherlands. Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, Netherlands
| | | | | | | | | | | | | |
Collapse
|
34
|
Niemeijer VM, Spee RF, Schoots T, Wijn PFF, Kemps HMC. Limitations of skeletal muscle oxygen delivery and utilization during moderate-intensity exercise in moderately impaired patients with chronic heart failure. Am J Physiol Heart Circ Physiol 2016; 311:H1530-H1539. [DOI: 10.1152/ajpheart.00474.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/28/2016] [Indexed: 11/22/2022]
Abstract
The extent and speed of transient skeletal muscle deoxygenation during exercise onset in patients with chronic heart failure (CHF) are related to impairments of local O2 delivery and utilization. This study examined the physiological background of submaximal exercise performance in 19 moderately impaired patients with CHF (Weber class A, B, and C) compared with 19 matched healthy control (HC) subjects by measuring skeletal muscle oxygenation (SmO2) changes during cycling exercise. All subjects performed two subsequent moderate-intensity 6-min exercise tests (bouts 1 and 2) with measurements of pulmonary oxygen uptake kinetics and SmO2 using near-infrared spatially resolved spectroscopy at the vastus lateralis for determination of absolute oxygenation values, amplitudes, kinetics (mean response time for onset), and deoxygenation overshoot characteristics. In CHF, deoxygenation kinetics were slower compared with HC (21.3 ± 5.3 s vs. 16.7 ± 4.4 s, P < 0.05, respectively). After priming exercise (i.e., during bout 2), deoxygenation kinetics were accelerated in CHF to values no longer different from HC (16.9 ± 4.6 s vs. 15.4 ± 4.2 s, P = 0.35). However, priming did not speed deoxygenation kinetics in CHF subjects with a deoxygenation overshoot, whereas it did reduce the incidence of the overshoot in this specific group ( P < 0.05). These results provide evidence for heterogeneity with respect to limitations of O2 delivery and utilization during moderate-intensity exercise in patients with CHF, with slowed deoxygenation kinetics indicating a predominant O2 utilization impairment and the presence of a deoxygenation overshoot, with a reduction after priming in a subgroup, indicating an initial O2 delivery to utilization mismatch.
Collapse
Affiliation(s)
- Victor M. Niemeijer
- Department of Cardiology, Máxima Medical Centre, Veldhoven, the Netherlands
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, the Netherlands; and
| | - Ruud F. Spee
- Department of Cardiology, Máxima Medical Centre, Veldhoven, the Netherlands
| | - Thijs Schoots
- Department of Cardiology, Máxima Medical Centre, Veldhoven, the Netherlands
| | - Pieter F. F. Wijn
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, the Netherlands; and
- Department of Medical Physics, Máxima Medical Centre, Veldhoven, the Netherlands
| | - Hareld M. C. Kemps
- Department of Cardiology, Máxima Medical Centre, Veldhoven, the Netherlands
| |
Collapse
|
35
|
Cerebral and Muscle Tissue Oxygenation During Incremental Cycling in Male Adolescents Measured by Time-Resolved Near-Infrared Spectroscopy. Pediatr Exerc Sci 2016; 28:275-85. [PMID: 26451845 PMCID: PMC4826640 DOI: 10.1123/pes.2015-0037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Near-infrared spectroscopy has long been used to measure tissue-specific O2 dynamics in exercise, but most published data have used continuous wave devices incapable of quantifying absolute Hemoglobin (Hb) concentrations. We used time-resolved near-infrared spectroscopy to study exercising muscle (Vastus Lateralis, VL) and prefrontal cortex (PFC) Hb oxygenation in 11 young males (15.3 ± 2.1 yrs) performing incremental cycling until exhaustion (peak VO2 = 42.7 ± 6.1 ml/min/kg, mean peak power = 181 ± 38 W). Time-resolved near-infrared spectroscopy measurements of reduced scattering (μs´) and absorption (μa) at three wavelengths (759, 796, and 833 nm) were used to calculate concentrations of oxyHb ([HbO2]), deoxy Hb ([HbR]), total Hb ([THb]), and O2 saturation (stO2). In PFC, significant increases were observed in both [HbO2] and [HbR] during intense exercise. PFC stO2% remained stable until 80% of total exercise time, then dropped (-2.95%, p = .0064). In VL, stO2% decreased until peak time (-6.8%, p = .01). Segmented linear regression identified thresholds for PFC [HbO2], [HbR], VL [THb]. There was a strong correlation between timing of second ventilatory threshold and decline in PFC [HbO2] (r = .84). These findings show that time-resolved near-infrared spectroscopy can be used to study physiological threshold phenomena in children during maximal exercise, providing insight into tissue specific hemodynamics and metabolism.
