1
|
Zhang X, Zhang R, Wang Y, Li L, Zhong Z. CDK5 Upregulated by ELF3 Transcription Promotes IL-1β-induced Inflammation and Extracellular Matrix Degradation in Human Chondrocytes. Cell Biochem Biophys 2024:10.1007/s12013-024-01415-5. [PMID: 39020088 DOI: 10.1007/s12013-024-01415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
Osteoarthritis (OA) is a common chronic disease with age-associated increase in both incidence and prevalence. The cyclin-dependent kinase 5 (CDK5), which is a member of the CDK family, is involved in many chronic diseases. This study was performed to explore the functional role of CDK5 in OA and to discuss the detailed molecular mechanisms. The expressions of CDK5 and ELF3 before or after transfection were detected with reverse transcription-quantitative PCR (RT-qPCR) and western blot. 5-ethynyl-2'-deoxyuridine (Edu) and terminal deoxynucleoitidyl transferase-mediated nick-end labeling (TUNEL) assays were used to detect the proliferation and apoptosis of C28/I2 cells. The levels of inflammatory cytokines were estimated using enzyme-linked immunosorbent assay (ELISA) while the expressions of proteins implicated in extracellular matrix (ECM) degradation- and apoptosis were detected using western blot. Additionally, the activity of CDK5 promoters and its binding with ELF3 were detected using luciferase activity assay and chromatin immunoprecipitation (CHIP) assay. In the present study, it was discovered that the mRNA and protein expressions of CDK5 were significantly increased in IL-1β-induced C28/I2 cells. After depleting CDK5 expression, the apoptosis, inflammation and ECM in C28/I2 cells with IL-1β induction were suppressed. It was also found that ELF3 expression was increased in IL-1β-induced C28/I2 cells and acted as a transcription factor binding to the CDK5 promoter to regulate its transcriptional expression. The further experiments evidenced that ELF3 overexpression partially reversed the inhibitory effects of CDK5 deficiency on IL-1β-induced apoptosis, inflammation and ECM in C28/I2 cells. Collectively, CDK5 that upregulated by ELF3 transcription could promote the development of OA.
Collapse
Affiliation(s)
- Xuyuan Zhang
- Department of Orthopedics, Changxing People's Hospital, Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, Zhejiang, 313100, PR China
| | - Ruize Zhang
- School of Optoelectronic Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310007, PR China
| | - Yinhai Wang
- Department of Orthopedics, Changxing People's Hospital, Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, Zhejiang, 313100, PR China
| | - Liang Li
- Department of Orthopedics, Changxing People's Hospital, Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, Zhejiang, 313100, PR China
| | - Zong Zhong
- Department of Orthopedics, Changxing People's Hospital, Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, Zhejiang, 313100, PR China.
| |
Collapse
|
2
|
Farrag Y, Farrag M, Varela-García M, Torrijos-Pulpón C, Capuozzo M, Ottaiano A, Lago F, Mera A, Pino J, Gualillo O. Adipokines as potential pharmacological targets for immune inflammatory rheumatic diseases: Focus on rheumatoid arthritis, osteoarthritis, and intervertebral disc degeneration. Pharmacol Res 2024; 205:107219. [PMID: 38763327 DOI: 10.1016/j.phrs.2024.107219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Adipokines are a heterogeneous group of signalling molecules secreted prevalently by adipose tissue. Initially considered as regulators of energy metabolism and appetite, adipokines have been recognized for their substantial involvement in musculoskeletal disorders, including osteoarthritis, rheumatoid arthritis, and many others. Understanding the role of adipokines in rheumatic inflammatory and autoimmune diseases, as well as in other musculoskeletal diseases such as intervertebral disc degeneration, is crucial for the development of novel therapeutic strategies. Targeting adipokines, or their signalling pathways, may offer new opportunities for the treatment and management of these conditions. By modulating adipokines levels or activity, it may be possible to regulate inflammation, to maintain bone health, and preserve muscle mass, thereby improving the outcomes and quality of life for individuals affected by musculoskeletal diseases. The aim of this review article is to update the reader on the multifaceted role of adipokines in the main rheumatic diseases such as osteoarthritis and rheumatoid arthritis and to unravel the complex interplay among adipokines, cartilage metabolism, bone remodelling and muscles, which will pave the way for innovative therapeutic intervention in the future. For completeness, the role of adipokines in intervertebral disc degeneration will be also addressed.
Collapse
Affiliation(s)
- Yousof Farrag
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain.
| | - Mariam Farrag
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain.
| | - María Varela-García
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain.
| | - Carlos Torrijos-Pulpón
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain.
| | - Maurizio Capuozzo
- Pharmaceutical Department, ASL-Napoli-3 Sud, Via Marittima 3, Ercolano 80056, Italy.
| | - Alessando Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Via M. Semmola, Naples 80131, Italy.
| | - Francisca Lago
- Molecular and Cellular Cardiology Group, SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 7, Santiago University Clinical Hospital, Santiago de Compostela 15706, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain.
| | - Antonio Mera
- SERGAS, Servizo Galego de Saude, Santiago University Clinical Hospital, Division of Rheumatology, Santiago de Compostela 15706, Spain.
| | - Jesus Pino
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain; International PhD School, University of Santiago de Compostela (EDIUS), Santiago de Compostela 15706, Spain; University of Santiago de Compostela, Department of Surgery and Medical Surgical Specialties, Santiago University Clinical Hospital, Trav. Choupana s/n, 15706, Santiago de Compostela, Spain.
