1
|
Lei W, Clark DA, Demb JB. Compartmentalized pooling generates orientation selectivity in wide-field amacrine cells. Proc Natl Acad Sci U S A 2024; 121:e2411130121. [PMID: 39602271 PMCID: PMC11626119 DOI: 10.1073/pnas.2411130121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Orientation is one of the most salient features in visual scenes. Neurons at multiple levels of the visual system detect orientation, but in many cases, the underlying biophysical mechanisms remain unresolved. Here, we studied mechanisms for orientation detection at the earliest stage in the visual system, in B/K wide-field amacrine cells (B/K WACs), a group of giant, nonspiking interneurons in the mouse retina that coexpress Bhlhe22 (B) and Kappa Opioid Receptor (K). B/K WACs exhibit orientation-tuned calcium signals along their long, straight, unbranching dendrites, which contain both synaptic inputs and outputs. Simultaneous dendritic calcium imaging and somatic voltage recordings reveal that individual B/K dendrites are electrotonically isolated, exhibiting a spatially confined yet extended receptive field along the dendrite, which we term "compartmentalized pooling." Further, the receptive field of a B/K WAC dendrite exhibits center-surround antagonism. Phenomenological receptive field models demonstrate that compartmentalized pooling generates orientation selectivity, and center-surround antagonism shapes band-pass spatial frequency tuning. At the microcircuit level, B/K WACs receive excitation driven by one contrast polarity (e.g., "ON") and glycinergic inhibition driven by the opposite polarity (e.g., "OFF"). However, this "crossover" inhibition is not essential for generating orientation selectivity. A minimal biophysical model reproduced compartmentalized pooling from feedforward excitatory inputs combined with a substantial increase in the specific membrane resistance between somatic and dendritic compartments. Collectively, our results reveal the biophysical mechanism for generating orientation selectivity in dendrites of B/K WACs, enriching our understanding of the diverse strategies employed throughout the visual system to detect orientation.
Collapse
Affiliation(s)
- Wanyu Lei
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT06511
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT06511
| | - Damon A. Clark
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT06511
- Department of Physics, Yale University, New Haven, CT06511
- Quantitative Biology Institute, Yale University, New Haven, CT06511
- Department of Neuroscience, Yale University, New Haven, CT06511
- Wu Tsai Institute, Yale University, New Haven, CT06511
| | - Jonathan B. Demb
- Department of Neuroscience, Yale University, New Haven, CT06511
- Wu Tsai Institute, Yale University, New Haven, CT06511
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT06511
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT06511
| |
Collapse
|
2
|
Acarón Ledesma H, Ding J, Oosterboer S, Huang X, Chen Q, Wang S, Lin MZ, Wei W. Dendritic mGluR2 and perisomatic Kv3 signaling regulate dendritic computation of mouse starburst amacrine cells. Nat Commun 2024; 15:1819. [PMID: 38418467 PMCID: PMC10901804 DOI: 10.1038/s41467-024-46234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/20/2024] [Indexed: 03/01/2024] Open
Abstract
Dendritic mechanisms driving input-output transformation in starburst amacrine cells (SACs) are not fully understood. Here, we combine two-photon subcellular voltage and calcium imaging and electrophysiological recording to determine the computational architecture of mouse SAC dendrites. We found that the perisomatic region integrates motion signals over the entire dendritic field, providing a low-pass-filtered global depolarization to dendrites. Dendrites integrate local synaptic inputs with this global signal in a direction-selective manner. Coincidental local synaptic inputs and the global motion signal in the outward motion direction generate local suprathreshold calcium transients. Moreover, metabotropic glutamate receptor 2 (mGluR2) signaling in SACs modulates the initiation of calcium transients in dendrites but not at the soma. In contrast, voltage-gated potassium channel 3 (Kv3) dampens fast voltage transients at the soma. Together, complementary mGluR2 and Kv3 signaling in different subcellular regions leads to dendritic compartmentalization and direction selectivity, highlighting the importance of these mechanisms in dendritic computation.
Collapse
Affiliation(s)
- Héctor Acarón Ledesma
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL, 60637, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jennifer Ding
- The Committee on Neurobiology Graduate Program, The University of Chicago, Chicago, IL, 60637, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Swen Oosterboer
- The Committee on Neurobiology Graduate Program, The University of Chicago, Chicago, IL, 60637, USA
| | - Xiaolin Huang
- The Committee on Neurobiology Graduate Program, The University of Chicago, Chicago, IL, 60637, USA
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| | - Qiang Chen
- The Committee on Computational Neuroscience Graduate Program, The University of Chicago, Chicago, IL, 60637, USA
- Department of Physiology & Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Sui Wang
- Department of Ophthalmology, Stanford University, Stanford, CA, 94305, USA
| | - Michael Z Lin
- Department of Neurobiology, Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Wei Wei
- Department of Neurobiology and the Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
3
|
Gaynes JA, Budoff SA, Grybko MJ, Poleg-Polsky A. Heterogeneous presynaptic receptive fields contribute to directional tuning in starburst amacrine cells. eLife 2023; 12:RP90456. [PMID: 38149980 PMCID: PMC10752589 DOI: 10.7554/elife.90456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
The processing of visual information by retinal starburst amacrine cells (SACs) involves transforming excitatory input from bipolar cells (BCs) into directional calcium output. While previous studies have suggested that an asymmetry in the kinetic properties of BCs along the soma-dendritic axes of the postsynaptic cell could enhance directional tuning at the level of individual branches, it remains unclear whether biologically relevant presynaptic kinetics contribute to direction selectivity (DS) when visual stimulation engages the entire dendritic tree. To address this question, we built multicompartmental models of the bipolar-SAC circuit and trained them to boost directional tuning. We report that despite significant dendritic crosstalk and dissimilar directional preferences along the dendrites that occur during whole-cell stimulation, the rules that guide BC kinetics leading to optimal DS are similar to the single-dendrite condition. To correlate model predictions to empirical findings, we utilized two-photon glutamate imaging to study the dynamics of bipolar release onto ON- and OFF-starburst dendrites in the murine retina. We reveal diverse presynaptic dynamics in response to motion in both BC populations; algorithms trained on the experimental data suggested that the differences in the temporal release kinetics are likely to correspond to heterogeneous receptive field properties among the different BC types, including the spatial extent of the center and surround components. In addition, we demonstrate that circuit architecture composed of presynaptic units with experimentally recorded dynamics could enhance directional drive but not to levels that replicate empirical findings, suggesting other DS mechanisms are required to explain SAC function. Our study provides new insights into the complex mechanisms underlying DS in retinal processing and highlights the potential contribution of presynaptic kinetics to the computation of visual information by SACs.