Collapse
|
36
|
Ganesan G, Cotter JA, Reuland W, Cerussi AE, Tromberg BJ, Galassetti P. Effect of blood flow restriction on tissue oxygenation during knee extension. Med Sci Sports Exerc 2016; 47:185-93. [PMID: 24870580 DOI: 10.1249/mss.0000000000000393] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE Time-resolved near-infrared spectroscopy was used to quantify tissue oxy- and deoxyhemoglobin concentrations ([HbO2] and [HbR]) and O2 saturation (stO2) in the oblique fibers of the vastus medialis muscle and brain prefrontal cortex during knee extension with and without blood flow restriction (BFR). METHODS Six young healthy males performed three sets of knee extensions on a dynamometer (50% one-repetition maximum) separated by 90-s rest periods in three conditions: 1) until fatigue without BFR (fatigue), 2) until fatigue with BFR (100 mm Hg cuff constriction around thigh (BFR)), 3) same number of repetitions from condition 2 without BFR (matched). Each condition was performed on a separate visit. RESULTS BFR was associated with higher [HbR] at the oblique fibers of the vastus medialis muscle (rest 1: 57.8 (BFR) vs 35.0 μM (matched); P < 0.0001) and a significantly lower stO2 during recovery periods between sets (7.5%-11.2 % lower than non-BFR conditions for rest 1 and 2, P < 0.0001). Using a piecewise linear spline method, a spike in [HbR] was observed before the onset of HbR clearance during recovery, causing HbR clearance to begin at a higher concentration (81 (BFR) vs 62 μM (matched), P = 0.029). [HbO2] kinetics during recovery were also affected by BFR, with longer duration (BFR, 51 s; matched, 31 s; P = 0.047) but lower rate of increase (BFR, 58 μM·min; matched, 89 μM·min; P = 0.004) during recovery. In the prefrontal cortex, BFR was associated with increased [HbR], diminished increase in [HbO2], and higher subjective exertion. CONCLUSIONS These findings yield insight into possible physiological mechanisms of BFR and suggest a role of time-resolved near-infrared spectroscopy in monitoring and optimization of BFR exercise on an individual basis.
Collapse
Affiliation(s)
- Goutham Ganesan
- 1Beckman Laser Institute and Medical Clinic, School of Medicine, University of California, Irvine, CA; 2Department of Pediatrics, Irvine School of Medicine, University of California, Irvine, CA; 3Department of Orthopedic Surgery, University of California, Irvine, CA; and 4Department of Kinesiology, California State University, Long Beach, CA
| | | | | | | | | | | |
Collapse
|
37
|
Celie BM, Boone J, Dumortier J, Derave W, De Backer T, Bourgois JG. Possible Influences on the Interpretation of Functional Domain (FD) Near-Infrared Spectroscopy (NIRS): An Explorative Study. APPLIED SPECTROSCOPY 2016; 70:363-371. [PMID: 26903570 DOI: 10.1177/0003702815620562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/03/2015] [Indexed: 06/05/2023]
Abstract
The influence of subcutaneous adipose tissue (ATT) and oxygen (O2) delivery has been poorly defined in frequency domain (FD) near-infrared spectroscopy (NIRS). Therefore, the aim of this study was to investigate the possible influence of these variables on all FD NIRS responses using a reliable protocol. Moreover, these influences were also investigated when using relative oxy- and deoxyhemoglobin and -myoglobin (oxy[Hb + Mb] and deoxy[Hb + Mb]) values (in %). A regression analysis was carried out for ATT and maximal-minimum oxy[Hb + Mb], deoxy[Hb + Mb], oxygen saturation (SmO2), and total hemoglobin (totHb) amplitudes during an incremental cyclic contraction protocol (ICCP) in a group of 45 participants. Moreover, the same analysis was carried out between subcutaneous ATT and the relative oxy- and deoxy[Hb + Mb] values (in %). In the second part of this study, a regression analysis was performed for peak forearm blood flow (FBF) during ICCP and the absolute and relative NIRS values in a group of 37 participants. Significant exponential correlation coefficients were found between ATT and deoxy[Hb + Mb] (r = 0.53; P < 0.001), oxy[Hb + Mb] (r = 0.57; P < 0.001), and SmO2 amplitudes (r = 0.57; P < 0.001). No significant relations were found between ATT and relative oxy[Hb + Mb] (r = 0.37; P = 0.07) and deoxy[Hb + Mb] (r = 0.09; P = 0.82). Significant positive correlation coefficients were found between force at exhaustion and maximal FBF (r = 0.66; P < 0.001), maximal differences in deoxy[Hb + Mb] (r = 0.353; P = 0.032) and totHb (r = 0.512; P = 0.002) while no significant correlation coefficients were found between these maximal force values and maximal differences in oxy[Hb + Mb] (r = -0.267; P = 0.111) and SmO2 (r = -0.267; P = 0.111). Significant linear correlation coefficients were found between FBF and deoxy[Hb + Mb] (r = 0.51; P = 0.001), oxy[Hb + Mb] (r = -0.50; P = 0.001), SmO2 (r = -0.54; P = 0.001), and totHb amplitude (r = 0.61; P < 0.001). No significant correlations were found when using relative oxy[Hb + Mb] (r = -0.01; P = 0.957) and deoxy[Hb + Mb] (r = -0.02; P = 0.895). Based on these findings, caution is advised when using NIRS values, as subcutaneous ATT and O2 delivery significantly influence NIRS measurements. To eliminate these influences, use of relative deoxy[Hb + Mb] is advised, especially in clinical settings or in people with a higher subcutaneous ATT layer.