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana SIN, Santiago de Compostela 15706, Spain; International PhD School, University of Santiago de Compostela (EDIUS), Santiago de Compostela 15706, Spain.
| |
Collapse
|
3
|
Bedard MC, Chihanga T, Carlile A, Jackson R, Brusadelli MG, Lee D, VonHandorf A, Rochman M, Dexheimer PJ, Chalmers J, Nuovo G, Lehn M, Williams DEJ, Kulkarni A, Carey M, Jackson A, Billingsley C, Tang A, Zender C, Patil Y, Wise-Draper TM, Herzog TJ, Ferris RL, Kendler A, Aronow BJ, Kofron M, Rothenberg ME, Weirauch MT, Van Doorslaer K, Wikenheiser-Brokamp KA, Lambert PF, Adam M, Steven Potter S, Wells SI. Single cell transcriptomic analysis of HPV16-infected epithelium identifies a keratinocyte subpopulation implicated in cancer. Nat Commun 2023; 14:1975. [PMID: 37031202 PMCID: PMC10082832 DOI: 10.1038/s41467-023-37377-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/15/2023] [Indexed: 04/10/2023] Open
Abstract
Persistent HPV16 infection is a major cause of the global cancer burden. The viral life cycle is dependent on the differentiation program of stratified squamous epithelium, but the landscape of keratinocyte subpopulations which support distinct phases of the viral life cycle has yet to be elucidated. Here, single cell RNA sequencing of HPV16 infected compared to uninfected organoids identifies twelve distinct keratinocyte populations, with a subset mapped to reconstruct their respective 3D geography in stratified squamous epithelium. Instead of conventional terminally differentiated cells, an HPV-reprogrammed keratinocyte subpopulation (HIDDEN cells) forms the surface compartment and requires overexpression of the ELF3/ESE-1 transcription factor. HIDDEN cells are detected throughout stages of human carcinogenesis including primary human cervical intraepithelial neoplasias and HPV positive head and neck cancers, and a possible role in promoting viral carcinogenesis is supported by TCGA analyses. Single cell transcriptome information on HPV-infected versus uninfected epithelium will enable broader studies of the role of individual keratinocyte subpopulations in tumor virus infection and cancer evolution.
Collapse
Affiliation(s)
- Mary C Bedard
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Tafadzwa Chihanga
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Adrean Carlile
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Robert Jackson
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Denis Lee
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Andrew VonHandorf
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Mark Rochman
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Phillip J Dexheimer
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jeffrey Chalmers
- William G. Lowrie Department of Chemical and Biomolecular Engineering, Ohio State University, 151 W. Woodruff Ave, Columbus, OH, 43210, USA
| | - Gerard Nuovo
- Department of Pathology, Ohio State University Medical Center, Columbus, OH, 43210, USA
| | - Maria Lehn
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - David E J Williams
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, 85721, USA
- Medical Scientist Training M.D.-Ph.D. Program (MSTP), College of Medicine-Tucson, University of Arizona, Tucson, AZ, USA
| | - Aditi Kulkarni
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, 15232, USA
| | - Molly Carey
- Department of Obstetrics and Gynecology, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Amanda Jackson
- Department of Obstetrics and Gynecology, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Caroline Billingsley
- Department of Obstetrics and Gynecology, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Alice Tang
- Department of Otolaryngology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Chad Zender
- Department of Otolaryngology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Yash Patil
- Department of Otolaryngology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Trisha M Wise-Draper
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Thomas J Herzog
- Department of Obstetrics and Gynecology, University of Cincinnati Medical Center, Cincinnati, OH, 45267, USA
| | - Robert L Ferris
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, 15232, USA
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Ady Kendler
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Bruce J Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Matthew Kofron
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Divisions of Human Genetics, Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Koenraad Van Doorslaer
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, 85721, USA
- The BIO5 Institute, University of Arizona, Tucson, AZ, 85721, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ, 85721, USA
- UA Cancer Center, University of Arizona, Tucson, AZ, 85721, USA
| | - Kathryn A Wikenheiser-Brokamp
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Division of Pathology & Laboratory Medicine and The Perinatal Institute Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Susanne I Wells
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
4
|
Semenistaja S, Skuja S, Kadisa A, Groma V. Healthy and Osteoarthritis-Affected Joints Facing the Cellular Crosstalk. Int J Mol Sci 2023; 24:4120. [PMID: 36835530 PMCID: PMC9964755 DOI: 10.3390/ijms24044120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Osteoarthritis (OA) is a chronic, progressive, severely debilitating, and multifactorial joint disease that is recognized as the most common type of arthritis. During the last decade, it shows an incremental global rise in prevalence and incidence. The interaction between etiologic factors that mediate joint degradation has been explored in numerous studies. However, the underlying processes that induce OA remain obscure, largely due to the variety and complexity of these mechanisms. During synovial joint dysfunction, the osteochondral unit undergoes cellular phenotypic and functional alterations. At the cellular level, the synovial membrane is influenced by cartilage and subchondral bone cleavage fragments and extracellular matrix (ECM) degradation products from apoptotic and necrotic cells. These "foreign bodies" serve as danger-associated molecular patterns (DAMPs) that trigger innate immunity, eliciting and sustaining low-grade inflammation in the synovium. In this review, we explore the cellular and molecular communication networks established between the major joint compartments-the synovial membrane, cartilage, and subchondral bone of normal and OA-affected joints.