Collapse
Affiliation(s)
- John A Gaynes
- Department of Physiology and Biophysics, University of Colorado School of MedicineAuroraUnited States
| | - Samuel A Budoff
- Department of Physiology and Biophysics, University of Colorado School of MedicineAuroraUnited States
| | - Michael J Grybko
- Department of Physiology and Biophysics, University of Colorado School of MedicineAuroraUnited States
| | - Alon Poleg-Polsky
- Department of Physiology and Biophysics, University of Colorado School of MedicineAuroraUnited States
| |
Collapse
|
4
|
Gaynes JA, Budoff SA, Grybko MJ, Poleg-Polsky A. Heterogeneous presynaptic receptive fields contribute to directional tuning in starburst amacrine cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551732. [PMID: 37577661 PMCID: PMC10418172 DOI: 10.1101/2023.08.02.551732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The processing of visual information by retinal starburst amacrine cells (SACs) involves transforming excitatory input from bipolar cells (BCs) into directional calcium output. While previous studies have suggested that an asymmetry in the kinetic properties of bipolar cells along the soma-dendritic axes of the postsynaptic cell could enhance directional tuning at the level of individual branches, it remains unclear whether biologically relevant presynaptic kinetics contribute to direction selectivity when visual stimulation engages the entire dendritic tree. To address this question, we built multicompartmental models of the bipolar-SAC circuit and trained them to boost directional tuning. We report that despite significant dendritic crosstalk and dissimilar directional preferences along the dendrites that occur during whole-cell stimulation, the rules that guide BC kinetics leading to optimal directional selectivity are similar to the single-dendrite condition. To correlate model predictions to empirical findings, we utilized two-photon glutamate imaging to study the dynamics of bipolar release onto ON- and OFF-starburst dendrites in the murine retina. We reveal diverse presynaptic dynamics in response to motion in both BC populations; algorithms trained on the experimental data suggested that the differences in the temporal release kinetics are likely to correspond to heterogeneous receptive field (RF) properties among the different BC types, including the spatial extent of the center and surround components. In addition, we demonstrate that circuit architecture composed of presynaptic units with experimentally recorded dynamics could enhance directional drive but not to levels that replicate empirical findings, suggesting other DS mechanisms are required to explain SAC function. Our study provides new insights into the complex mechanisms underlying direction selectivity in retinal processing and highlights the potential contribution of presynaptic kinetics to the computation of visual information by starburst amacrine cells.
Collapse
Affiliation(s)
- John A. Gaynes
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Samuel A. Budoff
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael J. Grybko
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Alon Poleg-Polsky
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
5
|
Stincic T, Gayet-Primo J, Taylor WR, Puthussery T. TARPγ2 Is Required for Normal AMPA Receptor Expression and Function in Direction-Selective Circuits of the Mammalian Retina. eNeuro 2023; 10:ENEURO.0158-23.2023. [PMID: 37491367 PMCID: PMC10431237 DOI: 10.1523/eneuro.0158-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023] Open
Abstract
AMPA receptors (AMPARs) are the major mediators of fast excitatory neurotransmission in the retina as in other parts of the brain. In most neurons, the synaptic targeting, pharmacology, and function of AMPARs are influenced by auxiliary subunits including the transmembrane AMPA receptor regulatory proteins (TARPs). However, it is unclear which TARP subunits are present at retinal synapses and how they influence receptor localization and function. Here, we show that TARPɣ2 (stargazin) is associated with AMPARs in the synaptic layers of the mouse, rabbit, macaque, and human retina. In most species, TARPɣ2 expression was high where starburst amacrine cells (SACs) ramify and transcriptomic analyses suggest correspondingly high gene expression in mouse and human SACs. Synaptic expression of GluA2, GluA3, and GluA4 was significantly reduced in a mouse mutant lacking TARPɣ2 expression (stargazer mouse; stg), whereas GluA1 levels were unaffected. AMPAR-mediated light-evoked EPSCs in ON-SACs from stg mice were ∼30% smaller compared with heterozygous littermates. There was also loss of a transient ON pathway-driven GABAergic input to ON-SACs in stg mutants. Direction-selective ganglion cells in the stg mouse showed normal directional tuning, but their surround inhibition and thus spatial tuning was reduced. Our results indicate that TARPɣ2 is required for normal synaptic expression of GluA2, GluA3, and GluA4 in the inner retina. The presence of residual AMPAR expression in the stargazer mutant suggests that other TARP subunits may compensate in the absence of TARPɣ2.
Collapse
Affiliation(s)
- Todd Stincic
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239
| | - Jacqueline Gayet-Primo
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239
| | - W Rowland Taylor
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239
| | - Teresa Puthussery
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
- Casey Eye Institute, Oregon Health and Science University, Portland, OR 97239
| |
Collapse
|
6
|
Gaynes JA, Budoff SA, Grybko MJ, Hunt JB, Poleg-Polsky A. Classical center-surround receptive fields facilitate novel object detection in retinal bipolar cells. Nat Commun 2022; 13:5575. [PMID: 36163249 PMCID: PMC9512824 DOI: 10.1038/s41467-022-32761-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/16/2022] [Indexed: 11/11/2022] Open
Abstract
Antagonistic interactions between center and surround receptive field (RF) components lie at the heart of the computations performed in the visual system. Circularly symmetric center-surround RFs are thought to enhance responses to spatial contrasts (i.e., edges), but how visual edges affect motion processing is unclear. Here, we addressed this question in retinal bipolar cells, the first visual neuron with classic center-surround interactions. We found that bipolar glutamate release emphasizes objects that emerge in the RF; their responses to continuous motion are smaller, slower, and cannot be predicted by signals elicited by stationary stimuli. In our hands, the alteration in signal dynamics induced by novel objects was more pronounced than edge enhancement and could be explained by priming of RF surround during continuous motion. These findings echo the salience of human visual perception and demonstrate an unappreciated capacity of the center-surround architecture to facilitate novel object detection and dynamic signal representation.