Collapse
Affiliation(s)
- Bert M Celie
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Jan Boone
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium Centre of Sports Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jasmien Dumortier
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Tine De Backer
- Department of Cardiology, Ghent University Hospital, Ghent, Belgium
| | - Jan G Bourgois
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium Centre of Sports Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
38
|
Ederer AK, Didier KD, Reiter LK, Brown M, Hardy R, Caldwell J, Black CD, Larson RD, Ade CJ. Influence of Adjuvant Therapy in Cancer Survivors on Endothelial Function and Skeletal Muscle Deoxygenation. PLoS One 2016; 11:e0147691. [PMID: 26807572 PMCID: PMC4726690 DOI: 10.1371/journal.pone.0147691] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/07/2016] [Indexed: 12/16/2022] Open
Abstract
The cardiotoxic effects of adjuvant cancer treatments (i.e., chemotherapy and radiation treatment) have been well documented, but the effects on peripheral cardiovascular function are still unclear. We hypothesized that cancer survivors i) would have decreased resting endothelial function; and ii) altered muscle deoxygenation response during moderate intensity cycling exercise compared to cancer-free controls. A total of 8 cancer survivors (~70 months post-treatment) and 9 healthy controls completed a brachial artery FMD test, an index of endothelial-dependent dilation, followed by an incremental exercise test up to the ventilatory threshold (VT) on a cycle ergometer during which pulmonary V˙O2 and changes in near-infrared spectroscopy (NIRS)-derived microvascular tissue oxygenation (TOI), total hemoglobin concentration ([Hb]total), and muscle deoxygenation ([HHb] ≈ fractional O2 extraction) were measured. There were no significant differences in age, height, weight, and resting blood pressure between cancer survivors and control participants. Brachial artery FMD was similar between groups (P = 0.98). During exercise at the VT, TOI was similar between groups, but [Hb]total and [HHb] were significantly decreased in cancer survivors compared to controls (P < 0.01) The rate of change for TOI (ΔTOIΔ/V˙O2) and [HHb] (Δ[HHb]/ΔV˙O2) relative to ΔV˙O2 were decreased in cancer survivors compared to controls (P = 0.02 and P = 0.03 respectively). In cancer survivors, a decreased skeletal muscle microvascular function was observed during moderate intensity cycling exercise. These data suggest that adjuvant cancer therapies have an effect on the integrated relationship between O2 extraction, V˙O2 and O2 delivery during exercise.
