1
|
Luo X, Wang Q, Tan H, Zhao W, Yao Y, Lu S. Digital assessment of muscle adaptation in obese patients with osteoarthritis: Insights from surface electromyography (sEMG). Digit Health 2025; 11:20552076241311940. [PMID: 39758257 PMCID: PMC11696943 DOI: 10.1177/20552076241311940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025] Open
Abstract
Background Obesity and severe knee osteoarthritis (KOA) lead to significant gait and muscle adaptations. However, the relationship between core muscle strength and the severity of KOA in obese patients remains unclear. This study aimed to determine the association between muscle strength adaptation and the severity of KOA in obese individuals. Methods We recruited 119 obese participants with unilateral KOA from January 2021 to December 2023, all classified with mild to moderate KOA grades. KOA severity was assessed using the Western Ontario and McMaster University Osteoarthritis Index (WOMAC), which categorized participants into two groups based on disease severity. Electromyographic data from the psoas, gluteus medius, vastus lateralis, vastus medialis, rectus femoris, medial gastrocnemius, lateral gastrocnemius, tibialis anterior, and biceps femoris muscles were collected during isometric and dynamic knee extension. Results Significant differences were observed in all selected muscles between the affected knee joint and the contralateral side during both dynamic and isometric knee extensions. The difference in electromyographic data-including mean absolute value (MAV), root mean square (RMS), and center frequency (CF)-was significantly different across groups categorized by KOA severity. Notably, the MAV values of the vastus medialis, lateral gastrocnemius, and biceps femoris, as well as the CF values of the medial and lateral gastrocnemius, showed no significant differences in some instances during both dynamic and isometric extensions. Conclusion This study indicates that obese individuals with KOA exhibit lower muscle intensity and higher fatigability in comparison to the contralateral side during both isometric and dynamic knee extensions. Furthermore, significant reductions in muscle intensity were observed in the psoas, gluteus medius, vastus lateralis, rectus femoris, medial gastrocnemius, and tibialis anterior muscles, correlating with the advanced severity of KOA.
Collapse
Affiliation(s)
- Xinran Luo
- School of Biomedical Engineering, Shanghai Tech University, Shanghai, China
| | - Qiaojie Wang
- Department of Joint Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyu Tan
- Jinzhou Medical University, Jinzhou, China
| | - Wenbo Zhao
- Jinzhou Medical University, Jinzhou, China
| | - Yifei Yao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Shengdi Lu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Sakhi IB, De Combiens E, Frachon N, Durussel F, Brideau G, Nemazanyy I, Frère P, Thévenod F, Lee WK, Zeng Q, Klein C, Lourdel S, Bignon Y. A novel transgenic mouse model highlights molecular disruptions involved in the pathogenesis of Dent disease 1. Gene 2024; 928:148766. [PMID: 39019097 DOI: 10.1016/j.gene.2024.148766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Dent disease (DD) is a hereditary renal disorder characterized by low molecular weight (LMW) proteinuria and progressive renal failure. Inactivating mutations of the CLCN5 gene encoding the 2Cl-/H+exchanger ClC-5 have been identified in patients with DD type 1. ClC-5 is essentially expressed in proximal tubules (PT) where it is thought to play a role in maintaining an efficient endocytosis of LMW proteins. However, the exact pathological roles of ClC-5 in progressive dysfunctions observed in DD type 1 are still unclear. To address this issue, we designed a mouse model carrying the most representative type of ClC-5 missense mutations found in DD patients. These mice showed a characteristic DD type 1 phenotype accompanied by altered endo-lysosomal system and autophagy functions. With ageing, KI mice showed increased renal fibrosis, apoptosis and major changes in cell metabolic functions as already suggested in previous DD models. Furthermore, we made the interesting new discovery that the Lipocalin-2-24p3R pathway might be involved in the progression of the disease. These results suggest a crosstalk between the proximal and distal nephron in the pathogenesis mechanisms involved in DD with an initial PT impairment followed by the Lipocalin-2 internalisation and 24p3R overexpression in more distal segments of the nephron. This first animal model of DD carrying a pathogenic mutation of Clcn5 and our findings pave the way aimed at exploring therapeutic strategies to limit the consequences of ClC-5 disruption in patients with DD type 1 developing chronic kidney disease.
Collapse
Affiliation(s)
- Imene Bouchra Sakhi
- University of Zurich - Institute of Anatomy, Zurich CH-8057, Switzerland; Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France.
| | - Elise De Combiens
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France
| | - Nadia Frachon
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France
| | - Fanny Durussel
- Department of Biomedical Sciences, University of Lausanne, Switzerland
| | - Gaelle Brideau
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - Perrine Frère
- Sorbonne Université, INSERM, Unité mixte de Recherche 1155, Kidney Research Centre, AP-HP, Hôpital Tenon, Paris, France
| | - Frank Thévenod
- Institute for Physiology, Pathophysiology and Toxicology, Center for Biomedical Education and Research, Witten/Herdecke University, Witten, Germany; Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Wing-Kee Lee
- Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany
| | - Qinghe Zeng
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; Laboratoire d'Informatique Paris Descartes (LIPADE), Université Paris Cité, Paris, France
| | - Christophe Klein
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France
| | - Stéphane Lourdel
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris F-75006, France; CNRS EMR8228, Paris F-75006, France
| | - Yohan Bignon
- Department of Biomedical Sciences, University of Lausanne, Switzerland.
| |
Collapse
|
3
|
de Combiens E, Sakhi IB, Lourdel S. A Focus on the Proximal Tubule Dysfunction in Dent Disease Type 1. Genes (Basel) 2024; 15:1175. [PMID: 39336766 PMCID: PMC11431675 DOI: 10.3390/genes15091175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Dent disease type 1 is a rare X-linked recessive inherited renal disorder affecting mainly young males, generally leading to end-stage renal failure and for which there is no cure. It is caused by inactivating mutations in the gene encoding ClC-5, a 2Cl-/H+ exchanger found on endosomes in the renal proximal tubule. This transporter participates in reabsorbing all filtered plasma proteins, which justifies why proteinuria is commonly observed when ClC-5 is defective. In the context of Dent disease type 1, a proximal tubule dedifferentiation was shown to be accompanied by a dysfunctional cell metabolism. However, the exact mechanisms linking such alterations to chronic kidney disease are still unclear. In this review, we gather knowledge from several Dent disease type 1 models to summarize the current hypotheses generated to understand the progression of this disorder. We also highlight some urinary biomarkers for Dent disease type 1 suggested in different studies.
Collapse
Affiliation(s)
- Elise de Combiens
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (E.d.C.); (S.L.)
- Unité Métabolisme et Physiologie Rénale, Centre National de la Recherche Scientifique (CNRS) EMR8228, F-75006 Paris, France
| | | | - Stéphane Lourdel
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (E.d.C.); (S.L.)
- Unité Métabolisme et Physiologie Rénale, Centre National de la Recherche Scientifique (CNRS) EMR8228, F-75006 Paris, France
| |
Collapse
|
4
|
Hoogstraten CA, Hoenderop JG, de Baaij JHF. Mitochondrial Dysfunction in Kidney Tubulopathies. Annu Rev Physiol 2024; 86:379-403. [PMID: 38012047 DOI: 10.1146/annurev-physiol-042222-025000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Mitochondria play a key role in kidney physiology and pathology. They produce ATP to fuel energy-demanding water and solute reabsorption processes along the nephron. Moreover, mitochondria contribute to cellular health by the regulation of autophagy, (oxidative) stress responses, and apoptosis. Mitochondrial abundance is particularly high in cortical segments, including proximal and distal convoluted tubules. Dysfunction of the mitochondria has been described for tubulopathies such as Fanconi, Gitelman, and Bartter-like syndromes and renal tubular acidosis. In addition, mitochondrial cytopathies often affect renal (tubular) tissues, such as in Kearns-Sayre and Leigh syndromes. Nevertheless, the mechanisms by which mitochondrial dysfunction results in renal tubular diseases are only scarcely being explored. This review provides an overview of mitochondrial dysfunction in the development and progression of kidney tubulopathies. Furthermore, it emphasizes the need for further mechanistic investigations to identify links between mitochondrial function and renal electrolyte reabsorption.