Collapse
Affiliation(s)
- John A Gaynes
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Samuel A Budoff
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Michael J Grybko
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Joshua B Hunt
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Alon Poleg-Polsky
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
7
|
Strauss S, Korympidou MM, Ran Y, Franke K, Schubert T, Baden T, Berens P, Euler T, Vlasits AL. Center-surround interactions underlie bipolar cell motion sensitivity in the mouse retina. Nat Commun 2022; 13:5574. [PMID: 36163124 PMCID: PMC9513071 DOI: 10.1038/s41467-022-32762-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/16/2022] [Indexed: 11/09/2022] Open
Abstract
Motion sensing is a critical aspect of vision. We studied the representation of motion in mouse retinal bipolar cells and found that some bipolar cells are radially direction selective, preferring the origin of small object motion trajectories. Using a glutamate sensor, we directly observed bipolar cells synaptic output and found that there are radial direction selective and non-selective bipolar cell types, the majority being selective, and that radial direction selectivity relies on properties of the center-surround receptive field. We used these bipolar cell receptive fields along with connectomics to design biophysical models of downstream cells. The models and additional experiments demonstrated that bipolar cells pass radial direction selective excitation to starburst amacrine cells, which contributes to their directional tuning. As bipolar cells provide excitation to most amacrine and ganglion cells, their radial direction selectivity may contribute to motion processing throughout the visual system.
Collapse
Affiliation(s)
- Sarah Strauss
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Tübingen AI Center, University of Tübingen, Tübingen, Germany
| | - Maria M Korympidou
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Yanli Ran
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Katrin Franke
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Tom Baden
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Philipp Berens
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- Tübingen AI Center, University of Tübingen, Tübingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| | - Anna L Vlasits
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
8
|
Kim YJ, Peterson BB, Crook JD, Joo HR, Wu J, Puller C, Robinson FR, Gamlin PD, Yau KW, Viana F, Troy JB, Smith RG, Packer OS, Detwiler PB, Dacey DM. Origins of direction selectivity in the primate retina. Nat Commun 2022; 13:2862. [PMID: 35606344 PMCID: PMC9126974 DOI: 10.1038/s41467-022-30405-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/27/2022] [Indexed: 12/22/2022] Open
Abstract
From mouse to primate, there is a striking discontinuity in our current understanding of the neural coding of motion direction. In non-primate mammals, directionally selective cell types and circuits are a signature feature of the retina, situated at the earliest stage of the visual process. In primates, by contrast, direction selectivity is a hallmark of motion processing areas in visual cortex, but has not been found in the retina, despite significant effort. Here we combined functional recordings of light-evoked responses and connectomic reconstruction to identify diverse direction-selective cell types in the macaque monkey retina with distinctive physiological properties and synaptic motifs. This circuitry includes an ON-OFF ganglion cell type, a spiking, ON-OFF polyaxonal amacrine cell and the starburst amacrine cell, all of which show direction selectivity. Moreover, we discovered that macaque starburst cells possess a strong, non-GABAergic, antagonistic surround mediated by input from excitatory bipolar cells that is critical for the generation of radial motion sensitivity in these cells. Our findings open a door to investigation of a precortical circuitry that computes motion direction in the primate visual system.
Collapse
Affiliation(s)
- Yeon Jin Kim
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Beth B Peterson
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Joanna D Crook
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Hannah R Joo
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Jiajia Wu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Christian Puller
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Farrel R Robinson
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
- Washington National Primate Research Center, Seattle, WA, 98195, USA
| | - Paul D Gamlin
- Department of Ophthalmology and Vision Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294-4390, USA
| | - King-Wai Yau
- Departments of Neuroscience and Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205-2185, USA
| | - Felix Viana
- Institute of Neuroscience, UMH-CSIC, San Juan de Alicante, 03550, Spain
| | - John B Troy
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Orin S Packer
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Peter B Detwiler
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Dennis M Dacey
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA.
- Washington National Primate Research Center, Seattle, WA, 98195, USA.
| |
Collapse
|
9
|
Patterson SS, Bembry BN, Mazzaferri MA, Neitz M, Rieke F, Soetedjo R, Neitz J. Conserved circuits for direction selectivity in the primate retina. Curr Biol 2022; 32:2529-2538.e4. [PMID: 35588744 DOI: 10.1016/j.cub.2022.04.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/25/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023]
Abstract
The detection of motion direction is a fundamental visual function and a classic model for neural computation. In the non-primate retina, direction selectivity arises in starburst amacrine cell (SAC) dendrites, which provide selective inhibition to direction-selective retinal ganglion cells (dsRGCs). Although SACs are present in primates, their connectivity and the existence of dsRGCs remain open questions. Here, we present a connectomic reconstruction of the primate ON SAC circuit from a serial electron microscopy volume of the macaque central retina. We show that the structural basis for the SACs' ability to confer directional selectivity on postsynaptic neurons is conserved. SACs selectively target a candidate homolog to the mammalian ON-sustained dsRGCs that project to the accessory optic system (AOS) and contribute to gaze-stabilizing reflexes. These results indicate that the capacity to compute motion direction is present in the retina, which is earlier in the primate visual system than classically thought.
Collapse
Affiliation(s)
- Sara S Patterson
- Center for Visual Science, University of Rochester, Rochester, NY 14620, USA; Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA.
| | - Briyana N Bembry
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
| | - Marcus A Mazzaferri
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Robijanto Soetedjo
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA; Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
10
|
Jain V, Hanson L, Sethuramanujam S, Michaels T, Gawley J, Gregg RG, Pyle I, Zhang C, Smith RG, Berson D, McCall MA, Awatramani GB. Gain control by sparse, ultra-slow glycinergic synapses. Cell Rep 2022; 38:110410. [PMID: 35196487 DOI: 10.1016/j.celrep.2022.110410] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/21/2021] [Accepted: 01/28/2022] [Indexed: 12/23/2022] Open
Abstract
In the retina, ON starburst amacrine cells (SACs) play a crucial role in the direction-selective circuit, but the sources of inhibition that shape their response properties remain unclear. Previous studies demonstrate that ∼95% of their inhibitory synapses are GABAergic, yet we find that the light-evoked inhibitory currents measured in SACs are predominantly glycinergic. Glycinergic inhibition is extremely slow, relying on non-canonical glycine receptors containing α4 subunits, and is driven by both the ON and OFF retinal pathways. These attributes enable glycine inputs to summate and effectively control the output gain of SACs, expanding the range over which they compute direction. Serial electron microscopic reconstructions reveal three specific types of ON and OFF narrow-field amacrine cells as the presumptive sources of glycinergic inhibition. Together, these results establish an unexpected role for specific glycinergic amacrine cells in the retinal computation of stimulus direction by SACs.