Collapse
Affiliation(s)
- Sofija Semenistaja
- Department of Doctoral Studies, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Sandra Skuja
- Joint Laboratory of Electron Microscopy, Institute of Anatomy and Anthropology, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Anda Kadisa
- Department of Internal Diseases, Rīga Stradiņš University, LV-1007 Riga, Latvia
| | - Valerija Groma
- Joint Laboratory of Electron Microscopy, Institute of Anatomy and Anthropology, Rīga Stradiņš University, LV-1007 Riga, Latvia
| |
Collapse
|
5
|
Kouri VP, Olkkonen J, Nurmi K, Peled N, Ainola M, Mandelin J, Nordström DC, Eklund KK. IL-17A and TNF synergistically drive expression of proinflammatory mediators in synovial fibroblasts via IκBζ-dependent induction of ELF3. Rheumatology (Oxford) 2023; 62:872-885. [PMID: 35792833 PMCID: PMC9891425 DOI: 10.1093/rheumatology/keac385] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE IL-17A and TNF act in synergy to induce proinflammatory mediators in synovial fibroblasts thus contributing to diseases associated with chronic arthritis. Many of these factors are regulated by transcription factor E74-like factor-3 (ELF3). Therefore, we sought to investigate ELF3 as a downstream target of IL-17A and TNF signalling and to characterize its role in the molecular mechanism of synergy between IL-17A and TNF. METHODS Regulation of ELF3 expression by IL-17A and TNF was studied in synovial fibroblasts of RA and OA patients and RA synovial explants. Signalling leading to ELF3 mRNA induction and the impact of ELF3 on the response to IL-17A and TNF were studied using siRNA, transient overexpression and signalling inhibitors in synovial fibroblasts and HEK293 cells. RESULTS ELF3 was marginally affected by IL-17A or TNF alone, but their combination resulted in high and sustained expression. ELF3 expression was regulated by the nuclear factor-κB (NF-κB) pathway and CCAAT/enhancer-binding protein β (C/EBPβ), but its induction required synthesis of the NF-κB co-factor IκB (inhibitor of NF-κB) ζ. siRNA-mediated depletion of ELF3 attenuated the induction of cytokines and matrix metalloproteinases by the combination of IL-17A and TNF. Overexpression of ELF3 or IκBζ showed synergistic effect with TNF in upregulating expression of chemokine (C-C motif) ligand 8 (CCL8), and depletion of ELF3 abrogated CCL8 mRNA induction by the combination of IκBζ overexpression and TNF. CONCLUSION Altogether, our results establish ELF3 as an important mediator of the synergistic effect of IL-17A and TNF in synovial fibroblasts. The findings provide novel information of the pathogenic mechanisms of IL-17A in chronic arthritis and implicate ELF3 as a potential therapeutic target.
Collapse
Affiliation(s)
- Vesa-Petteri Kouri
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki.,Department of Clinical Chemistry, University of Helsinki and Helsinki University Hospital
| | - Juri Olkkonen
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki
| | - Katariina Nurmi
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki
| | - Nitai Peled
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki
| | - Mari Ainola
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki
| | - Jami Mandelin
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki
| | - Dan C Nordström
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki.,Department of Internal Medicine and Rehabilitation
| | - Kari K Eklund
- Department of Medicine, University of Helsinki and Helsinki University Hospital.,Translational Immunology Research Program, Research Programs Unit, University of Helsinki.,Inflammation Center, Division of Rheumatology, Helsinki University Hospital.,ORTON Orthopaedic Hospital of the Orton Foundation, Helsinki, Finland
| |
Collapse
|
6
|
Zhang C, Lin Y, Yan CH, Zhang W. Adipokine Signaling Pathways in Osteoarthritis. Front Bioeng Biotechnol 2022; 10:865370. [PMID: 35519618 PMCID: PMC9062110 DOI: 10.3389/fbioe.2022.865370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a debilitating joint disease that affects millions of individuals. The pathogenesis of OA has not been fully elucidated. Obesity is a well-recognized risk factor for OA. Multiple studies have demonstrated adipokines play a key role in obesity-induced OA. Increasing evidence show that various adipokines may significantly affect the development or clinical course of OA by regulating the pro/anti-inflammatory and anabolic/catabolic balance, matrix remodeling, chondrocyte apoptosis and autophagy, and subchondral bone sclerosis. Several signaling pathways are involved but still have not been systematically investigated. In this article, we review the cellular and molecular mechanisms of adipokines in OA, and highlight the possible signaling pathways. The review suggested adipokines play important roles in obesity-induced OA, and exert downstream function via the activation of various signaling pathways. In addition, some pharmaceuticals targeting these pathways have been applied into ongoing clinical trials and showed encouraging results. However, these signaling pathways are complex and converge into a common network with each other. In the future work, more research is warranted to further investigate how this network works. Moreover, more high quality randomised controlled trials are needed in order to investigate the therapeutic effects of pharmaceuticals against these pathways for the treatment of OA. This review may help researchers to better understand the pathogenesis of OA, so as to provide new insight for future clinical practices and translational research.