Collapse
Affiliation(s)
- Charlotte A Hoogstraten
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| | - Joost G Hoenderop
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| | - Jeroen H F de Baaij
- Department of Medical Biosciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| |
Collapse
|
5
|
Ludington AJ, Hammond JM, Breen J, Deveson IW, Sanders KL. New chromosome-scale genomes provide insights into marine adaptations of sea snakes (Hydrophis: Elapidae). BMC Biol 2023; 21:284. [PMID: 38066641 PMCID: PMC10709897 DOI: 10.1186/s12915-023-01772-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Sea snakes underwent a complete transition from land to sea within the last ~ 15 million years, yet they remain a conspicuous gap in molecular studies of marine adaptation in vertebrates. RESULTS Here, we generate four new annotated sea snake genomes, three of these at chromosome-scale (Hydrophis major, H. ornatus and H. curtus), and perform detailed comparative genomic analyses of sea snakes and their closest terrestrial relatives. Phylogenomic analyses highlight the possibility of near-simultaneous speciation at the root of Hydrophis, and synteny maps show intra-chromosomal variations that will be important targets for future adaptation and speciation genomic studies of this system. We then used a strict screen for positive selection in sea snakes (against a background of seven terrestrial snake genomes) to identify genes over-represented in hypoxia adaptation, sensory perception, immune response and morphological development. CONCLUSIONS We provide the best reference genomes currently available for the prolific and medically important elapid snake radiation. Our analyses highlight the phylogenetic complexity and conserved genome structure within Hydrophis. Positively selected marine-associated genes provide promising candidates for future, functional studies linking genetic signatures to the marine phenotypes of sea snakes and other vertebrates.
Collapse
Affiliation(s)
- Alastair J Ludington
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Jillian M Hammond
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, Australia
| | - James Breen
- Indigenous Genomics, Telethon Kids Institute, Adelaide, Australia
- John Curtin School of Medical Research, College of Health & Medicine, Australian National University, Canberra, Australia
| | - Ira W Deveson
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Kate L Sanders
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
- The South Australian Museum, Adelaide, Australia.
| |
Collapse
|
6
|
Chen M, Gu X. Emerging roles of proximal tubular endocytosis in renal fibrosis. Front Cell Dev Biol 2023; 11:1235716. [PMID: 37799275 PMCID: PMC10547866 DOI: 10.3389/fcell.2023.1235716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
Endocytosis is a crucial component of many pathological conditions. The proximal tubules are responsible for reabsorbing the majority of filtered water and glucose, as well as all the proteins filtered through the glomerular barrier via endocytosis, indicating an essential role in kidney diseases. Genetic mutations or acquired insults could affect the proximal tubule endocytosis processes, by disturbing or overstressing the endolysosomal system and subsequently activating different pathways, orchestrating renal fibrosis. This paper will review recent studies on proximal tubular endocytosis affected by other diseases and factors. Endocytosis plays a vital role in the development of renal fibrosis, and renal fibrosis could also, in turn, affect tubular endocytosis.
Collapse
Affiliation(s)
- Min Chen
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangchen Gu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Medicine, Shanghai Hospital of Civil Aviation Administration of China, Shanghai, China
| |
Collapse
|
7
|
Balaha MF, Alamer AA, Eisa AA, Aljohani HM. Shikonin Alleviates Gentamicin-Induced Renal Injury in Rats by Targeting Renal Endocytosis, SIRT1/Nrf2/HO-1, TLR-4/NF-κB/MAPK, and PI3K/Akt Cascades. Antibiotics (Basel) 2023; 12:antibiotics12050826. [PMID: 37237729 DOI: 10.3390/antibiotics12050826] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Gentamicin causes kidney injury due to its accumulation in proximal tubule epithelial cells via the megalin/cubilin/CLC-5 complex. Recently, shikonin has been shown to have potential anti-inflammatory, antioxidant, antimicrobial, and chloride channel-inhibiting effects. The current study investigated the alleviation of gentamicin-induced renal injury by shikonin while preserving its bactericidal effect. Nine-week-old Wistar rats were administered 6.25, 12.5, and 25 mg/kg/day shikonin orally, one hour after the i.p. injection of 100 mg/kg/day gentamicin for seven days. Shikonin significantly and dose-dependently alleviated gentamicin-induced renal injury, as revealed by restoring normal kidney function and histological architecture. Furthermore, shikonin restored renal endocytic function, as indicated by suppressing the elevated renal megalin, cubilin, and CLC-5 and enhancing the reduced NHE3 levels and mRNA expressions induced by gentamicin. These potentials could be attributed to the modulation of the renal SIRT1/Nrf2/HO-1, TLR-4/NF-κB/MAPK, and PI3K/Akt cascades, which enhanced the renal antioxidant system and suppressed renal inflammation and apoptosis, as indicated by enhancements of SIRT1, Nrf2, HO-1, GSH, SOD, TAC, Iκb-α, Bcl-2, PI3K, and Akt levels and mRNA expressions, with reduction of TLR-4, NF-κB, MAPK, IL-1β, TNF-α, MDA, iNOS, NO, cytochrome c, caspase-3, Bax levels, and Bax/Bcl-2 ratio. Therefore, shikonin is a promising therapeutic agent for alleviating gentamicin-induced renal injury.
Collapse
Affiliation(s)
- Mohamed F Balaha
- Clinical Pharmacy Department, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Tanta University, El-Gish Street, Tanta 31527, Egypt
| | - Ahmed A Alamer
- Clinical Pharmacy Department, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Alaa A Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina 41477, Saudi Arabia
- Animal House Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hashim M Aljohani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madina 41477, Saudi Arabia
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
8
|
Shipman KE, Baty CJ, Long KR, Rbaibi Y, Cowan IA, Gerges M, Marciszyn AL, Kashlan OB, Tan RJ, Edwards A, Weisz OA. Impaired Endosome Maturation Mediates Tubular Proteinuria in Dent Disease Cell Culture and Mouse Models. J Am Soc Nephrol 2023; 34:619-640. [PMID: 36758125 PMCID: PMC10103310 DOI: 10.1681/asn.0000000000000084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/03/2023] [Indexed: 02/11/2023] Open
Abstract
SIGNIFICANCE STATEMENT Loss of function of the 2Cl - /H + antiporter ClC-5 in Dent disease causes an unknown impairment in endocytic traffic, leading to tubular proteinuria. The authors integrated data from biochemical and quantitative imaging studies in proximal tubule cells into a mathematical model to determine that loss of ClC-5 impairs endosome acidification and delays early endosome maturation in proximal tubule cells, resulting in reduced megalin recycling, surface expression, and half-life. Studies in a Dent mouse model also revealed subsegment-specific differences in the effects of ClC-5 knockout on proximal tubule subsegments. The approach provides a template to dissect the effects of mutations or perturbations that alter tubular recovery of filtered proteins from the level of individual cells to the entire proximal tubule axis. BACKGROUND Loss of function of the 2Cl - /H + antiporter ClC-5 in Dent disease impairs the uptake of filtered proteins by the kidney proximal tubule, resulting in tubular proteinuria. Reduced posttranslational stability of megalin and cubilin, the receptors that bind to and recover filtered proteins, is believed to underlie the tubular defect. How loss of ClC-5 leads to reduced receptor expression remains unknown. METHODS We used biochemical and quantitative imaging data to adapt a mathematical model of megalin traffic in ClC-5 knockout and control cells. Studies in ClC-5 knockout mice were performed to describe the effect of ClC-5 knockout on megalin traffic in the S1 segment and along the proximal tubule axis. RESULTS The model predicts that ClC-5 knockout cells have reduced rates of exit from early endosomes, resulting in decreased megalin recycling, surface expression, and half-life. Early endosomes had lower [Cl - ] and higher pH. We observed more profound effects in ClC-5 knockout cells expressing the pathogenic ClC-5 E211G mutant. Alterations in the cellular distribution of megalin in ClC-5 knockout mice were consistent with delayed endosome maturation and reduced recycling. Greater reductions in megalin expression were observed in the proximal tubule S2 cells compared with S1, with consequences to the profile of protein retrieval along the proximal tubule axis. CONCLUSIONS Delayed early endosome maturation due to impaired acidification and reduced [Cl - ] accumulation is the primary mediator of reduced proximal tubule receptor expression and tubular proteinuria in Dent disease. Rapid endosome maturation in proximal tubule cells is critical for the efficient recovery of filtered proteins.
Collapse
Affiliation(s)
- Katherine E. Shipman
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Catherine J. Baty
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kimberly R. Long
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Youssef Rbaibi
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Isabella A. Cowan
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mona Gerges
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Allison L. Marciszyn
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ossama B. Kashlan
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Roderick J. Tan
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Aurélie Edwards
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Ora A. Weisz
- Renal Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Biochemical Mechanisms beyond Glycosphingolipid Accumulation in Fabry Disease: Might They Provide Additional Therapeutic Treatments? J Clin Med 2023; 12:jcm12052063. [PMID: 36902850 PMCID: PMC10004377 DOI: 10.3390/jcm12052063] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Fabry disease is a rare X-linked disease characterized by deficient expression and activity of alpha-galactosidase A (α-GalA) with consequent lysosomal accumulation of glycosphingolipid in various organs. Currently, enzyme replacement therapy is the cornerstone of the treatment of all Fabry patients, although in the long-term it fails to completely halt the disease's progression. This suggests on one hand that the adverse outcomes cannot be justified only by the lysosomal accumulation of glycosphingolipids and on the other that additional therapies targeted at specific secondary mechanisms might contribute to halt the progression of cardiac, cerebrovascular, and renal disease that occur in Fabry patients. Several studies reported how secondary biochemical processes beyond Gb3 and lyso-Gb3 accumulation-such as oxidative stress, compromised energy metabolism, altered membrane lipid, disturbed cellular trafficking, and impaired autophagy-might exacerbate Fabry disease adverse outcomes. This review aims to summarize the current knowledge of these pathogenetic intracellular mechanisms in Fabry disease, which might suggest novel additional strategies for its treatment.