Collapse
Affiliation(s)
- Varsha Jain
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| | - Laura Hanson
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| | | | - Tracy Michaels
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| | - Jerram Gawley
- Department of Biology, University of Victoria, Victoria, BC V8W 3N5 Canada
| | - Ronald G Gregg
- Department of Ophthalmology & Visual Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Ian Pyle
- Department of Anatomical Sciences & Neurobiology, University of Louisville, Louisville, KY 40202, USA
| | - Chi Zhang
- Department of Anatomical Sciences & Neurobiology, University of Louisville, Louisville, KY 40202, USA
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Berson
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Maureen A McCall
- Department of Ophthalmology & Visual Sciences, University of Louisville, Louisville, KY 40202, USA; Department of Anatomical Sciences & Neurobiology, University of Louisville, Louisville, KY 40202, USA.
| | | |
Collapse
|
11
|
Srivastava P, de Rosenroll G, Matsumoto A, Michaels T, Turple Z, Jain V, Sethuramanujam S, Murphy-Baum BL, Yonehara K, Awatramani GB. Spatiotemporal properties of glutamate input support direction selectivity in the dendrites of retinal starburst amacrine cells. eLife 2022; 11:81533. [PMID: 36346388 PMCID: PMC9674338 DOI: 10.7554/elife.81533] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The asymmetric summation of kinetically distinct glutamate inputs across the dendrites of retinal 'starburst' amacrine cells is one of the several mechanisms that have been proposed to underlie their direction-selective properties, but experimentally verifying input kinetics has been a challenge. Here, we used two-photon glutamate sensor (iGluSnFR) imaging to directly measure the input kinetics across individual starburst dendrites. We found that signals measured from proximal dendrites were relatively sustained compared to those measured from distal dendrites. These differences were observed across a range of stimulus sizes and appeared to be shaped mainly by excitatory rather than inhibitory network interactions. Temporal deconvolution analysis suggests that the steady-state vesicle release rate was ~3 times larger at proximal sites compared to distal sites. Using a connectomics-inspired computational model, we demonstrate that input kinetics play an important role in shaping direction selectivity at low stimulus velocities. Taken together, these results provide direct support for the 'space-time wiring' model for direction selectivity.
Collapse
Affiliation(s)
| | | | - Akihiro Matsumoto
- Danish Research Institute of Translational Neuroscience, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus UniversityAarhusDenmark
| | - Tracy Michaels
- Department of Biology, University of VictoriaVictoriaCanada
| | - Zachary Turple
- Department of Biology, University of VictoriaVictoriaCanada
| | - Varsha Jain
- Department of Biology, University of VictoriaVictoriaCanada
| | | | | | - Keisuke Yonehara
- Danish Research Institute of Translational Neuroscience, Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus UniversityAarhusDenmark
| | | |
Collapse
|
12
|
Hellmer CB, Hall LM, Bohl JM, Sharpe ZJ, Smith RG, Ichinose T. Cholinergic feedback to bipolar cells contributes to motion detection in the mouse retina. Cell Rep 2021; 37:110106. [PMID: 34910920 PMCID: PMC8793255 DOI: 10.1016/j.celrep.2021.110106] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 08/11/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
Retinal bipolar cells are second-order neurons that transmit basic features of the visual scene to postsynaptic partners. However, their contribution to motion detection has not been fully appreciated. Here, we demonstrate that cholinergic feedback from starburst amacrine cells (SACs) to certain presynaptic bipolar cells via alpha-7 nicotinic acetylcholine receptors (α7-nAChRs) promotes direction-selective signaling. Patch clamp recordings reveal that distinct bipolar cell types making synapses at proximal SAC dendrites also express α7-nAChRs, producing directionally skewed excitatory inputs. Asymmetric SAC excitation contributes to motion detection in On-Off direction-selective ganglion cells (On-Off DSGCs), predicted by computational modeling of SAC dendrites and supported by patch clamp recordings from On-Off DSGCs when bipolar cell α7-nAChRs is eliminated pharmacologically or by conditional knockout. Altogether, these results show that cholinergic feedback to bipolar cells enhances direction-selective signaling in postsynaptic SACs and DSGCs, illustrating how bipolar cells provide a scaffold for postsynaptic microcircuits to cooperatively enhance retinal motion detection.
Collapse
Affiliation(s)
- Chase B Hellmer
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA; Present address: Department of Ophthalmology and Visual Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Leo M Hall
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA; Present address: Department of Internal Medicine, St. Mary Mercy Livonia Hospital, Livonia, MI 48154, USA
| | - Jeremy M Bohl
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Zachary J Sharpe
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tomomi Ichinose
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
13
|
Ezra-Tsur E, Amsalem O, Ankri L, Patil P, Segev I, Rivlin-Etzion M. Realistic retinal modeling unravels the differential role of excitation and inhibition to starburst amacrine cells in direction selectivity. PLoS Comput Biol 2021; 17:e1009754. [PMID: 34968385 PMCID: PMC8754344 DOI: 10.1371/journal.pcbi.1009754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/12/2022] [Accepted: 12/14/2021] [Indexed: 11/19/2022] Open
Abstract
Retinal direction-selectivity originates in starburst amacrine cells (SACs), which display a centrifugal preference, responding with greater depolarization to a stimulus expanding from soma to dendrites than to a collapsing stimulus. Various mechanisms were hypothesized to underlie SAC centrifugal preference, but dissociating them is experimentally challenging and the mechanisms remain debatable. To address this issue, we developed the Retinal Stimulation Modeling Environment (RSME), a multifaceted data-driven retinal model that encompasses detailed neuronal morphology and biophysical properties, retina-tailored connectivity scheme and visual input. Using a genetic algorithm, we demonstrated that spatiotemporally diverse excitatory inputs-sustained in the proximal and transient in the distal processes-are sufficient to generate experimentally validated centrifugal preference in a single SAC. Reversing these input kinetics did not produce any centrifugal-preferring SAC. We then explored the contribution of SAC-SAC inhibitory connections in establishing the centrifugal preference. SAC inhibitory network enhanced the centrifugal preference, but failed to generate it in its absence. Embedding a direction selective ganglion cell (DSGC) in a SAC network showed that the known SAC-DSGC asymmetric connectivity by itself produces direction selectivity. Still, this selectivity is sharpened in a centrifugal-preferring SAC network. Finally, we use RSME to demonstrate the contribution of SAC-SAC inhibitory connections in mediating direction selectivity and recapitulate recent experimental findings. Thus, using RSME, we obtained a mechanistic understanding of SACs' centrifugal preference and its contribution to direction selectivity.