Collapse
Affiliation(s)
- Chaofan Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yunzhi Lin
- Department of Stomatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Chun Hoi Yan
- Department of Orthopaedics & Traumatology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wenming Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Epigenetic induction of lipocalin 2 expression drives acquired resistance to 5-fluorouracil in colorectal cancer through integrin β3/SRC pathway. Oncogene 2021; 40:6369-6380. [PMID: 34588619 DOI: 10.1038/s41388-021-02029-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022]
Abstract
The therapeutic efficacy of 5-fluorouracil (5-FU) is often reduced by the development of drug resistance. We observed significant upregulation of lipocalin 2 (LCN2) expression in a newly established 5-FU-resistant colorectal cancer (CRC) cell line. In this study, we demonstrated that 5-FU-treated CRC cells developed resistance through LCN2 upregulation caused by LCN2 promoter demethylation and that feedback between LCN2 and NF-κB further amplified LCN2 expression. High LCN2 expression was associated with poor prognosis in CRC patients. LCN2 attenuated the cytotoxicity of 5-FU by activating the SRC/AKT/ERK-mediated antiapoptotic program. Mechanistically, the LCN2-integrin β3 interaction enhanced integrin β3 stability, thus recruiting SRC to the cytomembrane for autoactivation, leading to downstream AKT/ERK cascade activation. Targeting LCN2 or SRC compromised the growth of CRC cells with LCN2-induced 5-FU resistance. Our findings demonstrate a novel mechanism of acquired resistance to 5-FU, suggesting that LCN2 can be used as a biomarker and/or therapeutic target for advanced CRC.
Collapse
|
8
|
Tsui FWL, Lin A, Sari I, Zhang Z, Tsui HW, Inman RD. Serial Lipocalin 2 and Oncostatin M levels reflect inflammation status and treatment response in axial spondyloarthritis. Arthritis Res Ther 2021; 23:141. [PMID: 33990221 PMCID: PMC8120829 DOI: 10.1186/s13075-021-02521-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/26/2021] [Indexed: 01/08/2023] Open
Abstract
Background Informative serum biomarkers for monitoring inflammatory activity and treatment responses in axial spondyloarthritis (axSpA) are lacking. We assessed whether Lipocalin 2 (LCN2) and Oncostatin M (OSM), both having roles in inflammation and bone remodeling, may accurately reflect chronic joint inflammation and treatment response in axSpA. Previous reports in animal models showed involvement of LCN2 and OSM in joint/gut inflammation. We asked whether they also play a role in human axSpA. Methods We analyzed a longitudinal observational axSpA cohort (286 patients) with yearly clinical assessments and concurrent measurements of serum LCN2 and OSM (1204 serum samples) for a mean of 4 years. Biomarker levels were correlated with MRI scoring and treatment response. Results Persistent and transient elevation of LCN2 and OSM were observed in axSpA patients. Persistent elevation of LCN2 or OSM, but not CRP, correlated with sacroiliac joint (SIJ) MRI SPARCC scores (Pearson’s correlation p = 0.0005 and 0.005 for LCN2 and OSM respectively), suggesting that LCN2/OSM outperforms CRP as reflective of SIJ inflammation. We observed both concordant and discordant patterns of LCN2 and OSM in relationship to back pain, the cardinal clinical symptom in axSpA. Twenty-six percent (73/286) of the patients remained both clinically and serologically active (CASA). Sixty percent (173/286) of the patients became clinically quiescent, with back pain resolved, but 53% (92/173) of them were serologically active (CQSA), indicating that pain control may not indicate control of joint inflammation, as reflected by positive MRI imaging of SIJ. With respect to treatment responses, transient elevation of LCN2 or OSM over time was predictive of better response to all treatments. Conclusion In axSpA, persistent LCN2 and/or OSM elevation reflects chronic SIJ inflammation and suboptimal treatment response. In our cohort, half of the currently deemed clinically quiescent patients with back pain resolved continued to demonstrate chronic joint inflammation. LCN2 and OSM profiling outperforms CRP as a predictive measure and provides an objective assessment of chronic local inflammation in axSpA patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02521-y.