Collapse
Affiliation(s)
- Austin K. Ederer
- Department of Health and Exercise Science, The University of Oklahoma, Norman, OK, United States of America
| | - Kaylin D. Didier
- Department of Health and Exercise Science, The University of Oklahoma, Norman, OK, United States of America
| | - Landon K. Reiter
- Department of Health and Exercise Science, The University of Oklahoma, Norman, OK, United States of America
| | - Michael Brown
- Department of Health and Exercise Science, The University of Oklahoma, Norman, OK, United States of America
| | - Rachel Hardy
- Department of Health and Exercise Science, The University of Oklahoma, Norman, OK, United States of America
| | - Jacob Caldwell
- Department of Health and Exercise Science, The University of Oklahoma, Norman, OK, United States of America
| | - Christopher D. Black
- Department of Health and Exercise Science, The University of Oklahoma, Norman, OK, United States of America
| | - Rebecca D. Larson
- Department of Health and Exercise Science, The University of Oklahoma, Norman, OK, United States of America
| | - Carl J. Ade
- Department of Health and Exercise Science, The University of Oklahoma, Norman, OK, United States of America
- * E-mail:
| |
Collapse
|
39
|
Bowen TS, Koga S, Amano T, Kondo N, Rossiter HB. The Spatial Distribution of Absolute Skeletal Muscle Deoxygenation During Ramp-Incremental Exercise Is Not Influenced by Hypoxia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 876:19-26. [PMID: 26782190 DOI: 10.1007/978-1-4939-3023-4_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Time-resolved near-infrared spectroscopy (TRS-NIRS) allows absolute quantitation of deoxygenated haemoglobin and myoglobin concentration ([HHb]) in skeletal muscle. We recently showed that the spatial distribution of peak [HHb] within the quadriceps during moderate-intensity cycling is reduced with progressive hypoxia and this is associated with impaired aerobic energy provision. We therefore aimed to determine whether reduced spatial distribution of skeletal muscle [HHb] was associated with impaired aerobic energy transfer during exhaustive ramp-incremental exercise in hypoxia. Seven healthy men performed ramp-incremental cycle exercise (20 W/min) to exhaustion at 3 fractional inspired O2 concentrations (FIO2): 0.21, 0.16, 0.12. Pulmonary O2 uptake ([Formula: see text]) was measured using a flow meter and gas analyser system. Lactate threshold (LT) was estimated non-invasively. Absolute muscle deoxygenation was quantified by multichannel TRS-NIRS from the rectus femoris and vastus lateralis (proximal and distal regions). [Formula: see text] and LT were progressively reduced (p<0.05) with hypoxia. There was a significant effect (p<0.05) of FIO2 on [HHb] at baseline, LT, and peak. However the spatial variance of [HHb] was not different between FIO2 conditions. Peak total Hb ([Hbtot]) was significantly reduced between FIO2 conditions (p<0.001). There was no association between reductions in the spatial distribution of skeletal muscle [HHb] and indices of aerobic energy transfer during ramp-incremental exercise in hypoxia. While regional [HHb] quantified by TRS-NIRS at exhaustion was greater in hypoxia, the spatial distribution of [HHb] was unaffected. Interestingly, peak [Hbtot] was reduced at the tolerable limit in hypoxia implying a vasodilatory reserve may exist in conditions with reduced FIO2.
Collapse
Affiliation(s)
- T Scott Bowen
- Department of Internal Medicine and Cardiology, Leipzig University, Heart Center, Strümpellstraße 39, 04289, Leipzig, Germany.
| | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| | - Tatsuro Amano
- Graduate School of Human Development and Environment, Laboratory for Applied Human Physiology, Kobe University, Kobe, Japan
| | - Narihiko Kondo
- Graduate School of Human Development and Environment, Laboratory for Applied Human Physiology, Kobe University, Kobe, Japan
| | - Harry B Rossiter
- Division of Respiratory and Critical Care Physiology and Medicine, Rehabilitation Clinical Trials Center, Los Angeles Biomedical Research Institute and Harbor-UCLA Medical Center, Torrance, CA, USA.,School of Biomedical Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
40
|
Heinonen I, Koga S, Kalliokoski KK, Musch TI, Poole DC. Heterogeneity of Muscle Blood Flow and Metabolism: Influence of Exercise, Aging, and Disease States. Exerc Sport Sci Rev 2015; 43:117-24. [PMID: 25688763 DOI: 10.1249/jes.0000000000000044] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The systematic increase in V˙O2 uptake and O2 extraction with increasing work rates conceals a substantial heterogeneity of O2 delivery (Q˙O2)-to- V˙O2 matching across and within muscles and other organs. We hypothesize that whether increased/decreased Q˙O2/V˙O2 heterogeneity can be judged as "good" or "bad," for example, after exercise training or in aged individuals or with disease (heart failure, diabetes) depends on the resultant effects on O2 transport and contractile performance.