Collapse
|
10
|
Zhou H, Fu F, Wang Y, Li R, Li Y, Cheng K, Huang R, Wang D, Yu Q, Lu Y, Lei T, Yang X, Liao C. Genetic causes of isolated and severe fetal growth restriction in normal chromosomal microarray analysis. Int J Gynaecol Obstet 2022; 161:1004-1011. [PMID: 36495297 DOI: 10.1002/ijgo.14620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/18/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To investigate the genetic burden in fetuses with isolated and severe fetal growth restriction (FGR) using Trio whole-exome sequencing (WES) with a normal chromosomal microarray. METHOD This retrospective study analyzed WES results of singleton fetuses with isolated and severe FGR, whose estimated fetal weight (EFW) was less than the third percentile by Hadlock formula, in a tertiary center between March 2016 and March 2022. Cases with abnormal chromosomal microarray analysis (CMA) and TORCH results were excluded. RESULTS Fifty-one fetuses with isolated and severe FGR and negative CMA results underwent Trio-WES. Of all patients, eight (15.7%) were diagnosed with FGR at its early onset (<32 weeks) and showed pathogenic or likely pathogenic variants involving Nipped-B-like protein gene (NIPBL) (n = 3), fibroblast growth factor receptor 3 (n = 1), pyruvate dehydrogenase E1 subunit alpha 1 (n = 1), collagen, type I, alpha 1 (n = 1), superkiller viralicidic activity 2-like (n = 1), and chloride voltage-gated channel (CLCN5) (n = 1). De novo-generated variants were identified in five fetuses, of which two were novel, including c.6983C>A (p. Thr2328Lys) in NIPBL and c.934-1G>T in CLCN5. Genetic disorders involved Cornelia de Lange syndrome and metabolic and skeletal genetic diseases. CONCLUSION The present study indicates that Trio-WES can improve effectivity of prenatal diagnoses for isolated and severe FGR in cases with normal CMA results, aiding prenatal genetic counseling and pregnancy management for FGR fetuses.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Prenatal Diagnostic center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fang Fu
- Department of Prenatal Diagnostic center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - You Wang
- Department of Prenatal Diagnostic center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Southern Medical University, Guangzhou, China
| | - Ru Li
- Department of Prenatal Diagnostic center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yingsi Li
- Department of Prenatal Diagnostic center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ken Cheng
- Department of Prenatal Diagnostic center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Ruibin Huang
- Department of Prenatal Diagnostic center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dan Wang
- Department of Prenatal Diagnostic center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qiuxia Yu
- Department of Prenatal Diagnostic center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yan Lu
- Department of Prenatal Diagnostic center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Tingying Lei
- Department of Prenatal Diagnostic center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xin Yang
- Department of Prenatal Diagnostic center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Can Liao
- Department of Prenatal Diagnostic center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Liu J, Li X, Xu N, Han H, Li X. Role of ion channels in the mechanism of proteinuria (Review). Exp Ther Med 2022; 25:27. [PMID: 36561615 PMCID: PMC9748662 DOI: 10.3892/etm.2022.11726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
Abstract
Proteinuria is a common clinical manifestation of kidney diseases, such as glomerulonephritis, nephrotic syndrome, immunoglobulin A nephropathy and diabetic nephropathy. Therefore, proteinuria is considered to be a risk factor for renal dysfunction. Furthermore, proteinuria is also significantly associated with the progression of kidney diseases and increased mortality. Its occurrence is closely associated with damage to the structure of the glomerular filtration membrane. An impaired glomerular filtration membrane can affect the selective filtration function of the kidneys; therefore, several macromolecular substances, such as proteins, may pass through the filtration membrane and promote the manifestation of proteinuria. It has been reported that ion channels play a significant role in the mechanisms underlying proteinuria. Ion channel mutations or other dysfunctions have been implicated in several diseases, therefore ion channels could be used as major therapeutic targets. The mechanisms underlying the action of ion channels and ion transporters in proteinuria have been overlooked in the literature, despite their importance in identifying novel targets for treating proteinuria and delaying the progression of kidney diseases. The current review article focused on the four key ion channel groups, namely Na+, Ca2+, Cl- and K+ ion channels and the associated ion transporters.
Collapse
Affiliation(s)
- Jie Liu
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Xuewei Li
- Department of Rheumatology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Ning Xu
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Huirong Han
- Department of Anesthesiology, Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Xiangling Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China,Correspondence to: Professor Xiangling Li, Department of Nephrology, Affiliated Hospital of Weifang Medical University, 2428 Yu He Road, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
12
|
Yan P, Ke B, Fang X. Ion channels as a therapeutic target for renal fibrosis. Front Physiol 2022; 13:1019028. [PMID: 36277193 PMCID: PMC9581181 DOI: 10.3389/fphys.2022.1019028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Renal ion channel transport and electrolyte disturbances play an important role in the process of functional impairment and fibrosis in the kidney. It is well known that there are limited effective drugs for the treatment of renal fibrosis, and since a large number of ion channels are involved in the renal fibrosis process, understanding the mechanisms of ion channel transport and the complex network of signaling cascades between them is essential to identify potential therapeutic approaches to slow down renal fibrosis. This review summarizes the current work of ion channels in renal fibrosis. We pay close attention to the effect of cystic fibrosis transmembrane conductance regulator (CFTR), transmembrane Member 16A (TMEM16A) and other Cl− channel mediated signaling pathways and ion concentrations on fibrosis, as well as the various complex mechanisms for the action of Ca2+ handling channels including Ca2+-release-activated Ca2+ channel (CRAC), purinergic receptor, and transient receptor potential (TRP) channels. Furthermore, we also focus on the contribution of Na+ transport such as epithelial sodium channel (ENaC), Na+, K+-ATPase, Na+-H+ exchangers, and K+ channels like Ca2+-activated K+ channels, voltage-dependent K+ channel, ATP-sensitive K+ channels on renal fibrosis. Proposed potential therapeutic approaches through further dissection of these mechanisms may provide new therapeutic opportunities to reduce the burden of chronic kidney disease.
Collapse
|
13
|
Kozyraki R, Verroust P, Cases O. Cubilin, the intrinsic factor-vitamin B12 receptor. VITAMINS AND HORMONES 2022; 119:65-119. [PMID: 35337634 DOI: 10.1016/bs.vh.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cubilin (CUBN), the intrinsic factor-vitamin B12 receptor is a large endocytic protein involved in various physiological functions: vitamin B12 uptake in the gut; reabsorption of albumin and maturation of vitamin D in the kidney; nutrient delivery during embryonic development. Cubilin is an atypical receptor, peripherally associated to the plasma membrane. The transmembrane proteins amnionless (AMN) and Lrp2/Megalin are the currently known molecular partners contributing to plasma membrane transport and internalization of Cubilin. The role of Cubilin/Amn complex in the handling of vitamin B12 in health and disease has extensively been studied and so is the role of the Cubilin-Lrp2 tandem in renal pathophysiology. Accumulating evidence strongly supports a role of Cubilin in some developmental defects including impaired closure of the neural tube. Are these defects primarily caused by the dysfunction of a specific Cubilin ligand or are they secondary to impaired vitamin B12 or protein uptake? We will present the established Cubilin functions, discuss the developmental data and provide an overview of the emerging implications of Cubilin in the field of cardiovascular disease and cancer pathogenesis.
Collapse
Affiliation(s)
- Renata Kozyraki
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France.
| | - Pierre Verroust
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
| | - Olivier Cases
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université de Paris, Paris, France
| |
Collapse
|
14
|
Defective Cystinosin, Aberrant Autophagy−Endolysosome Pathways, and Storage Disease: Towards Assembling the Puzzle. Cells 2022; 11:cells11030326. [PMID: 35159136 PMCID: PMC8834619 DOI: 10.3390/cells11030326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
Epithelial cells that form the kidney proximal tubule (PT) rely on an intertwined ecosystem of vesicular membrane trafficking pathways to ensure the reabsorption of essential nutrients—a key requisite for homeostasis. The endolysosome stands at the crossroads of this sophisticated network, internalizing molecules through endocytosis, sorting receptors and nutrient transporters, maintaining cellular quality control via autophagy, and toggling the balance between PT differentiation and cell proliferation. Dysregulation of such endolysosome-guided trafficking pathways might thus lead to a generalized dysfunction of PT cells, often causing chronic kidney disease and life-threatening complications. In this review, we highlight the biological functions of endolysosome-residing proteins from the perspectives of understanding—and potentially reversing—the pathophysiology of rare inherited diseases affecting the kidney PT. Using cystinosis as a paradigm of endolysosome disease causing PT dysfunction, we discuss how the endolysosome governs the homeostasis of specialized epithelial cells. This review also provides a critical analysis of the molecular mechanisms through which defects in autophagy pathways can contribute to PT dysfunction, and proposes potential interventions for affected tissues. These insights might ultimately accelerate the discovery and development of new therapeutics, not only for cystinosis, but also for other currently intractable endolysosome-related diseases, eventually transforming our ability to regulate homeostasis and health.
