1
|
Solsona R, Méline T, Borrani F, Deriaz R, Lacroix J, Normand-Gravier T, Candau R, Racinais S, Sanchez AM. Active recovery vs hot- or cold-water immersion for repeated sprint ability after a strenuous exercise training session in elite skaters. J Sports Sci 2023; 41:1126-1135. [PMID: 37722830 DOI: 10.1080/02640414.2023.2259267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 08/09/2023] [Indexed: 09/20/2023]
Abstract
This study compared the acute effects of three recovery methods: active recovery (AR), hot- and cold-water immersion (HWI and CWI, respectively), used between two training sessions in elite athletes. Twelve national-team skaters (7 males, 5 females) completed three trials according to a randomized cross-over study. Fifteen minutes after an exhaustive ice-skating training session, participants underwent 20 min of HWI (41.1 ± 0.5°C), 15 min of CWI (12.1 ± 0.7°C) or 15 min of active recovery (AR). After 1 h 30 min of the first exercise, they performed a repeated-sprint cycling session. Average power output was slightly but significantly higher for AR (767 ± 179 W) and HWI (766 ± 170 W) compared to CWI (738 ± 156 W) (p = 0.026, d = 0.18). No statistical difference was observed between the conditions for both lactatemia and rating of perceived exertion. Furthermore, no significant effect of recovery was observed on the fatigue index calculated from the repeated sprint cycling exercises (p > 0.05). Finally, a positive correlation was found between the average muscle temperature measured during the recoveries and the maximal power output obtained during cycling exercises. In conclusion, the use of CWI in between high-intensity training sessions could slightly impair the performance outcomes compared to AR and HWI. However, studies with larger samples are needed to confirm these results, especially in less trained athletes.
Collapse
Affiliation(s)
- Robert Solsona
- University of Perpignan Via Domitia (UPVD), Font-Romeu, France Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Sante Environnement de Montagne (LIPSEM)
| | - Thibaut Méline
- University of Perpignan Via Domitia (UPVD), Font-Romeu, France Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Sante Environnement de Montagne (LIPSEM)
- University of Montpellier, Faculty of Sports Sciences, INRAE, Dynamique Musculaire et Métabolisme (DMEM), Montpellier, France
| | - Fabio Borrani
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Roméo Deriaz
- University of Perpignan Via Domitia (UPVD), Font-Romeu, France Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Sante Environnement de Montagne (LIPSEM)
| | - Jérôme Lacroix
- University of Perpignan Via Domitia (UPVD), Font-Romeu, France Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Sante Environnement de Montagne (LIPSEM)
- Service de médecine du sport, Centre Hospitalier Perpignan, Perpignan, France
| | - Tom Normand-Gravier
- University of Perpignan Via Domitia (UPVD), Font-Romeu, France Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Sante Environnement de Montagne (LIPSEM)
- University of Montpellier, Faculty of Sports Sciences, INRAE, Dynamique Musculaire et Métabolisme (DMEM), Montpellier, France
| | - Robin Candau
- University of Montpellier, Faculty of Sports Sciences, INRAE, Dynamique Musculaire et Métabolisme (DMEM), Montpellier, France
| | | | - Anthony Mj Sanchez
- University of Perpignan Via Domitia (UPVD), Font-Romeu, France Faculty of Sports Sciences, Laboratoire Interdisciplinaire Performance Sante Environnement de Montagne (LIPSEM)
| |
Collapse
|
2
|
Ihsan M, Abbiss CR, Allan R. Adaptations to Post-exercise Cold Water Immersion: Friend, Foe, or Futile? Front Sports Act Living 2021; 3:714148. [PMID: 34337408 PMCID: PMC8322530 DOI: 10.3389/fspor.2021.714148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
In the last decade, cold water immersion (CWI) has emerged as one of the most popular post-exercise recovery strategies utilized amongst athletes during training and competition. Following earlier research on the effects of CWI on the recovery of exercise performance and associated mechanisms, the recent focus has been on how CWI might influence adaptations to exercise. This line of enquiry stems from classical work demonstrating improved endurance and mitochondrial development in rodents exposed to repeated cold exposures. Moreover, there was strong rationale that CWI might enhance adaptations to exercise, given the discovery, and central role of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) in both cold- and exercise-induced oxidative adaptations. Research on adaptations to post-exercise CWI have generally indicated a mode-dependant effect, where resistance training adaptations were diminished, whilst aerobic exercise performance seems unaffected but demonstrates premise for enhancement. However, the general suitability of CWI as a recovery modality has been the focus of considerable debate, primarily given the dampening effect on hypertrophy gains. In this mini-review, we highlight the key mechanisms surrounding CWI and endurance exercise adaptations, reiterating the potential for CWI to enhance endurance performance, with support from classical and contemporary works. This review also discusses the implications and insights (with regards to endurance and strength adaptations) gathered from recent studies examining the longer-term effects of CWI on training performance and recovery. Lastly, a periodized approach to recovery is proposed, where the use of CWI may be incorporated during competition or intensified training, whilst strategically avoiding periods following training focused on improving muscle strength or hypertrophy.
Collapse
Affiliation(s)
- Mohammed Ihsan
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Research and Scientific Support, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Chris R Abbiss
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Robert Allan
- School of Sport and Health Sciences, University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|
3
|
Influence of post-exercise hot-water therapy on adaptations to training over 4 weeks in elite short-track speed skaters. J Exerc Sci Fit 2021; 19:134-142. [PMID: 33603794 PMCID: PMC7859300 DOI: 10.1016/j.jesf.2021.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/29/2020] [Accepted: 01/03/2021] [Indexed: 11/21/2022] Open
Abstract
This study aimed to investigate the effects of regular hot water bathing (HWB), undertaken 10 min after the last training session of the day, on chronic adaptations to training in elite athletes. Six short-track (ST) speed skaters completed four weeks of post-training HWB and four weeks of post-training passive recovery (PR) according to a randomized cross-over study. During HWB, participants sat in a jacuzzi (40 °C; 20 min). According to linear mixed models, maximal isometric strength of knee extensor muscles was significantly increased for training with HWB (p < 0.0001; d = 0.41) and a tendency (p = 0.0529) was observed concerning V˙O2max. No significant effect of training with PR or HWB was observed for several variables (p > 0.05), including aerobic peak power output, the decline rate of jump height during 1 min-continuous maximal countermovement jumps (i.e. anaerobic capacity index), and the force-velocity relationship. Regarding specific tasks on ice, a small effect of training was found on both half-lap time and total time during a 1.5-lap all-out exercise (p = 0.0487; d = 0.23 and p = 0.0332; d = 0.21, respectively) but no additional effect of HWB was observed. In summary, the regular HWB protocol used in this study can induce additional effects on maximal isometric strength without compromising aerobic and anaerobic adaptations or field performance in these athletes.
Collapse
|
4
|
Macedo CSG, Tadiello FF, Medeiros LT, Antonelo MC, Alves MAF, Mendonça LD. Physical Therapy Service delivered in the Polyclinic During the Rio 2016 Paralympic Games. Phys Ther Sport 2019; 36:62-67. [DOI: 10.1016/j.ptsp.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 11/30/2022]
|
5
|
Tavares F, Walker O, Healey P, Smith TB, Driller M. Practical Applications of Water Immersion Recovery Modalities for Team Sports. Strength Cond J 2018. [DOI: 10.1519/ssc.0000000000000380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|