Collapse
Affiliation(s)
- Florence W L Tsui
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada.,KeyIntel Medical Inc, Toronto, Ontario, Canada
| | - Aifeng Lin
- KeyIntel Medical Inc, Toronto, Ontario, Canada.,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Ismail Sari
- Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada.,Department of Internal Medicine, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Zhenbo Zhang
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Biomedical and Molecular Science, Queen's University, Kingston, Ontario, Canada
| | - Hing Wo Tsui
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Robert D Inman
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada. .,Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Medicine and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Barter MJ, Cheung K, Falk J, Panagiotopoulos AC, Cosimini C, O'Brien S, Teja-Putri K, Neill G, Deehan DJ, Young DA. Dynamic chromatin accessibility landscape changes following interleukin-1 stimulation. Epigenetics 2020; 16:106-119. [PMID: 32741307 PMCID: PMC7889151 DOI: 10.1080/15592294.2020.1789266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dynamic modifications of chromatin allow rapid access of the gene regulatory machinery to condensed genomic regions facilitating subsequent gene expression. Inflammatory cytokine stimulation of cells can cause rapid gene expression changes through direct signalling pathway-mediated transcription factor activation and regulatory element binding. Here we used the Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq) to assess regions of the genome that are differentially accessible following treatment of cells with interleukin-1 (IL-1). We identified 126,483 open chromatin regions, with 241 regions significantly differentially accessible following stimulation, with 64 and 177 more or less accessible, respectively. These differentially accessible regions predominantly correspond to regions of the genome marked as enhancers. Motif searching identified an overrepresentation of a number of transcription factors, most notably RelA, in the regions becoming more accessible, with analysis of ChIP-seq data confirmed RelA binding to these regions. A significant correlation in differential chromatin accessibility and gene expression was also observed. Functionality in regulating gene expression was confirmed using CRISPR/Cas9 genome-editing to delete regions that became more accessible following stimulation in the genes MMP13, IKBKE and C1QTNF1. These same regions were also accessible for activation using a dCas9-transcriptional activator and showed enhancer activity in a cellular model. Together, these data describe and functionally validate a number of dynamically accessible chromatin regions involved in inflammatory signalling.
Collapse
Affiliation(s)
- Matt J Barter
- Faculty of Medical Sciences, Skeletal Research Group, Biosciences Institute, Newcastle University , Newcastle upon Tyne, UK
| | - Kathleen Cheung
- Faculty of Medical Sciences, Skeletal Research Group, Biosciences Institute, Newcastle University , Newcastle upon Tyne, UK.,Faculty of Medical Sciences, Bioinformatics Support Unit, Newcastle University , Newcastle upon Tyne, UK
| | - Julia Falk
- Faculty of Medical Sciences, Skeletal Research Group, Biosciences Institute, Newcastle University , Newcastle upon Tyne, UK
| | - Andreas C Panagiotopoulos
- Faculty of Medical Sciences, Skeletal Research Group, Biosciences Institute, Newcastle University , Newcastle upon Tyne, UK
| | - Caitlin Cosimini
- Faculty of Medical Sciences, Skeletal Research Group, Biosciences Institute, Newcastle University , Newcastle upon Tyne, UK
| | - Siobhan O'Brien
- Faculty of Medical Sciences, Skeletal Research Group, Biosciences Institute, Newcastle University , Newcastle upon Tyne, UK
| | - Karina Teja-Putri
- Faculty of Medical Sciences, Skeletal Research Group, Biosciences Institute, Newcastle University , Newcastle upon Tyne, UK
| | - Graham Neill
- Faculty of Medical Sciences, Skeletal Research Group, Biosciences Institute, Newcastle University , Newcastle upon Tyne, UK
| | - David J Deehan
- Department of Orthopaedics, Freeman Hospital, Orthopaedics , UK
| | - David A Young
- Faculty of Medical Sciences, Skeletal Research Group, Biosciences Institute, Newcastle University , Newcastle upon Tyne, UK
| |
Collapse
|
10
|
McGaugh SE, Passow CN, Jaggard JB, Stahl BA, Keene AC. Unique transcriptional signatures of sleep loss across independently evolved cavefish populations. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:497-510. [PMID: 32351033 DOI: 10.1002/jez.b.22949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/28/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022]
Abstract
Animals respond to sleep loss with compensatory rebound sleep, and this is thought to be critical for the maintenance of physiological homeostasis. Sleep duration varies dramatically across animal species, but it is not known whether evolutionary differences in sleep duration are associated with differences in sleep homeostasis. The Mexican cavefish, Astyanax mexicanus, has emerged as a powerful model for studying the evolution of sleep. While eyed surface populations of A. mexicanus sleep approximately 8 hr each day, multiple blind cavefish populations have converged on sleep patterns that total as little as 2 hr each day, providing the opportunity to examine whether the evolution of sleep loss is accompanied by changes in sleep homeostasis. Here, we examine the behavioral and molecular response to sleep deprivation across four independent populations of A. mexicanus. Our behavioral analysis indicates that surface fish and all three cavefish populations display robust recovery sleep during the day following nighttime sleep deprivation, suggesting sleep homeostasis remains intact in cavefish. We profiled transcriptome-wide changes associated with sleep deprivation in surface fish and cavefish. While the total number of differentially expressed genes was not greater for the surface population, the surface population exhibited the highest number of uniquely differentially expressed genes than any other population. Strikingly, a majority of the differentially expressed genes are unique to individual cave populations, suggesting unique expression responses are exhibited across independently evolved cavefish populations. Together, these findings suggest sleep homeostasis is intact in cavefish despite a dramatic reduction in overall sleep duration.