Collapse
|
15
|
Li XL, Liu J, Chen XS, Cheng LM, Liu WL, Chen XF, Li YJ, Guan YY, Zeng X, Du YH. Blockade of TMEM16A protects against renal fibrosis by reducing intracellular Cl - concentration. Br J Pharmacol 2021; 179:3043-3060. [PMID: 34961937 DOI: 10.1111/bph.15786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 09/27/2021] [Accepted: 12/16/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Renal fibrosis is the final common outcome in most forms of CKD. However, the underlying causal mechanisms remain obscure. The present study examined whether TMEM16A, a Ca2+ -activated chloride channel, contributes to the progress of renal fibrosis. EXPERIMENTAL APPROACH Masson staining, western blot and immunohistochemistry were used to measure renal fibrosis and related proteins expression. MQAE was used to evaluate the intracellular Cl- concentration. KEY RESULTS TMEM16A expression was significantly upregulated in fibrotic kidneys of unilateral ureteral obstruction (UUO) and high-fat diet murine models, and in renal samples of IgA nephropathy patients. In vivo knockdown of TMEM16A with adenovirus harboring TMEM16A-shRNA or inhibition of TMEM16A channel activity with its specific inhibitor CaCCinh-A01 or T16Ainh-A01 effectively prevented UUO-induced renal fibrosis and decreased protein expression of fibronectin, α-SMA and collagen in the obstructed kidneys. In cultured HK2 cells, knockdown or inhibition of TMEM16A suppressed TGF-β1-induced epithelial to mesenchymal transition, reduced snail1 expression and phosphorylation of Smad2/3 and ERK1/2, whereas overexpression of TMEM16A showed the opposite effects. TGF-β1 increased [Cl- ]i in HK2 cells, which was inhibited by knockdown or inhibition of TMEM16A. Reducing [Cl- ]i by low Cl- culture medium significantly blunted TGF-β1-induced Smad2/3 phosphorylation and profibrotic factors expression. The profibrotic effects of TGF-β1 were also abrogated by the inhibitor of SGK1, a kinase whose activity was also suppressed by reducing [Cl- ]i. CONCLUSION AND IMPLICATIONS Blockade of TMEM16A prevented the progression of kidney fibrosis, likely by suppressing [Cl- ]i/SGK1/TGF-β1 signaling pathway. TMEM16A may be a potential new therapeutic target against renal fibrosis.
Collapse
Affiliation(s)
- Xiao-Long Li
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jing Liu
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao-Shan Chen
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Li-Min Cheng
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wei-Ling Liu
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xing-Feng Chen
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yue-Jiao Li
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yong-Yuan Guan
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xin Zeng
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yan-Hua Du
- Department of Pharmacology, Cardiac & Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Lukasiak A, Zajac M. The Distribution and Role of the CFTR Protein in the Intracellular Compartments. MEMBRANES 2021; 11:membranes11110804. [PMID: 34832033 PMCID: PMC8618639 DOI: 10.3390/membranes11110804] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis is a hereditary disease that mainly affects secretory organs in humans. It is caused by mutations in the gene encoding CFTR with the most common phenylalanine deletion at position 508. CFTR is an anion channel mainly conducting Cl− across the apical membranes of many different epithelial cells, the impairment of which causes dysregulation of epithelial fluid secretion and thickening of the mucus. This, in turn, leads to the dysfunction of organs such as the lungs, pancreas, kidney and liver. The CFTR protein is mainly localized in the plasma membrane; however, there is a growing body of evidence that it is also present in the intracellular organelles such as the endosomes, lysosomes, phagosomes and mitochondria. Dysfunction of the CFTR protein affects not only the ion transport across the epithelial tissues, but also has an impact on the proper functioning of the intracellular compartments. The review aims to provide a summary of the present state of knowledge regarding CFTR localization and function in intracellular compartments, the physiological role of this localization and the consequences of protein dysfunction at cellular, epithelial and organ levels. An in-depth understanding of intracellular processes involved in CFTR impairment may reveal novel opportunities in pharmacological agents of cystic fibrosis.
Collapse
|
17
|
Durán M, Burballa C, Cantero-Recasens G, Butnaru CM, Malhotra V, Ariceta G, Sarró E, Meseguer A. Novel Dent disease 1 cellular models reveal biological processes underlying ClC-5 loss-of-function. Hum Mol Genet 2021; 30:1413-1428. [PMID: 33987651 PMCID: PMC8283206 DOI: 10.1093/hmg/ddab131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 01/04/2023] Open
Abstract
Dent disease 1 (DD1) is a rare X-linked renal proximal tubulopathy characterized by low molecular weight proteinuria and variable degree of hypercalciuria, nephrocalcinosis and/or nephrolithiasis, progressing to chronic kidney disease. Although mutations in the electrogenic Cl-/H+ antiporter ClC-5, which impair endocytic uptake in proximal tubule cells, cause the disease, there is poor genotype-phenotype correlation and their contribution to proximal tubule dysfunction remains unclear. To further discover the mechanisms linking ClC-5 loss-of-function to proximal tubule dysfunction, we have generated novel DD1 cellular models depleted of ClC-5 and carrying ClC-5 mutants p.(Val523del), p.(Glu527Asp) and p.(Ile524Lys) using the human proximal tubule-derived RPTEC/TERT1 cell line. Our DD1 cellular models exhibit impaired albumin endocytosis, increased substrate adhesion and decreased collective migration, correlating with a less differentiated epithelial phenotype. Despite sharing functional features, these DD1 cell models exhibit different gene expression profiles, being p.(Val523del) ClC-5 the mutation showing the largest differences. Gene set enrichment analysis pointed to kidney development, anion homeostasis, organic acid transport, extracellular matrix organization and cell-migration biological processes as the most likely involved in DD1 pathophysiology. In conclusion, our results revealed the pathways linking ClC-5 mutations with tubular dysfunction and, importantly, provide new cellular models to further study DD1 pathophysiology.
Collapse
Affiliation(s)
- Mónica Durán
- Renal Physiopathology Group, Vall d'Hebron Research Institute (VHIR)-CIBBIM Nanomedicine, Barcelona, Spain
| | - Carla Burballa
- Renal Physiopathology Group, Vall d'Hebron Research Institute (VHIR)-CIBBIM Nanomedicine, Barcelona, Spain
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Gerard Cantero-Recasens
- Renal Physiopathology Group, Vall d'Hebron Research Institute (VHIR)-CIBBIM Nanomedicine, Barcelona, Spain
| | - Cristian M Butnaru
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Vivek Malhotra
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Gema Ariceta
- Renal Physiopathology Group, Vall d'Hebron Research Institute (VHIR)-CIBBIM Nanomedicine, Barcelona, Spain
- Pediatric Nephrology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eduard Sarró
- Renal Physiopathology Group, Vall d'Hebron Research Institute (VHIR)-CIBBIM Nanomedicine, Barcelona, Spain
| | - Anna Meseguer
- Renal Physiopathology Group, Vall d'Hebron Research Institute (VHIR)-CIBBIM Nanomedicine, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III-FEDER, Madrid, Spain
| |
Collapse
|
18
|
Festa BP, Berquez M, Nieri D, Luciani A. Endolysosomal Disorders Affecting the Proximal Tubule of the Kidney: New Mechanistic Insights and Therapeutics. Rev Physiol Biochem Pharmacol 2021; 185:233-257. [PMID: 33649992 DOI: 10.1007/112_2020_57] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Epithelial cells that line the proximal tubule of the kidney rely on an intertwined ecosystem of vesicular membrane trafficking pathways to ensure the reabsorption of essential nutrients. To function effectively and to achieve homeostasis, these specialized cells require the sorting and recycling of a wide array of cell surface proteins within the endolysosomal network, including signaling receptors, nutrient transporters, ion channels, and polarity markers. The dysregulation of the endolysosomal system can lead to a generalized proximal tubule dysfunction, ultimately causing severe metabolic complications and kidney disease.In this chapter, we highlight the biological functions of the genes that code endolysosomal proteins from the perspective of understanding - and potentially reversing - the pathophysiology of endolysosomal disorders affecting the proximal tubule of the kidney. These insights might ultimately lead to potential treatments for currently intractable diseases and transform our ability to regulate kidney homeostasis and health.