Collapse
Affiliation(s)
- Ilkka Heinonen
- 1Turku PET Centre, University of Turku, Turku, Finland; 2Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands; 3School of Sport Science, Exercise and Health, University Of Western Australia, Crawley, Western Australia, Australia; 4Applied Physiology Laboratory, Kobe Design University, Kobe, Japan; and 5Departments of Kinesiology, Anatomy and Physiology, Kansas State University, Manhattan, KS
| | | | | | | | | |
Collapse
|
41
|
Okushima D, Poole DC, Rossiter HB, Barstow TJ, Kondo N, Ohmae E, Koga S. Muscle deoxygenation in the quadriceps during ramp incremental cycling: Deep vs. superficial heterogeneity. J Appl Physiol (1985) 2015; 119:1313-9. [PMID: 26404619 DOI: 10.1152/japplphysiol.00574.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/21/2015] [Indexed: 01/31/2023] Open
Abstract
Muscle deoxygenation (i.e., deoxy[Hb + Mb]) during exercise assesses the matching of oxygen delivery (Q̇O2) to oxygen utilization (V̇O2). Until now limitations in near-infrared spectroscopy (NIRS) technology did not permit discrimination of deoxy[Hb + Mb] between superficial and deep muscles. In humans, the deep quadriceps is more highly vascularized and oxidative than the superficial quadriceps. Using high-power time-resolved NIRS, we tested the hypothesis that deoxygenation of the deep quadriceps would be less than in superficial muscle during incremental cycling exercise in eight males. Pulmonary V̇O2 was measured and muscle deoxy[Hb + Mb] was determined in the superficial vastus lateralis (VL), vastus medialis (VM), and rectus femoris (RF-s) and the deep rectus femoris (RF-d). deoxy[Hb + Mb] in RF-d was significantly less than VL at 70% (67.2 ± 7.0 vs. 75.5 ± 10.7 μM) and 80% (71.4 ± 11.0 vs. 79.0 ± 15.4 μM) of peak work rate (WR(peak)), but greater than VL and VM at WR(peak) (87.7 ± 32.5 vs. 76.6 ± 17.5 and 75.1 ± 19.9 μM). RF-s was intermediate at WR(peak) (82.6 ± 18.7 μM). Total hemoglobin and myoglobin concentration and tissue oxygen saturation were significantly greater in RF-d than RF-s throughout exercise. The slope of deoxy[Hb + Mb] increase (proportional to Q̇O2/V̇O2) in VL and VM slowed markedly above 70% WR(peak), whereas it became greater in RF-d. This divergent deoxygenation pattern may be due to a greater population of slow-twitch muscle fibers in the RF-d muscle and the differential recruitment profiles and vascular and metabolic control properties of specific fiber populations within superficial and deeper muscle regions.
Collapse
Affiliation(s)
- Dai Okushima
- Applied Physiology Laboratory, Kobe Design University, Kobe, Hyogo, Japan
| | - David C Poole
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Harry B Rossiter
- Rehabilitation Clinical Trials Center, Division of Respiratory & Critical Care Physiology & Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles Medical Center, Torrance, California
| | - Thomas J Barstow
- Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | | | | | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Hyogo, Japan;
| |
Collapse
|
42
|
Niemeijer VM, Spee RF, Jansen JP, Buskermolen ABC, van Dijk T, Wijn PFF, Kemps HMC. Test-retest reliability of skeletal muscle oxygenation measurements during submaximal cycling exercise in patients with chronic heart failure. Clin Physiol Funct Imaging 2015; 37:68-78. [DOI: 10.1111/cpf.12269] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/27/2015] [Indexed: 01/26/2023]
Affiliation(s)
| | - Ruud F. Spee
- Department of Cardiology; Máxima Medical Centre; Veldhoven The Netherlands
| | - Jasper P. Jansen
- Department of Biomedical Engineering; Eindhoven University of Technology; Eindhoven The Netherlands
| | | | - Thomas van Dijk
- Department of Medical Physics; Máxima Medical Centre; Veldhoven The Netherlands
| | - Pieter F. F. Wijn
- Department of Applied Physics; Eindhoven University of Technology; Eindhoven The Netherlands
- Department of Medical Physics; Máxima Medical Centre; Veldhoven The Netherlands
| | - Hareld M. C. Kemps
- Department of Cardiology; Máxima Medical Centre; Veldhoven The Netherlands
| |
Collapse
|
43
|
Fukuoka Y, Poole DC, Barstow TJ, Kondo N, Nishiwaki M, Okushima D, Koga S. Reduction of V̇O2 slow component by priming exercise: novel mechanistic insights from time-resolved near-infrared spectroscopy. Physiol Rep 2015; 3:3/6/e12432. [PMID: 26109190 PMCID: PMC4510633 DOI: 10.14814/phy2.12432] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Novel time-resolved near-infrared spectroscopy (TR-NIRS), with adipose tissue thickness correction, was used to test the hypotheses that heavy priming exercise reduces the V̇O2 slow component (V̇O2SC) (1) by elevating microvascular [Hb] volume at multiple sites within the quadriceps femoris (2) rather than reducing the heterogeneity of muscle deoxygenation kinetics. Twelve subjects completed two 6-min bouts of heavy work rate exercise, separated by 6 min of unloaded cycling. Priming exercise induced faster overall V̇O2 kinetics consequent to a substantial reduction in the V̇O2SC (0.27 ± 0.12 vs. 0.11 ± 0.09 L·min−1, P < 0.05) with an unchanged primary V̇O2 time constant. An increased baseline for the primed bout [total (Hb + Mb)] (197.5 ± 21.6 vs. 210.7 ± 22.5 μmol L−1, P < 0.01), reflecting increased microvascular [Hb] volume, correlated significantly with the V̇O2SC reduction. At multiple sites within the quadriceps femoris, priming exercise reduced the baseline and slowed the increase in [deoxy (Hb + Mb)]. Changes in the intersite coefficient of variation in the time delay and time constant of [deoxy (Hb + Mb)] during the second bout were not correlated with the V̇O2SC reduction. These results support a mechanistic link between priming exercise-induced increase in muscle [Hb] volume and the reduced V̇O2SC that serves to speed overall V̇O2 kinetics. However, reduction in the heterogeneity of muscle deoxygenation kinetics does not appear to be an obligatory feature of the priming response.