Collapse
Affiliation(s)
- Elishai Ezra-Tsur
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Mathematics and Computer Science, The Open University of Israel, Ra’anana, Israel
| | - Oren Amsalem
- Department of Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lea Ankri
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Pritish Patil
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Idan Segev
- Department of Neurobiology, Hebrew University of Jerusalem, Jerusalem, Israel
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | | |
Collapse
|
14
|
Rapid Analysis of Visual Receptive Fields by Iterative Tomography. eNeuro 2021; 8:ENEURO.0046-21.2021. [PMID: 34799410 PMCID: PMC8658541 DOI: 10.1523/eneuro.0046-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 11/21/2022] Open
Abstract
Many receptive fields in the early visual system show standard (center-surround) structure and can be analyzed using simple drifting patterns and a difference-of-Gaussians (DoG) model, which treats the receptive field as a linear filter of the visual image. But many other receptive fields show nonlinear properties such as selectivity for direction of movement. Such receptive fields are typically studied using discrete stimuli (moving or flashed bars and edges) and are modelled according to the features of the visual image to which they are most sensitive. Here, we harness recent advances in tomographic image analysis to characterize rapidly and simultaneously both the linear and nonlinear components of visual receptive fields. Spiking and intracellular voltage potential responses to briefly flashed bars are analyzed using non-negative matrix factorization (NNMF) and iterative reconstruction tomography (IRT). The method yields high-resolution receptive field maps of individual neurons and neuron ensembles in primate (marmoset, both sexes) lateral geniculate and rodent (mouse, male) retina. We show that the first two IRT components correspond to DoG-equivalent center and surround of standard [magnocellular (M) and parvocellular (P)] receptive fields in primate geniculate. The first two IRT components also reveal the spatiotemporal receptive field structure of nonstandard (on/off-rectifying) receptive fields. In rodent retina we combine NNMF-IRT with patch-clamp recording and dye injection to directly map spatial receptive fields to the underlying anatomy of retinal output neurons. We conclude that NNMF-IRT provides a rapid and flexible framework for study of receptive fields in the early visual system.
Collapse
|
15
|
Pottackal J, Singer JH, Demb JB. Computational and Molecular Properties of Starburst Amacrine Cell Synapses Differ With Postsynaptic Cell Type. Front Cell Neurosci 2021; 15:660773. [PMID: 34381333 PMCID: PMC8351878 DOI: 10.3389/fncel.2021.660773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/08/2021] [Indexed: 11/22/2022] Open
Abstract
A presynaptic neuron can increase its computational capacity by transmitting functionally distinct signals to each of its postsynaptic cell types. To determine whether such computational specialization occurs over fine spatial scales within a neurite arbor, we investigated computation at output synapses of the starburst amacrine cell (SAC), a critical component of the classical direction-selective (DS) circuit in the retina. The SAC is a non-spiking interneuron that co-releases GABA and acetylcholine and forms closely spaced (<5 μm) inhibitory synapses onto two postsynaptic cell types: DS ganglion cells (DSGCs) and neighboring SACs. During dynamic optogenetic stimulation of SACs in mouse retina, whole-cell recordings of inhibitory postsynaptic currents revealed that GABAergic synapses onto DSGCs exhibit stronger low-pass filtering than those onto neighboring SACs. Computational analyses suggest that this filtering difference can be explained primarily by presynaptic properties, rather than those of the postsynaptic cells per se. Consistent with functionally diverse SAC presynapses, blockade of N-type voltage-gated calcium channels abolished GABAergic currents in SACs but only moderately reduced GABAergic and cholinergic currents in DSGCs. These results jointly demonstrate how specialization of synaptic outputs could enhance parallel processing in a compact interneuron over fine spatial scales. Moreover, the distinct transmission kinetics of GABAergic SAC synapses are poised to support the functional diversity of inhibition within DS circuitry.
Collapse
Affiliation(s)
- Joseph Pottackal
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States.,Department of Biology, University of Maryland, College Park, College Park, MD, United States
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, College Park, MD, United States
| | - Jonathan B Demb
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States.,Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, United States.,Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, United States.,Department of Neuroscience, Yale University, New Haven, CT, United States
| |
Collapse
|
16
|
Chen Q, Smith RG, Huang X, Wei W. Preserving inhibition with a disinhibitory microcircuit in the retina. eLife 2020; 9:62618. [PMID: 33269700 PMCID: PMC7728437 DOI: 10.7554/elife.62618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/02/2020] [Indexed: 01/13/2023] Open
Abstract
Previously, we found that in the mammalian retina, inhibitory inputs onto starburst amacrine cells (SACs) are required for robust direction selectivity of On-Off direction-selective ganglion cells (On-Off DSGCs) against noisy backgrounds (Chen et al., 2016). However, the source of the inhibitory inputs to SACs and how this inhibition confers noise resilience of DSGCs are unknown. Here, we show that when visual noise is present in the background, the motion-evoked inhibition to an On-Off DSGC is preserved by a disinhibitory motif consisting of a serially connected network of neighboring SACs presynaptic to the DSGC. This preservation of inhibition by a disinhibitory motif arises from the interaction between visually evoked network dynamics and short-term synaptic plasticity at the SAC-DSGC synapse. Although the disinhibitory microcircuit is well studied for its disinhibitory function in brain circuits, our results highlight the algorithmic flexibility of this motif beyond disinhibition due to the mutual influence between network and synaptic plasticity mechanisms.