Collapse
Affiliation(s)
- Suzanne E McGaugh
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota
| | - Courtney N Passow
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota
| | - James Brian Jaggard
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida
| | - Bethany A Stahl
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida
| | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, Florida
| |
Collapse
|
11
|
Francisco V, Ruiz-Fernández C, Pino J, Mera A, González-Gay MA, Gómez R, Lago F, Mobasheri A, Gualillo O. Adipokines: Linking metabolic syndrome, the immune system, and arthritic diseases. Biochem Pharmacol 2019; 165:196-206. [DOI: 10.1016/j.bcp.2019.03.030] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
|
12
|
Charlier E, Deroyer C, Ciregia F, Malaise O, Neuville S, Plener Z, Malaise M, de Seny D. Chondrocyte dedifferentiation and osteoarthritis (OA). Biochem Pharmacol 2019; 165:49-65. [DOI: 10.1016/j.bcp.2019.02.036] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/28/2019] [Indexed: 02/08/2023]
|
13
|
Shao S, Fang H, Dang E, Xue K, Zhang J, Li B, Qiao H, Cao T, Zhuang Y, Shen S, Zhang T, Qiao P, Li C, Gudjonsson JE, Wang G. Neutrophil Extracellular Traps Promote Inflammatory Responses in Psoriasis via Activating Epidermal TLR4/IL-36R Crosstalk. Front Immunol 2019; 10:746. [PMID: 31024570 PMCID: PMC6460719 DOI: 10.3389/fimmu.2019.00746] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
Epidermal infiltration of neutrophils is a hallmark of psoriasis, where their activation leads to release of neutrophil extracellular traps (NETs). The contribution of NETs to psoriasis pathogenesis has been unclear, but here we demonstrate that NETs drive inflammatory responses in skin through activation of epidermal TLR4/IL-36R crosstalk. This activation is dependent upon NETs formation and integrity, as targeting NETs with DNase I or CI-amidine in vivo improves disease in the imiquimod (IMQ)-induced psoriasis-like mouse model, decreasing IL-17A, lipocalin2 (LCN2), and IL-36G expression. Proinflammatory activity of NETs, and LCN2 induction, is dependent upon activation of TLR4/IL-36R crosstalk and MyD88/nuclear factor-kappa B (NF-κB) down-stream signaling, but independent of TLR7 or TLR9. Notably, both TLR4 inhibition and LCN2 neutralization alleviate psoriasis-like inflammation and NETs formation in both the IMQ model and K14-VEGF transgenic mice. In summary, these results outline the mechanisms for the proinflammatory activity of NETs in skin and identify NETs/TLR4 as novel therapeutic targets in psoriasis.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Fang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ke Xue
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jieyu Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bing Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hongjiang Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tianyu Cao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuchen Zhuang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shengxian Shen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tongmei Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Caixia Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, MI, United States
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
14
|
Zhao Y, Xia Q, Liu Y, Bai W, Yao Y, Ding J, Lin L, Xu Z, Cai Z, Wang S, Li E, Xu H, Wu B, Xu L, Du Z. TCF7L2 and EGR1 synergistic activation of transcription of LCN2 via an ERK1/2-dependent pathway in esophageal squamous cell carcinoma cells. Cell Signal 2019; 55:8-16. [PMID: 30557604 DOI: 10.1016/j.cellsig.2018.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 02/05/2023]
Abstract
High level expression of lipocalin 2 (LCN2) usually indicates poor prognosis in esophageal squamous cell carcinoma (ESCC) and many other cancers. Our previous study showed LCN2 promotes migration and invasion of ESCC cells through a novel positive feedback loop. However, the key transcription activation protein (KTAP) in the loop had not yet been identified. In this study, we first predicted the most probable KTAPs by bioinformatic analysis. We then assessed the transcription regulatory regions in the human LCN2 gene by fusing deletions of its 5'-flanking region to a dual-luciferase reporter. We found that the region -720/-200 containing transcription factor 7-like 2 (TCF7L2) (-273/-209) and early growth response 1 (EGR1) (-710/-616) binding sites is crucial for LCN2 promoter activity. Chromatin immunoprecipitation (ChIP) experiments demonstrated that TCF7L2 and EGR1 bound directly to their binding sites within the LCN2 promoter as KTAPs. Mechanistically, overexpression of TCF7L2 and EGR1 increased endogenous LCN2 expression via the ERK signaling pathway. Treatment with recombinant human LCN2 protein enhanced activation of the ERK pathway to facilitate endogenous LCN2 expression, as well as increase the expression level of TCF7L2 and EGR1. Treatment with the MEK inhibitor U0126 inhibited the activation by TCF7L2 or EGR1 overexpression. Moreover, overexpression of TCF7L2 or EGR1 accelerated the migration and invasion of ESCC cells. A synergistic effect was observed between TCF7L2 and EGR1 in amplifying the induction of LCN2 and enhancing migration and invasion. Taken together, our study indicates that TCF7L2 and EGR1 are the KTAPs of LCN2, within a positive "LCN2 → MEK/ERK → LCN2" path, to promote the migration and invasion of ESCC cells. Based on their clinicopathological significance, LCN2 and its two expression regulators TCF7L2 and ERG1 might be therapeutic targets for ESCC.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China; Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Qiaoxi Xia
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Yan Liu
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Wenjing Bai
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Yubin Yao
- Department of Radiology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Jiyu Ding
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Ling Lin
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Zhennan Xu
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Zhixiong Cai
- Department of Cardiology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Shaohong Wang
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Enmin Li
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Haixiong Xu
- Department of Neurosurgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Bingli Wu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China; Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China.