Collapse
Affiliation(s)
- Yoshiyuki Fukuoka
- Environmental Physiology Laboratory, Prefectural University of Kumamoto, Kumamoto, Japan Graduate School of Health and Sports Science, Doshisha University, Kyoto, Japan
| | - David C Poole
- Departments of Anatomy and Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Thomas J Barstow
- Departments of Anatomy and Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Narihiko Kondo
- Graduate School of Cultural Studies and Human Science, Kobe University, Kobe, Japan
| | - Masato Nishiwaki
- Faculty of Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Dai Okushima
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| |
Collapse
|
44
|
Koga S, Barstow TJ, Okushima D, Rossiter HB, Kondo N, Ohmae E, Poole DC. Validation of a high-power, time-resolved, near-infrared spectroscopy system for measurement of superficial and deep muscle deoxygenation during exercise. J Appl Physiol (1985) 2015; 118:1435-42. [PMID: 25840439 DOI: 10.1152/japplphysiol.01003.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/31/2015] [Indexed: 11/22/2022] Open
Abstract
Near-infrared assessment of skeletal muscle is restricted to superficial tissues due to power limitations of spectroscopic systems. We reasoned that understanding of muscle deoxygenation may be improved by simultaneously interrogating deeper tissues. To achieve this, we modified a high-power (∼8 mW), time-resolved, near-infrared spectroscopy system to increase depth penetration. Precision was first validated using a homogenous optical phantom over a range of inter-optode spacings (OS). Coefficients of variation from 10 measurements were minimal (0.5-1.9%) for absorption (μa), reduced scattering, simulated total hemoglobin, and simulated O2 saturation. Second, a dual-layer phantom was constructed to assess depth sensitivity, and the thickness of the superficial layer was varied. With a superficial layer thickness of 1, 2, 3, and 4 cm (μa = 0.149 cm(-1)), the proportional contribution of the deep layer (μa = 0.250 cm(-1)) to total μa was 80.1, 26.9, 3.7, and 0.0%, respectively (at 6-cm OS), validating penetration to ∼3 cm. Implementation of an additional superficial phantom to simulate adipose tissue further reduced depth sensitivity. Finally, superficial and deep muscle spectroscopy was performed in six participants during heavy-intensity cycle exercise. Compared with the superficial rectus femoris, peak deoxygenation of the deep rectus femoris (including the superficial intermedius in some) was not significantly different (deoxyhemoglobin and deoxymyoglobin concentration: 81.3 ± 20.8 vs. 78.3 ± 13.6 μM, P > 0.05), but deoxygenation kinetics were significantly slower (mean response time: 37 ± 10 vs. 65 ± 9 s, P ≤ 0.05). These data validate a high-power, time-resolved, near-infrared spectroscopy system with large OS for measuring the deoxygenation of deep tissues and reveal temporal and spatial disparities in muscle deoxygenation responses to exercise.