Collapse
Affiliation(s)
- Qiang Chen
- Committee on Computational Neuroscience, University of Chicago, Chicago, United States
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
| | - Xiaolin Huang
- Committee on Neurobiology, University of Chicago, Chicago, United States
| | - Wei Wei
- Committee on Computational Neuroscience, University of Chicago, Chicago, United States.,Committee on Neurobiology, University of Chicago, Chicago, United States.,Department of Neurobiology, the University of Chicago, Chicago, United States.,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, University of Chicago, Chicago, United States
| |
Collapse
|
17
|
Van Hook MJ, Nawy S, Thoreson WB. Voltage- and calcium-gated ion channels of neurons in the vertebrate retina. Prog Retin Eye Res 2019; 72:100760. [PMID: 31078724 PMCID: PMC6739185 DOI: 10.1016/j.preteyeres.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/25/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023]
Abstract
In this review, we summarize studies investigating the types and distribution of voltage- and calcium-gated ion channels in the different classes of retinal neurons: rods, cones, horizontal cells, bipolar cells, amacrine cells, interplexiform cells, and ganglion cells. We discuss differences among cell subtypes within these major cell classes, as well as differences among species, and consider how different ion channels shape the responses of different neurons. For example, even though second-order bipolar and horizontal cells do not typically generate fast sodium-dependent action potentials, many of these cells nevertheless possess fast sodium currents that can enhance their kinetic response capabilities. Ca2+ channel activity can also shape response kinetics as well as regulating synaptic release. The L-type Ca2+ channel subtype, CaV1.4, expressed in photoreceptor cells exhibits specific properties matching the particular needs of these cells such as limited inactivation which allows sustained channel activity and maintained synaptic release in darkness. The particular properties of K+ and Cl- channels in different retinal neurons shape resting membrane potentials, response kinetics and spiking behavior. A remaining challenge is to characterize the specific distributions of ion channels in the more than 100 individual cell types that have been identified in the retina and to describe how these particular ion channels sculpt neuronal responses to assist in the processing of visual information by the retina.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Scott Nawy
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department Pharmacology & Experimental Neuroscience(2), University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
18
|
Abstract
Visual motion on the retina activates a cohort of retinal ganglion cells (RGCs). This population activity encodes multiple streams of information extracted by parallel retinal circuits. Motion processing in the retina is best studied in the direction-selective circuit. The main focus of this review is the neural basis of direction selectivity, which has been investigated in unprecedented detail using state-of-the-art functional, connectomic, and modeling methods. Mechanisms underlying the encoding of other motion features by broader RGC populations are also discussed. Recent discoveries at both single-cell and population levels highlight the dynamic and stimulus-dependent engagement of multiple mechanisms that collectively implement robust motion detection under diverse visual conditions.
Collapse
Affiliation(s)
- Wei Wei
- Department of Neurobiology, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
19
|
Stincic TL, Keeley PW, Reese BE, Taylor WR. Bistratified starburst amacrine cells in Sox2 conditional knockout mouse retina display ON and OFF responses. J Neurophysiol 2018; 120:2121-2129. [PMID: 30089022 DOI: 10.1152/jn.00322.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell-intrinsic factors, in conjunction with environmental signals, guide migration, differentiation, and connectivity during early development of neuronal circuits. Within the retina, inhibitory starburst amacrine cells (SBACs) comprise ON types with somas in the ganglion cell layer (GCL) and dendrites stratifying narrowly in the inner half of the inner plexiform layer (IPL) and OFF types with somas in the inner nuclear layer (INL) and dendrites stratifying narrowly in the outer half of the IPL. The transcription factor Sox2 is crucial to this subtype specification. Without Sox2, many ON-type SBACs destined for the GCL settle in the INL while many that reach the GCL develop bistratified dendritic arbors. This study asked whether ON-type SBACs in Sox2-conditional knockout retinas exhibit selective connectivity only with ON-type bipolar cells or their bistratified morphology allows them to connect to both ON and OFF bipolar cells. Physiological data demonstrate that these cells receive ON and OFF excitatory inputs, indicating that the ectopically stratified dendrites make functional synapses with bipolar cells. The excitatory inputs were smaller and more transient in Sox2-conditional knockout compared with wild type; however, inhibitory inputs appeared largely unchanged. Thus dendritic stratification, rather than cellular identification, may be the major factor that determines ON vs. OFF connectivity. NEW & NOTEWORTHY Conditional knockout of the transcription factor Sox2 during early embryogenesis converts a monostratifying starburst amacrine cell into a bistratifying starburst cell. Here we show that these bistratifying starburst amacrine cells form functional synaptic connections with both ON and OFF bipolar cells. This suggests that normal ON vs. OFF starburst connectivity may not require distinct molecular specification. Proximity alone may be sufficient to allow formation of functional synapses.
Collapse
Affiliation(s)
- Todd L Stincic
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University , Portland, Oregon
| | - Patrick W Keeley
- Neuroscience Research Institute, University of California , Santa Barbara, California
| | - Benjamin E Reese
- Neuroscience Research Institute, University of California , Santa Barbara, California.,Department of Psychological and Brain Sciences, University of California , Santa Barbara, California
| | - W Rowland Taylor
- Casey Eye Institute, Department of Ophthalmology, Oregon Health & Science University , Portland, Oregon.,School of Optometry and Helen Wills Neuroscience Institute, University of California , Berkeley, California
| |
Collapse
|
20
|
Electrotonic signal processing in AII amacrine cells: compartmental models and passive membrane properties for a gap junction-coupled retinal neuron. Brain Struct Funct 2018; 223:3383-3410. [PMID: 29948192 DOI: 10.1007/s00429-018-1696-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/05/2018] [Indexed: 10/14/2022]
Abstract
Amacrine cells are critical for processing of visual signals, but little is known about their electrotonic structure and passive membrane properties. AII amacrine cells are multifunctional interneurons in the mammalian retina and essential for both rod- and cone-mediated vision. Their dendrites are the site of both input and output chemical synapses and gap junctions that form electrically coupled networks. This electrical coupling is a challenge for developing realistic computer models of single neurons. Here, we combined multiphoton microscopy and electrophysiological recording from dye-filled AII amacrine cells in rat retinal slices to develop morphologically accurate compartmental models. Passive cable properties were estimated by directly fitting the current responses of the models evoked by voltage pulses to the physiologically recorded responses, obtained after blocking electrical coupling. The average best-fit parameters (obtained at - 60 mV and ~ 25 °C) were 0.91 µF cm-2 for specific membrane capacitance, 198 Ω cm for cytoplasmic resistivity, and 30 kΩ cm2 for specific membrane resistance. We examined the passive signal transmission between the cell body and the dendrites by the electrotonic transform and quantified the frequency-dependent voltage attenuation in response to sinusoidal current stimuli. There was significant frequency-dependent attenuation, most pronounced for signals generated at the arboreal dendrites and propagating towards the soma and lobular dendrites. In addition, we explored the consequences of the electrotonic structure for interpreting currents in somatic, whole-cell voltage-clamp recordings. The results indicate that AII amacrines cannot be characterized as electrotonically compact and suggest that their morphology and passive properties can contribute significantly to signal integration and processing.