Collapse
Affiliation(s)
- Beatrice Paola Festa
- Institute of Physiology, Mechanisms of Inherited Kidney Disorders Group, University of Zurich, Zurich, Switzerland
| | - Marine Berquez
- Institute of Physiology, Mechanisms of Inherited Kidney Disorders Group, University of Zurich, Zurich, Switzerland
| | - Daniela Nieri
- Institute of Physiology, Mechanisms of Inherited Kidney Disorders Group, University of Zurich, Zurich, Switzerland
| | - Alessandro Luciani
- Institute of Physiology, Mechanisms of Inherited Kidney Disorders Group, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
19
|
Gualdani R, Seghers F, Yerna X, Schakman O, Tajeddine N, Achouri Y, Tissir F, Devuyst O, Gailly P. Mechanical activation of TRPV4 channels controls albumin reabsorption by proximal tubule cells. Sci Signal 2020; 13:13/653/eabc6967. [DOI: 10.1126/scisignal.abc6967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Defects in protein reabsorption by the proximal tubule are toxic for epithelial cells in the nephron and may result in nephropathy. In this study, we showed that the ion channel TRPV4 modulated the endocytosis of albumin and low–molecular weight proteins in the proximal tubule. TRPV4 was found at the basolateral side of proximal tubule cells, and its mechanical activation by cell stretching induced Ca2+ entry into the cytosol, which promoted endocytosis. Trpv4−/− mice presented with mild proximal tubule dysfunction under basal conditions. To challenge endocytic function, the permeability of the glomerular filter was altered by systemic delivery of angiotensin II. The proteinuria induced by this treatment was more severe in Trpv4−/− than in Trpv4+/+ mice. Injecting antibodies against the glomerular basement membrane to induce glomerulonephritis is a more pathophysiologically relevant method of impairing glomerular filter permeability. Albuminuria was more severe in mice that lacked TRPV4 specifically in the proximal tubule than in control mice. These results emphasize the importance of TRPV4 in sensing pressure in the proximal tubule in response to variations in the amount of ultrafiltrate and unveil a mechanism that controls protein reabsorption.
Collapse
Affiliation(s)
- Roberta Gualdani
- Université catholique de Louvain, Institute of Neuroscience, Cell Physiology, av. Mounier 53/B1.53.17, B-1200 Brussels, Belgium
| | - François Seghers
- Université catholique de Louvain, Institute of Neuroscience, Cell Physiology, av. Mounier 53/B1.53.17, B-1200 Brussels, Belgium
| | - Xavier Yerna
- Université catholique de Louvain, Institute of Neuroscience, Cell Physiology, av. Mounier 53/B1.53.17, B-1200 Brussels, Belgium
| | - Olivier Schakman
- Université catholique de Louvain, Institute of Neuroscience, Cell Physiology, av. Mounier 53/B1.53.17, B-1200 Brussels, Belgium
| | - Nicolas Tajeddine
- Université catholique de Louvain, Institute of Neuroscience, Cell Physiology, av. Mounier 53/B1.53.17, B-1200 Brussels, Belgium
| | - Younès Achouri
- Université catholique de Louvain, de Duve Institute, Transgenic Core Facility, av. Hippocrate 75/B1.75.09, B-1200 Brussels, Belgium
| | - Fadel Tissir
- Université catholique de Louvain, Institute of Neuroscience, Developmental Neurobiology, av. Hippocrate 73/B1.73.16, B-1200 Brussels, Belgium
| | - Olivier Devuyst
- University of Zurich, Institute of Physiology, Winterthurerstr. 190, CH-8057 Zurich, Switzerland
| | - Philippe Gailly
- Université catholique de Louvain, Institute of Neuroscience, Cell Physiology, av. Mounier 53/B1.53.17, B-1200 Brussels, Belgium
| |
Collapse
|
20
|
Berquez M, Gadsby JR, Festa BP, Butler R, Jackson SP, Berno V, Luciani A, Devuyst O, Gallop JL. The phosphoinositide 3-kinase inhibitor alpelisib restores actin organization and improves proximal tubule dysfunction in vitro and in a mouse model of Lowe syndrome and Dent disease. Kidney Int 2020; 98:883-896. [PMID: 32919786 PMCID: PMC7550850 DOI: 10.1016/j.kint.2020.05.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 05/01/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022]
Abstract
Loss-of-function mutations in the OCRL gene, which encodes the phosphatidylinositol [PI] 4,5-bisphosphate [PI(4,5)P2] 5-phosphatase OCRL, cause defective endocytosis and proximal tubule dysfunction in Lowe syndrome and Dent disease 2. The defect is due to increased levels of PI(4,5)P2 and aberrant actin polymerization, blocking endosomal trafficking. PI 3-phosphate [PI(3)P] has been recently identified as a coactivator with PI(4,5)P2 in the actin pathway. Here, we tested the hypothesis that phosphoinositide 3-kinase (PI3K) inhibitors may rescue the endocytic defect imparted by OCRL loss, by rebalancing phosphoinositide signals to the actin machinery. The broad-range PI3K inhibitor copanlisib and class IA p110α PI3K inhibitor alpelisib reduced aberrant actin polymerization in OCRL-deficient human kidney cells in vitro. Levels of PI 3,4,5-trisphosphate, PI(4,5)P2 and PI(3)P were all reduced with alpelisib treatment, and siRNA knockdown of the PI3K catalytic subunit p110α phenocopied the actin phenotype. In a humanized OcrlY/- mouse model, alpelisib reduced endosomal actin staining while restoring stress fiber architecture and levels of megalin at the plasma membrane of proximal tubule cells, reflected by improved endocytic uptake of low molecular weight proteins in vivo. Thus, our findings support the link between phosphoinositide lipids, actin polymerization and endocytic trafficking in the proximal tubule and represent a proof-of-concept for repurposing alpelisib in Lowe syndrome/Dent disease 2.
Collapse
Affiliation(s)
- Marine Berquez
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Jonathan R Gadsby
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Richard Butler
- Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Stephen P Jackson
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Valeria Berno
- Experimental Imaging Center, ALEMBIC, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| | - Jennifer L Gallop
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
21
|
Shipman KE, Weisz OA. Making a Dent in Dent Disease. FUNCTION (OXFORD, ENGLAND) 2020; 1:zqaa017. [PMID: 33015630 PMCID: PMC7519470 DOI: 10.1093/function/zqaa017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 01/06/2023]
Abstract
Dent disease (DD) is a rare kidney disorder caused by mutations in the Cl-/H+ exchanger ClC-5. Extensive physiologic characterization of the transporter has begun to illuminate its role in endosomal ion homeostasis. Nevertheless, we have yet to understand how loss of ClC-5 function in the kidney proximal tubule impairs membrane traffic of megalin and cubilin receptors to cause the low molecular weight proteinuria characteristic of DD. This review identifies open questions that remain to be answered, evaluates the current literature addressing these questions, and suggests new testable models that may link loss of ClC-5 function to tubular proteinuria in DD.
Collapse
Affiliation(s)
- Katherine E Shipman
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ora A Weisz
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Address correspondence to O.A.W. (e-mail: )
| |
Collapse
|
22
|
Jouret F, Devuyst O. Targeting chloride transport in autosomal dominant polycystic kidney disease. Cell Signal 2020; 73:109703. [PMID: 32619563 DOI: 10.1016/j.cellsig.2020.109703] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent inherited kidney disease. Transepithelial fluid secretion is one of the key factors of cystogenesis in ADPKD. Multiple studies have suggested that fluid secretion across ADPKD cyst-lining cells is driven by the secretion of chloride, essentially mediated by the CFTR channel and stimulated by increased intracellular levels of 3',5'-cyclic adenosine monophosphate. This review focuses on the pathophysiology of fluid secretion in ADPKD based on the pioneering studies of Jared Grantham and colleagues, and on the follow-up investigations from the molecular level to the potential applications in ADPKD patients. Altogether, the studies of fluid and chloride transport in ADPKD paved the way for innovative therapeutic targets to prevent cyst volume expansion and thus, kidney disease progression.
Collapse
Affiliation(s)
- François Jouret
- Division of Nephrology, Department of Internal Medicine, ULiège Academic Hospital, Liège, Belgium,; Groupe Interdisciplinaire de Géno-protéomique Appliquée, Cardiovascular Sciences, ULiège Medical School, Liège, Belgium
| | - Olivier Devuyst
- Division of Nephrology, UCLouvain Medical School, B-1200, Brussels, Belgium,; Mechanisms of Inherited Kidney Disorders, University of Zurich, CH-8057 Zurich, Switzerland.