Collapse
Affiliation(s)
- Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan;
| | - Thomas J Barstow
- Departments of Anatomy and Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Dai Okushima
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| | - Harry B Rossiter
- Rehabilitation Clinical Trials Center, Division of Respiratory & Critical Care Physiology & Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | | | | | - David C Poole
- Departments of Anatomy and Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
45
|
Adami A, Koga S, Kondo N, Cannon DT, Kowalchuk JM, Amano T, Rossiter HB. Changes in whole tissue heme concentration dissociates muscle deoxygenation from muscle oxygen extraction during passive head-up tilt. J Appl Physiol (1985) 2015; 118:1091-9. [PMID: 25678700 DOI: 10.1152/japplphysiol.00918.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/06/2015] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle deoxygenated hemoglobin and myoglobin concentration ([HHb]), assessed by near-infrared spectroscopy (NIRS), is commonly used as a surrogate of regional O2 extraction (reflecting the O2 delivery-to-consumption ratio, Q̇/V̇o2). However, [HHb] change (Δ[HHb]) is also influenced by capillary-venous heme concentration, and/or small blood vessel volume (reflected in total heme; [THb]). We tested the hypotheses that Δ[HHb] is associated with O2 extraction, and insensitive to [THb], over a wide range of Q̇/V̇o2 elicited by passive head-up tilt (HUT; 10-min, 15° increments, between -10° and 75°). Steady-state common femoral artery blood flow (FBF) was measured by echo-Doppler, and time-resolved NIRS measured [HHb] and [THb] of vastus lateralis (VL) and gastrocnemius (GS) in 13 men. EMG confirmed muscles were inactive. During HUT in VL [HHb] increased linearly (57 ± 10 to 101 ± 16 μM; P < 0.05 above 15°) and was associated (r(2) ∼ 0.80) with the reduction in FBF (618 ± 75 ml/min at 0° to 268 ± 52 ml/min at 75°; P < 0.05 above 30°) and the increase in [THb] (228 ± 30 vs. 252 ± 32 μM; P < 0.05 above 15°). GS response was qualitatively similar to VL. However, there was wide variation within and among individuals, such that the overall limits of agreement between Δ[HHb] and ΔFBF ranged from -35 to +19% across both muscles. Neither knowledge of tissue O2 saturation nor vascular compliance could appropriately account for the Δ[HHb]-ΔFBF dissociation. Thus, under passive tilt, [HHb] is influenced by Q̇/V̇o2, as well as microvascular hematocrit and/or tissue blood vessel volume, complicating its use as a noninvasive surrogate for muscle microvascular O2 extraction.
Collapse
Affiliation(s)
- Alessandra Adami
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Shunsaku Koga
- Applied Physiology Laboratory, Kobe Design University, Kobe, Japan
| | - Narihiko Kondo
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan; and
| | - Daniel T Cannon
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - John M Kowalchuk
- School of Kinesiology and Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Tatsuro Amano
- Laboratory for Applied Human Physiology, Graduate School of Human Development and Environment, Kobe University, Kobe, Japan; and
| | - Harry B Rossiter
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California;
| |
Collapse
|
46
|
Woodside JDS, Gutowski M, Fall L, James PE, McEneny J, Young IS, Ogoh S, Bailey DM. Systemic oxidative-nitrosative-inflammatory stress during acute exercise in hypoxia; implications for microvascular oxygenation and aerobic capacity. Exp Physiol 2014; 99:1648-62. [DOI: 10.1113/expphysiol.2014.081265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- John D. S. Woodside
- Vascular Physiology Unit; Institute of Cardiovascular Science; University College London; London UK
| | - Mariusz Gutowski
- Institute of Biochemistry and Cell Biology; Shanghai Institute for Biological Sciences; Chinese Academy of Sciences; Shanghai China
| | - Lewis Fall
- Neurovascular Research Laboratory; Faculty of Life Sciences and Education; University of South Wales; Pontypridd UK
| | - Philip E. James
- Wales Heart Research Institute; Cardiff University School of Medicine; Heath Park Cardiff Pontypridd UK
| | - Jane McEneny
- Centre for Public Health; Nutrition and Metabolism Group; Queen's University Belfast; Belfast UK
| | - Ian S. Young
- Centre for Public Health; Nutrition and Metabolism Group; Queen's University Belfast; Belfast UK
| | - Shigehiko Ogoh
- Department of Biomedical Engineering; Toyo University; Kawagoe-Shi Saitama Japan
| | - Damian M. Bailey
- Neurovascular Research Laboratory; Faculty of Life Sciences and Education; University of South Wales; Pontypridd UK
| |
Collapse
|
47
|
Koga S, Rossiter HB, Heinonen I, Musch TI, Poole DC. Dynamic heterogeneity of exercising muscle blood flow and O2 utilization. Med Sci Sports Exerc 2014; 46:860-76. [PMID: 24091989 DOI: 10.1249/mss.0000000000000178] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Resolving the bases for different physiological functioning or exercise performance within a population is dependent on our understanding of control mechanisms. For example, when most young healthy individuals run or cycle at moderate intensities, oxygen uptake (VO2) kinetics are rapid and the amplitude of the VO2 response is not constrained by O2 delivery. For this to occur, muscle O2 delivery (i.e., blood flow × arterial O2 concentration) must be coordinated superbly with muscle O2 requirements (VO2), the efficacy of which may differ among muscles and distinct fiber types. When the O2 transport system succumbs to the predations of aging or disease (emphysema, heart failure, and type 2 diabetes), muscle O2 delivery and O2 delivery-VO2 matching and, therefore, muscle contractile function become impaired. This forces greater influence of the upstream O2 transport pathway on muscle aerobic energy production, and the O2 delivery-VO2 relationship(s) assumes increased importance. This review is the first of its kind to bring a broad range of available techniques, mostly state of the art, including computer modeling, radiolabeled microspheres, positron emission tomography, magnetic resonance imaging, near-infrared spectroscopy, and phosphorescence quenching to resolve the O2 delivery-VO2 relationships and inherent heterogeneities at the whole body, interorgan, muscular, intramuscular, and microvascular/myocyte levels. Emphasis is placed on the following: 1) intact humans and animals as these provide the platform essential for framing and interpreting subsequent investigations, 2) contemporary findings using novel technological approaches to elucidate O2 delivery-VO2 heterogeneities in humans, and 3) future directions for investigating how normal physiological responses can be explained by O2 delivery-VO2 heterogeneities and the impact of aging/disease on these processes.