Collapse
|
21
|
Chen Q, Wei W. Stimulus-dependent engagement of neural mechanisms for reliable motion detection in the mouse retina. J Neurophysiol 2018; 120:1153-1161. [PMID: 29897862 DOI: 10.1152/jn.00716.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Direction selectivity is a fundamental computation in the visual system and is first computed by the direction-selective circuit in the mammalian retina. Although landmark discoveries on the neural basis of direction selectivity have been made in the rabbit, many technological advances designed for the mouse have emerged, making this organism a favored model for investigating the direction-selective circuit at the molecular, synaptic, and network levels. Studies using diverse motion stimuli in the mouse retina demonstrate that retinal direction selectivity is implemented by multilayered mechanisms. This review begins with a set of central mechanisms that are engaged under a wide range of visual conditions and then focuses on additional layers of mechanisms that are dynamically recruited under different visual stimulus conditions. Together, recent findings allude to an emerging theme: robust motion detection in the natural environment requires flexible neural mechanisms.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Neurobiology, The University of Chicago , Chicago, Illinois.,Committee on Computational Neuroscience, The University of Chicago , Chicago, Illinois
| | - Wei Wei
- Department of Neurobiology, The University of Chicago , Chicago, Illinois.,Committee on Computational Neuroscience, The University of Chicago , Chicago, Illinois
| |
Collapse
|
22
|
Morrie RD, Feller MB. A Dense Starburst Plexus Is Critical for Generating Direction Selectivity. Curr Biol 2018; 28:1204-1212.e5. [PMID: 29606419 PMCID: PMC5916530 DOI: 10.1016/j.cub.2018.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 01/02/2023]
Abstract
Starburst amacrine cell (SAC) morphology is considered central to retinal direction selectivity. In Sema6A-/- mice, SAC dendritic arbors are smaller and no longer radially symmetric, leading to a reduction in SAC dendritic plexus density. Sema6A-/- mice also have a dramatic reduction in the directional tuning of retinal direction-selective ganglion cells (DSGCs). Here we show that the loss of DSGC tuning in Sema6A-/- mice is due to reduced null direction inhibition, even though strong asymmetric SAC-DSGC connectivity and SAC dendritic direction selectivity are maintained. Hence, the reduced coverage factor of SAC dendrites leads specifically to a loss of null direction inhibition. Moreover, SAC dendrites are no longer strictly tuned to centrifugal motion, indicating that SAC morphology is critical in coordinating synaptic connectivity and dendritic integration to generate direction selectivity.
Collapse
Affiliation(s)
- Ryan D Morrie
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Marla B Feller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
23
|
Clark DA, Demb JB. Parallel Computations in Insect and Mammalian Visual Motion Processing. Curr Biol 2017; 26:R1062-R1072. [PMID: 27780048 DOI: 10.1016/j.cub.2016.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sensory systems use receptors to extract information from the environment and neural circuits to perform subsequent computations. These computations may be described as algorithms composed of sequential mathematical operations. Comparing these operations across taxa reveals how different neural circuits have evolved to solve the same problem, even when using different mechanisms to implement the underlying math. In this review, we compare how insect and mammalian neural circuits have solved the problem of motion estimation, focusing on the fruit fly Drosophila and the mouse retina. Although the two systems implement computations with grossly different anatomy and molecular mechanisms, the underlying circuits transform light into motion signals with strikingly similar processing steps. These similarities run from photoreceptor gain control and spatiotemporal tuning to ON and OFF pathway structures, motion detection, and computed motion signals. The parallels between the two systems suggest that a limited set of algorithms for estimating motion satisfies both the needs of sighted creatures and the constraints imposed on them by metabolism, anatomy, and the structure and regularities of the visual world.
Collapse
Affiliation(s)
- Damon A Clark
- Department of Molecular, Cellular, and Developmental Biology and Department of Physics, Yale University, New Haven, CT 06511, USA.
| | - Jonathan B Demb
- Department of Ophthalmology and Visual Science and Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
24
|
Koren D, Grove JCR, Wei W. Cross-compartmental Modulation of Dendritic Signals for Retinal Direction Selectivity. Neuron 2017; 95:914-927.e4. [PMID: 28781167 DOI: 10.1016/j.neuron.2017.07.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/08/2017] [Accepted: 07/19/2017] [Indexed: 11/19/2022]
Abstract
Compartmentalized signaling in dendritic subdomains is critical for the function of many central neurons. In the retina, individual dendritic sectors of a starburst amacrine cell (SAC) are preferentially activated by different directions of linear motion, indicating limited signal propagation between the sectors. However, the mechanism that regulates this propagation is poorly understood. Here, we find that metabotropic glutamate receptor 2 (mGluR2) signaling, which acts on voltage-gated calcium channels in SACs, selectively restricts cross-sector signal propagation in SACs, but does not affect local dendritic computation within individual sectors. mGluR2 signaling ensures sufficient electrotonic isolation of dendritic sectors to prevent their depolarization during non-preferred motion, yet enables controlled multicompartmental signal integration that enhances responses to preferred motion. Furthermore, mGluR2-mediated dendritic compartmentalization in SACs is important for the functional output of direction-selective ganglion cells (DSGCs). Therefore, our results directly link modulation of dendritic compartmentalization to circuit-level encoding of motion direction in the retina.