| | - Liyan Xu
- Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou 515041, China; Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China.
| | - Zepeng Du
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China; Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Genes Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
15
|
Tu C, He J, Wu B, Wang W, Li Z. An extensive review regarding the adipokines in the pathogenesis and progression of osteoarthritis. Cytokine 2019; 113:1-12. [DOI: 10.1016/j.cyto.2018.06.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/12/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022]
|
16
|
Francisco V, Pino J, Gonzalez‐Gay MA, Mera A, Lago F, Gómez R, Mobasheri A, Gualillo O. Adipokines and inflammation: is it a question of weight? Br J Pharmacol 2018; 175:1569-1579. [PMID: 29486050 PMCID: PMC5913397 DOI: 10.1111/bph.14181] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/09/2018] [Accepted: 02/16/2018] [Indexed: 12/25/2022] Open
Abstract
Obesity has reached epidemic proportions in the Western society and is increasing in the developing world. It is considered as one of the major contributors to the global burden of disability and chronic diseases, including autoimmune, inflammatory and degenerative diseases. Research conducted on obesity and its complications over the last two decades has transformed the outdated concept of white adipose tissue (WAT) merely serving as an energy depot. WAT is now recognized as an active and inflammatory organ capable of producing a wide variety of factors known as adipokines. These molecules participate through endocrine, paracrine, autocrine or juxtacrine crosstalk mechanisms in a great variety of physiological or pathophysiological processes, regulating food intake, insulin sensitivity, immunity and inflammation. Although initially restricted to metabolic activities (regulation of glucose and lipid metabolism), adipokines currently represent a new family of proteins that can be considered key players in the complex network of soluble mediators involved in the pathophysiology of immune/inflammatory diseases. However, the complexity of the adipokine network in the pathogenesis and progression of inflammatory diseases has posed, since the beginning, the important question of whether it may be possible to target the mechanism(s) by which adipokines contribute to disease selectively without suppressing their physiological functions. Here, we explore in depth the most recent findings concerning the involvement of adipokines in inflammation and immune responses, in particular in rheumatic, inflammatory and degenerative diseases. We also highlight several possible strategies for therapeutic development and propose that adipokines and their signalling pathways may represent innovative therapeutic strategies for inflammatory disorders.
Collapse
Affiliation(s)
- Vera Francisco
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalBuilding C, Travesía da Choupana S/NSantiago de Compostela15706Spain
| | - Jesus Pino
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalBuilding C, Travesía da Choupana S/NSantiago de Compostela15706Spain
| | - Miguel Angel Gonzalez‐Gay
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory DiseasesUniversidad de Cantabria and IDIVAL, Hospital Universitario Marqués de ValdecillaAv. ValdecillaSantander39008Spain
| | - Antonio Mera
- SERGAS (Servizo Galego de Saude), Division of RheumatologySantiago University Clinical HospitalTravesía da Choupana S/NSantiago de Compostela15706Spain
| | - Francisca Lago
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Department of Cellular and Molecular CardiologyCIBERCV (Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares), Building CTravesía da Choupana S/NSantiago de Compostela15706Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group. SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9Santiago University Clinical HospitalSantiago de CompostelaSpain
| | - Ali Mobasheri
- Faculty of Health and Medical SciencesUniversity of SurreyGuildfordSurreyGU2 7XHUK
- School of Veterinary MedicineUniversity of SurreyGuildfordGU2 7ALUK
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Centre for Musculoskeletal Ageing ResearchQueen's Medical CentreNottinghamNG7 2UHUK
- State Research Institute Centre for Innovative MedicineSantariskiu 5Vilnius0866Republic of Lithuania
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases)Santiago University Clinical HospitalBuilding C, Travesía da Choupana S/NSantiago de Compostela15706Spain
| |
Collapse
|
17
|
Francisco V, Pérez T, Pino J, López V, Franco E, Alonso A, Gonzalez-Gay MA, Mera A, Lago F, Gómez R, Gualillo O. Biomechanics, obesity, and osteoarthritis. The role of adipokines: When the levee breaks. J Orthop Res 2018; 36:594-604. [PMID: 29080354 DOI: 10.1002/jor.23788] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/21/2017] [Indexed: 02/04/2023]
Abstract
Osteoarthritis is a high-incidence painful and debilitating disease characterized by progressive degeneration of articular joints, which indicates a breakdown in joint homeostasis favoring catabolic processes. Biomechanical loading, associated with inflammatory and metabolic imbalances of joint, strongly contributes to the initiation and progression of the disease. Obesity is a primary risk factor for disease onset, and mechanical factors increased the risk for disease progression. Moreover, inflammatory mediators, in particular, adipose tissue-derived cytokines (better known as adipokines) play a critical role linking obesity and osteoarthritis. The present article summarizes the knowledge about the role of adipokines in cartilage and bone function, highlighting their contribution to the imbalance of joint homeostasis and, consequently, pathogenesis of osteoarthritis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:594-604, 2018.