Collapse
Affiliation(s)
- Shunsaku Koga
- 1Applied Physiology Laboratory, Kobe Design University, JAPAN; 2Division of Respiratory and Critical Care Physiology and Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, and School of Biomedical Sciences, University of Leeds, Leeds, UNITED KINGDOM; 3Turku PET Centre and Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku and Turku University Hospital, Turku, FINLAND; Division of Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, Rotterdam, THE NETHERLANDS; and 4Departments of Kinesiology and Anatomy and Physiology, Kansas State University, Manhattan, KS
| | | | | | | | | |
Collapse
|
48
|
Effects of increased skin blood flow on muscle oxygenation/deoxygenation: comparison of time-resolved and continuous-wave near-infrared spectroscopy signals. Eur J Appl Physiol 2014; 115:335-43. [DOI: 10.1007/s00421-014-3019-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 10/02/2014] [Indexed: 01/23/2023]
|
49
|
Spencer MD, Amano T, Kondo N, Kowalchuk JM, Koga S. Muscle O2 extraction reserve during intense cycling is site-specific. J Appl Physiol (1985) 2014; 117:1199-206. [PMID: 25257877 DOI: 10.1152/japplphysiol.00060.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study compared peak muscle deoxygenation ([HHb]peak) responses at three quadriceps sites during occlusion (OCC), ramp incremental (RI), severe- (SVR) and moderate-intensity (MOD) exercise. Seven healthy men (25 ± 4 yr) each completed a stationary cycling RI (20 W/min) test to determine [HHb]peak [at distal and proximal vastus lateralis (VLD and VLP) and rectus femoris (RF)], peak V̇O2 (V̇O(2peak)), gas exchange threshold (GET), and peak work rate (WR(peak)). Subjects also completed MOD (WR = 80% GET) and SVR exercise (WR corresponding to 120% V̇O(2peak)) with absolute [HHb] (quantified by multichannel, time-resolved near-infrared spectroscopy) and pulmonary VO2 (V̇O(2p)) monitored continuously. Additionally, [HHb] and total hemoglobin ([Hb]tot) were monitored at rest and during subsequent OCC (250 mmHg). Site-specific adipose tissue thickness was assessed (B-mode ultrasound), and its relationship with resting [Hb]tot was used to correct absolute [HHb]. For VLD and RF, [HHb]peak was higher (P < 0.05) during OCC (VLD = 111 ± 38, RF = 114 ± 26 μM) than RI (VLD 64 ± 14, RF = 85 ± 20) and SVR (VLD = 63 ± 13, RF = 81 ± 18). [HHb]peak was similar (P > 0.05) across these conditions at the VLP (OCC = 67 ± 17, RI = 69 ± 17, SVR = 63 ± 17 μM). [HHb] peaked and then decreased prior to exercise cessation during SVR at all three muscle sites. [HHb]peak during MOD was consistently lower than other conditions at all sites. A "[HHb] reserve" exists during intense cycling at the VLD and RF, likely implying either sufficient blood flow to meet oxidative demands or insufficient diffusion time for complete equilibration. In VLP this [HHb] reserve was absent, suggesting that a critical PO2 may be challenged during intense cycling.
Collapse
Affiliation(s)
- Matthew D Spencer
- Kobe Design University, Kobe, Hyogo, Japan; The University of Western Ontario, London, Ontario, Canada; and
| | | | | | | | | |
Collapse
|