Collapse
Affiliation(s)
- David Koren
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA; Interdisciplinary Scientist Training Program, The University of Chicago, Chicago, IL 60637, USA
| | - James C R Grove
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| | - Wei Wei
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
25
|
Zhang C, Kolodkin AL, Wong RO, James RE. Establishing Wiring Specificity in Visual System Circuits: From the Retina to the Brain. Annu Rev Neurosci 2017; 40:395-424. [PMID: 28460185 DOI: 10.1146/annurev-neuro-072116-031607] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The retina is a tremendously complex image processor, containing numerous cell types that form microcircuits encoding different aspects of the visual scene. Each microcircuit exhibits a distinct pattern of synaptic connectivity. The developmental mechanisms responsible for this patterning are just beginning to be revealed. Furthermore, signals processed by different retinal circuits are relayed to specific, often distinct, brain regions. Thus, much work has focused on understanding the mechanisms that wire retinal axonal projections to their appropriate central targets. Here, we highlight recently discovered cellular and molecular mechanisms that together shape stereotypic wiring patterns along the visual pathway, from within the retina to the brain. Although some mechanisms are common across circuits, others play unconventional and circuit-specific roles. Indeed, the highly organized connectivity of the visual system has greatly facilitated the discovery of novel mechanisms that establish precise synaptic connections within the nervous system.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Biological Structure, University of Washington, Seattle, Washington 98195; ,
| | - Alex L Kolodkin
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
| | - Rachel O Wong
- Department of Biological Structure, University of Washington, Seattle, Washington 98195; ,
| | - Rebecca E James
- Solomon H. Snyder Department of Neuroscience, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ,
| |
Collapse
|
26
|
Abstract
Images projected onto the retina of an animal eye are rarely still. Instead, they usually contain motion signals originating either from moving objects or from retinal slip caused by self-motion. Accordingly, motion signals tell the animal in which direction a predator, prey, or the animal itself is moving. At the neural level, visual motion detection has been proposed to extract directional information by a delay-and-compare mechanism, representing a classic example of neural computation. Neurons responding selectively to motion in one but not in the other direction have been identified in many systems, most prominently in the mammalian retina and the fly optic lobe. Technological advances have now allowed researchers to characterize these neurons' upstream circuits in exquisite detail. Focusing on these upstream circuits, we review and compare recent progress in understanding the mechanisms that generate direction selectivity in the early visual system of mammals and flies.
Collapse
Affiliation(s)
- Alex S Mauss
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany; ,
| | - Anna Vlasits
- Department of Molecular and Cell Biology & Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720; ,
| | - Alexander Borst
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany; ,
| | - Marla Feller
- Department of Molecular and Cell Biology & Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720; ,
| |
Collapse
|
27
|
Percival KA, Venkataramani S, Smith RG, Taylor WR. Directional excitatory input to direction-selective ganglion cells in the rabbit retina. J Comp Neurol 2017; 527:270-281. [PMID: 28295340 DOI: 10.1002/cne.24207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/29/2017] [Accepted: 01/31/2017] [Indexed: 12/19/2022]
Abstract
Directional responses in retinal ganglion cells are generated in large part by direction-selective release of γ-aminobutyric acid from starburst amacrine cells onto direction-selective ganglion cells (DSGCs). The excitatory inputs to DSGCs are also widely reported to be direction-selective, however, recent evidence suggests that glutamate release from bipolar cells is not directional, and directional excitation seen in patch-clamp analyses may be an artifact resulting from incomplete voltage control. Here, we test this voltage-clamp-artifact hypothesis in recordings from 62 ON-OFF DSGCs in the rabbit retina. The strength of the directional excitatory signal varies considerably across the sample of cells, but is not correlated with the strength of directional inhibition, as required for a voltage-clamp artifact. These results implicate additional mechanisms in generating directional excitatory inputs to DSGCs.
Collapse
Affiliation(s)
- Kumiko A Percival
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Sowmya Venkataramani
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania
| | - W Rowland Taylor
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
28
|
Temporally Diverse Excitation Generates Direction-Selective Responses in ON- and OFF-Type Retinal Starburst Amacrine Cells. Cell Rep 2017; 18:1356-1365. [DOI: 10.1016/j.celrep.2017.01.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 12/05/2016] [Accepted: 01/11/2017] [Indexed: 01/06/2023] Open
|
29
|
Chen Q, Pei Z, Koren D, Wei W. Stimulus-dependent recruitment of lateral inhibition underlies retinal direction selectivity. eLife 2016; 5. [PMID: 27929372 PMCID: PMC5176353 DOI: 10.7554/elife.21053] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 12/07/2016] [Indexed: 12/31/2022] Open
Abstract
The dendrites of starburst amacrine cells (SACs) in the mammalian retina are preferentially activated by motion in the centrifugal direction, a property that is important for generating direction selectivity in direction selective ganglion cells (DSGCs). A candidate mechanism underlying the centrifugal direction selectivity of SAC dendrites is synaptic inhibition onto SACs. Here we disrupted this inhibition by perturbing distinct sets of GABAergic inputs onto SACs – removing either GABA release or GABA receptors from SACs. We found that lateral inhibition onto Off SACs from non-SAC amacrine cells is required for optimal direction selectivity of the Off pathway. In contrast, lateral inhibition onto On SACs is not necessary for direction selectivity of the On pathway when the moving object is on a homogenous background, but is required when the background is noisy. These results demonstrate that distinct sets of inhibitory mechanisms are recruited to generate direction selectivity under different visual conditions. DOI:http://dx.doi.org/10.7554/eLife.21053.001
Collapse
Affiliation(s)
- Qiang Chen
- Department of Neurobiology, The University of Chicago, Chicago, United States
| | - Zhe Pei
- Department of Neurobiology, The University of Chicago, Chicago, United States
| | - David Koren
- Department of Neurobiology, The University of Chicago, Chicago, United States
| | - Wei Wei
- Department of Neurobiology, The University of Chicago, Chicago, United States
| |
Collapse
|