Collapse
Affiliation(s)
- Vera Francisco
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, Santiago de Compostela, 15706, Spain
| | - Tamara Pérez
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, Santiago de Compostela, 15706, Spain
| | - Jesús Pino
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, Santiago de Compostela, 15706, Spain
| | - Verónica López
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, Santiago de Compostela, 15706, Spain
| | - Eloy Franco
- Musculoskeletal Pathology Group, SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Ana Alonso
- Musculoskeletal Pathology Group, SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Miguel Angel Gonzalez-Gay
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Universidad de Cantabria and IDIVAL, Hospital Universitario Marqués de Valdecilla, Av. Valdecilla, Santander, 39008, Spain
| | - Antonio Mera
- SERGAS (Servizo Galego de Saude), Santiago University Clinical Hospital, Division of Rheumatology, Travesía da Choupana S/N, Santiago de Compostela, 15706, Spain
| | - Francisca Lago
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Department of Cellular and Molecular Cardiology, CIBERCV (Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares), Building C, Travesía da Choupana S/N, Santiago de Compostela, 15706, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), Research Laboratory 9, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Oreste Gualillo
- SERGAS (Servizo Galego de Saude) and IDIS (Instituto de Investigación Sanitaria de Santiago), The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Santiago University Clinical Hospital, Building C, Travesía da Choupana S/N, Santiago de Compostela, 15706, Spain
| |
Collapse
|
18
|
Meng L, Wang M, Du Z, Fang Z, Wu B, Wu J, Xie W, Shen J, Zhu T, Xu X, Liao L, Xu L, Li E, Lan B. Cell Signaling Pathway in 12-O-Tetradecanoylphorbol-13-acetate-Induced LCN2 Gene Transcription in Esophageal Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9592501. [PMID: 29098164 PMCID: PMC5642883 DOI: 10.1155/2017/9592501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/22/2017] [Indexed: 02/06/2023]
Abstract
LCN2 is involved in various cellular functions, including transport of small hydrophobic molecules, protection of MMP9 from proteolytic degradation, and regulating innate immunity. LCN2 is elevated in multiple human cancers, frequently being associated with tumor size, stage, and invasiveness. Our previous studies have shown that LCN2 expression could be induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in esophageal squamous cell carcinoma (ESCC) by the binding of five nucleoproteins (MISP, KLF10, KLF15, PPP1R18, and RXRβ) at a novel TPA-responsive element (TRE), at -152~-60 bp of the 5' flanking region of the LCN2 promoter. However, much is unknown about whether these proteins can respond to TPA stimulation to regulate LCN2 transactivation and which cell signaling pathways mediate this process. In this study, expression plasmids encoding these five nucleoproteins were stably transfected into EC109 cells. Then, stable transfectant was characterized by a Dual-Luciferase Reporter Assay System. RT-PCR, real-time PCR, western blotting, specific kinase inhibitor treatment, and bioinformatics analyses were applied in this study. We found that MISP, KLF10, KLF15, PPP1R18, and RXRβ proteins could strongly respond to TPA stimulation and activate LCN2 transcriptional expression. MEK, ERK, JNK, and P38 kinases were involved in the LCN2 transactivation. Furthermore, the MEK-ERK signal pathway plays a major role in this biological process but does not involve PKCα signaling.
Collapse
Affiliation(s)
- Lingying Meng
- Department of Cardiothoracic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong 515041, China
| | - Muting Wang
- Department of Cardiothoracic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong 515041, China
| | - Zepeng Du
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong 515041, China
| | - Zhongmin Fang
- Department of Cardiothoracic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong 515041, China
| | - Bingli Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Jianyi Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Wenming Xie
- Network and Information Center, Shantou University Medical College, Shantou 515041, China
| | - Jian Shen
- Department of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Tianxiang Zhu
- Department of Cardiothoracic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong 515041, China
| | - XieE Xu
- Department of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Liandi Liao
- Department of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Liyan Xu
- Department of Oncologic Pathology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Enmin Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Bin Lan
- Department of Cardiothoracic Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou, Guangdong 515041, China
| |
Collapse
|