| |
Collapse
|
23
|
Devuyst O. The first decade of Kidney International: treasure hunt for the kidney tubule. Kidney Int 2020; 97:818-822. [PMID: 32331590 DOI: 10.1016/j.kint.2020.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
Affiliation(s)
- Olivier Devuyst
- Department of Physiology, Mechanisms of Inherited Kidney Disorders Group, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
24
|
Festa BP, Berquez M, Gassama A, Amrein I, Ismail HM, Samardzija M, Staiano L, Luciani A, Grimm C, Nussbaum RL, De Matteis MA, Dorchies OM, Scapozza L, Wolfer DP, Devuyst O. OCRL deficiency impairs endolysosomal function in a humanized mouse model for Lowe syndrome and Dent disease. Hum Mol Genet 2020; 28:1931-1946. [PMID: 30590522 PMCID: PMC6548226 DOI: 10.1093/hmg/ddy449] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/09/2018] [Accepted: 12/20/2018] [Indexed: 11/29/2022] Open
Abstract
Mutations in OCRL encoding the inositol polyphosphate 5-phosphatase OCRL (Lowe oculocerebrorenal syndrome protein) disrupt phosphoinositide homeostasis along the endolysosomal pathway causing dysfunction of the cells lining the kidney proximal tubule (PT). The dysfunction can be isolated (Dent disease 2) or associated with congenital cataracts, central hypotonia and intellectual disability (Lowe syndrome). The mechanistic understanding of Dent disease 2/Lowe syndrome remains scarce due to limitations of animal models of OCRL deficiency. Here, we investigate the role of OCRL in Dent disease 2/Lowe syndrome by using OcrlY/− mice, where the lethal deletion of the paralogue Inpp5b was rescued by human INPP5B insertion, and primary culture of proximal tubule cells (mPTCs) derived from OcrlY/− kidneys. The OcrlY/− mice show muscular defects with dysfunctional locomotricity and present massive urinary losses of low-molecular-weight proteins and albumin, caused by selective impairment of receptor-mediated endocytosis in PT cells. The latter was due to accumulation of phosphatidylinositol 4,5–bisphosphate PI(4,5)P2 in endolysosomes, driving local hyper-polymerization of F-actin and impairing trafficking of the endocytic LRP2 receptor, as evidenced in OcrlY/− mPTCs. The OCRL deficiency was also associated with a disruption of the lysosomal dynamic and proteolytic activity. Partial convergence of disease-pathways and renal phenotypes observed in OcrlY/− and Clcn5Y/− mice suggest shared mechanisms in Dent diseases 1 and 2. These studies substantiate the first mouse model of Lowe syndrome and give insights into the role of OCRL in cellular trafficking of multiligand receptors. These insights open new avenues for therapeutic interventions in Lowe syndrome and Dent disease.
Collapse
Affiliation(s)
| | - Marine Berquez
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Alkaly Gassama
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Irmgard Amrein
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Institute of Human Movement Sciences and Sport, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Hesham M Ismail
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | - Marijana Samardzija
- Lab for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Leopoldo Staiano
- Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | | | - Christian Grimm
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.,Lab for Retinal Cell Biology, Department of Ophthalmology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Robert L Nussbaum
- Department of Medicine and Institute of Human Genetics, University of California, San Francisco, CA, USA.,Invitae Corporation, San Francisco, CA, USA
| | | | - Olivier M Dorchies
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Geneva, Switzerland
| | - David Paul Wolfer
- Division of Functional Neuroanatomy, Institute of Anatomy, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Institute of Human Movement Sciences and Sport, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Amin R, He R, Gupta D, Zheng W, Burmakin M, Mohammad DK, DePierre JW, Sadeghi B, Olauson H, Wernerson A, El-Andaloussi S, Hassan M, Abedi-Valugerdi M. The kidney injury caused by the onset of acute graft-versus-host disease is associated with down-regulation of αKlotho. Int Immunopharmacol 2020; 78:106042. [DOI: 10.1016/j.intimp.2019.106042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/24/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022]
|
26
|
Chen Z, Luciani A, Mateos JM, Barmettler G, Giles RH, Neuhauss SCF, Devuyst O. Transgenic zebrafish modeling low-molecular-weight proteinuria and lysosomal storage diseases. Kidney Int 2019; 97:1150-1163. [PMID: 32061435 DOI: 10.1016/j.kint.2019.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 10/16/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022]
Abstract
Epithelial cells lining the proximal tubule of the kidney reabsorb and metabolize most of the filtered low-molecular-weight proteins through receptor-mediated endocytosis and lysosomal processing. Congenital and acquired dysfunctions of the proximal tubule are consistently reflected by the inappropriate loss of solutes including low-molecular-weight proteins in the urine. The zebrafish pronephros shares individual functional segments with the human nephron, including lrp2a/megalin-dependent endocytic transport processes of the proximal tubule. Although the zebrafish has been used as a model organism for toxicological studies and drug discovery, there is no available assay that allows large-scale assessment of proximal tubule function in larval or adult stages. Here we establish a transgenic Tg(lfabp::½vdbp-mCherry) zebrafish line expressing in the liver the N-terminal region of vitamin D-binding protein coupled to the acid-insensitive, red monomeric fluorescent protein mCherry (½vdbp-mCherry). This low-molecular-weight protein construct is secreted into the bloodstream, filtered through the glomerulus, reabsorbed by receptor-mediated endocytosis and processed in the lysosomes of proximal tubule cells of the fish. Thus, our proof-of-concept studies using zebrafish larvae knockout for lrp2a and clcn7 or exposed to known nephrotoxins (gentamicin and cisplatin) demonstrate that this transgenic line is useful to monitor low-molecular-weight proteinuria and lysosomal processing. This represents a powerful new model organism for drug screening and studies of nephrotoxicity.
Collapse
Affiliation(s)
- Zhiyong Chen
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - José María Mateos
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Gery Barmettler
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Rachel H Giles
- Department of Nephrology and Hypertension, Hubrecht Institute, Utrecht, The Netherlands; University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
27
|
van der Wijst J, Belge H, Bindels RJM, Devuyst O. Learning Physiology From Inherited Kidney Disorders. Physiol Rev 2019; 99:1575-1653. [PMID: 31215303 DOI: 10.1152/physrev.00008.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The identification of genes causing inherited kidney diseases yielded crucial insights in the molecular basis of disease and improved our understanding of physiological processes that operate in the kidney. Monogenic kidney disorders are caused by mutations in genes coding for a large variety of proteins including receptors, channels and transporters, enzymes, transcription factors, and structural components, operating in specialized cell types that perform highly regulated homeostatic functions. Common variants in some of these genes are also associated with complex traits, as evidenced by genome-wide association studies in the general population. In this review, we discuss how the molecular genetics of inherited disorders affecting different tubular segments of the nephron improved our understanding of various transport processes and of their involvement in homeostasis, while providing novel therapeutic targets. These include inherited disorders causing a dysfunction of the proximal tubule (renal Fanconi syndrome), with emphasis on epithelial differentiation and receptor-mediated endocytosis, or affecting the reabsorption of glucose, the handling of uric acid, and the reabsorption of sodium, calcium, and magnesium along the kidney tubule.
Collapse
Affiliation(s)
- Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Hendrica Belge
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Devuyst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
28
|
Prange JA, Aleandri S, Komisarski M, Luciani A, Käch A, Schuh CD, Hall AM, Mezzenga R, Devuyst O, Landau EM. Overcoming Endocytosis Deficiency by Cubosome Nanocarriers. ACS APPLIED BIO MATERIALS 2019; 2:2490-2499. [DOI: 10.1021/acsabm.9b00187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jenny A. Prange
- Institute of Physiology, University of Zurich, Zurich 8057, Switzerland
| | - Simone Aleandri
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | - Marek Komisarski
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| | | | - Andres Käch
- Center for Microscopy and Image Analysis, University of Zurich, Zurich 8057, Switzerland
| | | | - Andrew M. Hall
- Institute of Anatomy, University of Zurich, Zurich 8057, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences & Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich 8057, Switzerland
| | - Ehud M. Landau
- Department of Chemistry, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
29
|
Teulon J, Planelles G, Sepúlveda FV, Andrini O, Lourdel S, Paulais M. Renal Chloride Channels in Relation to Sodium Chloride Transport. Compr Physiol 2018; 9:301-342. [DOI: 10.1002/cphy.c180024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Rein JL, Coca SG. "I don't get no respect": the role of chloride in acute kidney injury. Am J Physiol Renal Physiol 2018; 316:F587-F605. [PMID: 30539650 DOI: 10.1152/ajprenal.00130.2018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) is a major public health problem that complicates 10-40% of hospital admissions. Importantly, AKI is independently associated with increased risk of progression to chronic kidney disease, end-stage renal disease, cardiovascular events, and increased risk of in-hospital and long-term mortality. The chloride content of intravenous fluid has garnered much attention over the last decade, as well as its association with excess use and adverse outcomes, including AKI. Numerous studies show that changes in serum chloride concentration, independent of serum sodium and bicarbonate, are associated with increased risk of AKI, morbidity, and mortality. This comprehensive review details the complex renal physiology regarding the role of chloride in regulating renal blood flow, glomerular filtration rate, tubuloglomerular feedback, and tubular injury, as well as the findings of clinical research related to the chloride content of intravenous fluids, changes in serum chloride concentration, and AKI. Chloride is underappreciated in both physiology and pathophysiology. Although the exact mechanism is debated, avoidance of excessive chloride administration is a reasonable treatment option for all patients and especially in those at risk for AKI. Therefore, high-risk patients and those with "incipient" AKI should receive balanced solutions rather than normal saline to minimize the risk of AKI.
Collapse
Affiliation(s)
- Joshua L Rein
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, New York
| | - Steven G Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, New York
| |
Collapse
|
31
|
Schuh CD, Polesel M, Platonova E, Haenni D, Gassama A, Tokonami N, Ghazi S, Bugarski M, Devuyst O, Ziegler U, Hall AM. Combined Structural and Functional Imaging of the Kidney Reveals Major Axial Differences in Proximal Tubule Endocytosis. J Am Soc Nephrol 2018; 29:2696-2712. [PMID: 30301861 DOI: 10.1681/asn.2018050522] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The kidney proximal convoluted tubule (PCT) reabsorbs filtered macromolecules via receptor-mediated endocytosis (RME) or nonspecific fluid phase endocytosis (FPE); endocytosis is also an entry route for disease-causing toxins. PCT cells express the protein ligand receptor megalin and have a highly developed endolysosomal system (ELS). Two PCT segments (S1 and S2) display subtle differences in cellular ultrastructure; whether these translate into differences in endocytotic function has been unknown. METHODS To investigate potential differences in endocytic function in S1 and S2, we quantified ELS protein expression in mouse kidney PCTs using real-time quantitative polymerase chain reaction and immunostaining. We also used multiphoton microscopy to visualize uptake of fluorescently labeled ligands in both living animals and tissue cleared using a modified CLARITY approach. RESULTS Uptake of proteins by RME occurs almost exclusively in S1. In contrast, dextran uptake by FPE takes place in both S1 and S2, suggesting that RME and FPE are discrete processes. Expression of key ELS proteins, but not megalin, showed a bimodal distribution; levels were far higher in S1, where intracellular distribution was also more polarized. Tissue clearing permitted imaging of ligand uptake at single-organelle resolution in large sections of kidney cortex. Analysis of segmented tubules confirmed that, compared with protein uptake, dextran uptake occurred over a much greater length of the PCT, although individual PCTs show marked heterogeneity in solute uptake length and three-dimensional morphology. CONCLUSIONS Striking axial differences in ligand uptake and ELS function exist along the PCT, independent of megalin expression. These differences have important implications for understanding topographic patterns of kidney diseases and the origins of proteinuria.
Collapse
Affiliation(s)
| | | | | | - Dominik Haenni
- Institute of Anatomy.,Center for Microscopy and Image Analysis, and
| | - Alkaly Gassama
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and
| | - Natsuko Tokonami
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and
| | | | | | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland; and
| | - Urs Ziegler
- Center for Microscopy and Image Analysis, and
| | - Andrew M Hall
- Institute of Anatomy, .,Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Kozyraki R, Cases O. Cubilin, the Intrinsic Factor-Vitamin B12 Receptor in Development and Disease. Curr Med Chem 2018; 27:3123-3150. [PMID: 30295181 DOI: 10.2174/0929867325666181008143945] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/11/2018] [Accepted: 08/21/2018] [Indexed: 12/29/2022]
Abstract
Gp280/Intrinsic factor-vitamin B12 receptor/Cubilin (CUBN) is a large endocytic receptor serving multiple functions in vitamin B12 homeostasis, renal reabsorption of protein or toxic substances including albumin, vitamin D-binding protein or cadmium. Cubilin is a peripheral membrane protein consisting of 8 Epidermal Growth Factor (EGF)-like repeats and 27 CUB (defined as Complement C1r/C1s, Uegf, BMP1) domains. This structurally unique protein interacts with at least two molecular partners, Amnionless (AMN) and Lrp2/Megalin. AMN is involved in appropriate plasma membrane transport of Cubilin whereas Lrp2 is essential for efficient internalization of Cubilin and its ligands. Observations gleaned from animal models with Cubn deficiency or human diseases demonstrate the importance of this protein. In this review addressed to basic research and medical scientists, we summarize currently available data on Cubilin and its implication in renal and intestinal biology. We also discuss the role of Cubilin as a modulator of Fgf8 signaling during embryonic development and propose that the Cubilin-Fgf8 interaction may be relevant in human pathology, including in cancer progression, heart or neural tube defects. We finally provide experimental elements suggesting that some aspects of Cubilin physiology might be relevant in drug design.
Collapse
Affiliation(s)
- Renata Kozyraki
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris-Diderot University, Paris, France
| | - Olivier Cases
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, Paris-Diderot University, Paris, France
| |
Collapse
|
33
|
The use of chemical probes to detect the proteomics of renal tubular injury induced by maleic acid. J Chromatogr A 2018; 1565:96-104. [PMID: 29983170 DOI: 10.1016/j.chroma.2018.06.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/29/2018] [Accepted: 06/17/2018] [Indexed: 11/20/2022]
Abstract
Maleic acid (MA), an industrial raw material, was found to be illegally added to edible starch-based food products in Taiwan in 2013, a practice unheard of in most of the world. MA has been associated with renal dysfunction in many experimental animal studies. In this study, we developed chemical probes to investigate protein-protein interactions between MA and renal proteins. In the fabrication of the MA probes, we used silicon dioxide (SiO2) modified with a silanized linker (3-aminopropyl triethoxyslane, APTES) to generate MA with APTES-SiO2 particles. The probes were then incubated with the cell lysates of normal human kidney cell lines (HK-2) and subjected to MS/MS for identifying several MA-related proteins, including nucleophosmin, neutral alpha-glucosidase AB, translocon-associated protein subunit alpha, elongation factor 1-gamma, 60S acidic ribosomal protein P0-like, and heat shock protein (HSP 90-alpha and beta). Based on our findings, we believed that the probe can potentially be used to identify and detect the target proteins and help characterize a network of MA protein-protein interactions.
Collapse
|
34
|
Bignon Y, Alekov A, Frachon N, Lahuna O, Jean-Baptiste Doh-Egueli C, Deschênes G, Vargas-Poussou R, Lourdel S. A novel CLCN5 pathogenic mutation supports Dent disease with normal endosomal acidification. Hum Mutat 2018; 39:1139-1149. [PMID: 29791050 DOI: 10.1002/humu.23556] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/23/2018] [Accepted: 05/19/2018] [Indexed: 12/13/2022]
Abstract
Dent disease is an X-linked recessive renal tubular disorder characterized by low-molecular-weight proteinuria, hypercalciuria, nephrolithiasis, nephrocalcinosis, and progressive renal failure. Inactivating mutations of CLCN5, the gene encoding the 2Cl- /H+ exchanger ClC-5, have been reported in patients with Dent disease 1. In vivo studies in mice harboring an artificial mutation in the "gating glutamate" of ClC-5 (c.632A > C, p.Glu211Ala) and mathematical modeling suggest that endosomal chloride concentration could be an important parameter in endocytosis, rather than acidification as earlier hypothesized. Here, we described a novel pathogenic mutation affecting the "gating glutamate" of ClC-5 (c.632A>G, p.Glu211Gly) and investigated its molecular consequences. In HEK293T cells, the p.Glu211Gly ClC-5 mutant displayed unaltered N-glycosylation and normal plasma membrane and early endosomes localizations. In Xenopus laevis oocytes and HEK293T cells, we found that contrasting with wild-type ClC-5, the mutation abolished the outward rectification, the sensitivity to extracellular H+ and converted ClC-5 into a Cl- channel. Investigation of endosomal acidification in HEK293T cells using the pH-sensitive pHluorin2 probe showed that the luminal pH of cells expressing a wild-type or p.Glu211Gly ClC-5 was not significantly different. Our study further confirms that impaired acidification of endosomes is not the only parameter leading to defective endocytosis in Dent disease 1.
Collapse
Affiliation(s)
- Yohan Bignon
- Sorbonne Université, Université Paris-Descartes, INSERM, CNRS, Paris, France
| | - Alexi Alekov
- Institut für Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Nadia Frachon
- Sorbonne Université, Université Paris-Descartes, INSERM, CNRS, Paris, France
| | | | | | - Georges Deschênes
- Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Service de Néphrologie Pédiatrique, Paris, France.,Centre de Référence des Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA), Paris, France
| | - Rosa Vargas-Poussou
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Département de génétique, Paris, France.,Université Paris-Descartes, Faculté de Médecine, Paris, France
| | - Stéphane Lourdel
- Sorbonne Université, Université Paris-Descartes, INSERM, CNRS, Paris, France
| |
Collapse
|
35
|
Impaired autophagy bridges lysosomal storage disease and epithelial dysfunction in the kidney. Nat Commun 2018; 9:161. [PMID: 29323117 PMCID: PMC5765140 DOI: 10.1038/s41467-017-02536-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 12/07/2017] [Indexed: 01/23/2023] Open
Abstract
The endolysosomal system sustains the reabsorptive activity of specialized epithelial cells. Lysosomal storage diseases such as nephropathic cystinosis cause a major dysfunction of epithelial cells lining the kidney tubule, resulting in massive losses of vital solutes in the urine. The mechanisms linking lysosomal defects and epithelial dysfunction remain unknown, preventing the development of disease-modifying therapies. Here we demonstrate, by combining genetic and pharmacologic approaches, that lysosomal dysfunction in cystinosis results in defective autophagy-mediated clearance of damaged mitochondria. This promotes the generation of oxidative stress that stimulates Gα12/Src-mediated phosphorylation of tight junction ZO-1 and triggers a signaling cascade involving ZO-1-associated Y-box factor ZONAB, which leads to cell proliferation and transport defects. Correction of the primary lysosomal defect, neutralization of mitochondrial oxidative stress, and blockage of tight junction-associated ZONAB signaling rescue the epithelial function. We suggest a link between defective lysosome-autophagy degradation pathways and epithelial dysfunction, providing new therapeutic perspectives for lysosomal storage disorders.
Collapse
|
36
|
Zhang H, Wang F, Xiao H, Yao Y. Dent disease: Same CLCN5 mutation but different phenotypes in two brothers in China. Intractable Rare Dis Res 2017; 6:114-118. [PMID: 28580211 PMCID: PMC5451742 DOI: 10.5582/irdr.2017.01019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Dent disease is an X-linked recessive proximal tubular disorder that affects mostly male patients in childhood or early adult life, caused by mutations in CLCN5 (Dent disease 1) or OCRL (Dent disease 2) genes, respectively. It presents mainly with hypercalciuria, low-molecular-weight proteinuria, nephrocalcinosis and progressive renal failure. We report here the same CLCN5 mutation but different phenotypes in two Chinese brothers, and speculate on the possible reasons for the variability of the genotype-phenotype correlations.
Collapse
Affiliation(s)
- Hongwen Zhang
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Fang Wang
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Huijie Xiao
- Department of Pediatric, Peking University First Hospital, Beijing, China
| | - Yong Yao
- Department of Pediatric, Peking University First Hospital, Beijing, China
- Address correspondence to: Dr. Yong Yao, Department of Pediatric, Peking University First Hospital, No.1 Xi An Men Da Jie, Beijing 100034, China. E-mail:
| |
Collapse
|
37
|
Tubular proteinuria in patients with HNF1α mutations: HNF1α drives endocytosis in the proximal tubule. Kidney Int 2016; 89:1075-1089. [PMID: 27083284 DOI: 10.1016/j.kint.2016.01.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 01/12/2016] [Accepted: 01/28/2016] [Indexed: 02/07/2023]
Abstract
Hepatocyte nuclear factor 1α (HNF1α) is a transcription factor expressed in the liver, pancreas, and proximal tubule of the kidney. Mutations of HNF1α cause an autosomal dominant form of diabetes mellitus (MODY-HNF1A) and tubular dysfunction. To gain insights into the role of HNF1α in the proximal tubule, we analyzed Hnf1a-deficient mice. Compared with wild-type littermates, Hnf1a knockout mice showed low-molecular-weight proteinuria and a 70% decrease in the uptake of β2-microglobulin, indicating a major endocytic defect due to decreased expression of megalin/cubilin receptors. We identified several binding sites for HNF1α in promoters of Lrp2 and Cubn genes encoding megalin and cubilin, respectively. The functional interaction of HNF1α with these promoters was shown in C33 epithelial cells lacking endogenous HNF1α. Defective receptor-mediated endocytosis was confirmed in proximal tubule cells from these knockout mice and could be rescued by transfection of wild-type but not mutant HNF1α. Transfection of human proximal tubule HK2 cells with HNF1α was able to upregulate megalin and cubilin expression and to increase endocytosis of albumin. Low-molecular-weight proteinuria was consistently detected in individuals with HNF1A mutations compared with healthy controls and patients with non-MODY-HNF1A diabetes mellitus. Thus, HNF1α plays a key role in the constitutive expression of megalin and cubilin, hence regulating endocytosis in the proximal tubule of the kidney. These findings provide new insight into the renal phenotype of individuals with mutations of HNF1A.
Collapse
|
38
|
Khantwal CM, Abraham SJ, Han W, Jiang T, Chavan TS, Cheng RC, Elvington SM, Liu CW, Mathews II, Stein RA, Mchaourab HS, Tajkhorshid E, Maduke M. Revealing an outward-facing open conformational state in a CLC Cl(-)/H(+) exchange transporter. eLife 2016; 5. [PMID: 26799336 PMCID: PMC4769167 DOI: 10.7554/elife.11189] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/14/2016] [Indexed: 11/22/2022] Open
Abstract
CLC secondary active transporters exchange Cl- for H+. Crystal structures have suggested that the conformational change from occluded to outward-facing states is unusually simple, involving only the rotation of a conserved glutamate (Gluex) upon its protonation. Using 19F NMR, we show that as [H+] is increased to protonate Gluex and enrich the outward-facing state, a residue ~20 Å away from Gluex, near the subunit interface, moves from buried to solvent-exposed. Consistent with functional relevance of this motion, constriction via inter-subunit cross-linking reduces transport. Molecular dynamics simulations indicate that the cross-link dampens extracellular gate-opening motions. In support of this model, mutations that decrease steric contact between Helix N (part of the extracellular gate) and Helix P (at the subunit interface) remove the inhibitory effect of the cross-link. Together, these results demonstrate the formation of a previously uncharacterized 'outward-facing open' state, and highlight the relevance of global structural changes in CLC function. DOI:http://dx.doi.org/10.7554/eLife.11189.001 Cells have transporter proteins on their surface to carry molecules in and out of the cell. For example, the CLC family of transporters move two chloride ions in one direction at the same time as moving one hydrogen ion in the opposite direction. To be able to move these ions in opposite directions, transporters have to cycle through a series of shapes in which the ions can only access alternate sides of the membrane. First, the transporter adopts an 'outward-facing' shape when the ions first bind to the transporter, then it switches into the 'occluded' shape to move the ions through the membrane. Finally, the transporter takes on the 'inward-facing' shape to release the ions on the other side of the membrane. However, structural studies of CLCs suggest that the structures of these proteins do not change much while they are moving ions, which suggests that they might work in a different way. Khantwal, Abraham et al. have now used techniques called “nuclear magnetic resonance” and "double electron-electron resonance" to investigate how a CLC from a bacterium moves ions. The experiments suggest that when the transporter adopts the outward-facing shape, points on the protein known as Y419 and D417 shift their positions. Chemically linking two regions of the CLC prevented this movement and inhibited the transport of chloride ions across the membrane. Khantwal, Abraham et al. then used a computer simulation to model how the protein changes shape in more detail. This model predicts that two regions of the transporter undergo major rearrangements resulting in a gate-opening motion that widens a passage to allow the chloride ions to bind to the protein. Khantwal, Abraham et al.’s findings will prompt future studies to reveal the other shapes and how CLCs transition between them. DOI:http://dx.doi.org/10.7554/eLife.11189.002
Collapse
Affiliation(s)
- Chandra M Khantwal
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Sherwin J Abraham
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Wei Han
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States.,College of Medicine, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Tao Jiang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States.,College of Medicine, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Tanmay S Chavan
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Ricky C Cheng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Shelley M Elvington
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| | - Corey W Liu
- Stanford Magnetic Resonance Laboratory, Stanford University School of Medicine, Stanford, United States
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, United States
| | - Richard A Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States.,College of Medicine, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Merritt Maduke
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
39
|
Human proximal tubule cells form functional microtissues. Pflugers Arch 2015; 468:739-50. [PMID: 26676951 DOI: 10.1007/s00424-015-1771-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 12/02/2015] [Accepted: 12/04/2015] [Indexed: 01/04/2023]
Abstract
The epithelial cells lining the proximal tubules of the kidney mediate complex transport processes and are particularly vulnerable to drug toxicity. Drug toxicity studies are classically based on two-dimensional cultures of immortalized proximal tubular cells. Such immortalized cells are dedifferentiated, and lose transport properties (including saturable endocytic uptake) encountered in vivo. Generating differentiated, organotypic human microtissues would potentially alleviate these limitations and facilitate drug toxicity studies. Here, we describe the generation and characterization of kidney microtissues from immortalized (HK-2) and primary (HRPTEpiC) human renal proximal tubular epithelial cells under well-defined conditions. Microtissue cultures were done in hanging drop GravityPLUS™ culture plates and were characterized for morphology, proliferation and differentiation markers, and by monitoring the endocytic uptake of albumin. Kidney microtissues were successfully obtained by co-culturing HK-2 or HRPTEpiC cells with fibroblasts. The HK-2 microtissues formed highly proliferative, but dedifferentiated microtissues within 10 days of culture, while co-culture with fibroblasts yielded spherical structures already after 2 days. Low passage HRPTEpiC microtissues (mono- and co-culture) were less proliferative and expressed tissue-specific differentiation markers. Electron microscopy evidenced epithelial differentiation markers including microvilli, tight junctions, endosomes, and lysosomes in the co-cultured HRPTEpiC microtissues. The co-cultured HRPTEpiC microtissues showed specific uptake of albumin that could be inhibited by cadmium and gentamycin. In conclusion, we established a reliable hanging drop protocol to obtain functional kidney microtissues with proximal tubular epithelial cell lines. These microtissues could be used for high-throughput drug and toxicology screenings, with endocytosis as a functional readout.
Collapse
|