1
|
Goffin L, Lemoine D, Clotman F. Potential contribution of spinal interneurons to the etiopathogenesis of amyotrophic lateral sclerosis. Front Neurosci 2024; 18:1434404. [PMID: 39091344 PMCID: PMC11293063 DOI: 10.3389/fnins.2024.1434404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/21/2024] [Indexed: 08/04/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) consists of a group of adult-onset fatal and incurable neurodegenerative disorders characterized by the progressive death of motor neurons (MNs) throughout the central nervous system (CNS). At first, ALS was considered to be an MN disease, caused by cell-autonomous mechanisms acting specifically in MNs. Accordingly, data from ALS patients and ALS animal models revealed alterations in excitability in multiple neuronal populations, including MNs, which were associated with a variety of cellular perturbations such as protein aggregation, ribonucleic acid (RNA) metabolism defects, calcium dyshomeostasis, modified electrophysiological properties, and autophagy malfunctions. However, experimental evidence rapidly demonstrated the involvement of other types of cells, including glial cells, in the etiopathogenesis of ALS through non-cell autonomous mechanisms. Surprisingly, the contribution of pre-motor interneurons (INs), which regulate MN activity and could therefore critically modulate their excitability at the onset or during the progression of the disease, has to date been severely underestimated. In this article, we review in detail how spinal pre-motor INs are affected in ALS and their possible involvement in the etiopathogenesis of the disease.
Collapse
Affiliation(s)
| | | | - Frédéric Clotman
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Animal Molecular and Cellular Biology, Louvain-la-Neuve, Belgium
| |
Collapse
|
2
|
Chung B, Zia M, Thomas KA, Michaels JA, Jacob A, Pack A, Williams MJ, Nagapudi K, Teng LH, Arrambide E, Ouellette L, Oey N, Gibbs R, Anschutz P, Lu J, Wu Y, Kashefi M, Oya T, Kersten R, Mosberger AC, O'Connell S, Wang R, Marques H, Mendes AR, Lenschow C, Kondakath G, Kim JJ, Olson W, Quinn KN, Perkins P, Gatto G, Thanawalla A, Coltman S, Kim T, Smith T, Binder-Markey B, Zaback M, Thompson CK, Giszter S, Person A, Goulding M, Azim E, Thakor N, O'Connor D, Trimmer B, Lima SQ, Carey MR, Pandarinath C, Costa RM, Pruszynski JA, Bakir M, Sober SJ. Myomatrix arrays for high-definition muscle recording. eLife 2023; 12:RP88551. [PMID: 38113081 PMCID: PMC10730117 DOI: 10.7554/elife.88551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Neurons coordinate their activity to produce an astonishing variety of motor behaviors. Our present understanding of motor control has grown rapidly thanks to new methods for recording and analyzing populations of many individual neurons over time. In contrast, current methods for recording the nervous system's actual motor output - the activation of muscle fibers by motor neurons - typically cannot detect the individual electrical events produced by muscle fibers during natural behaviors and scale poorly across species and muscle groups. Here we present a novel class of electrode devices ('Myomatrix arrays') that record muscle activity at unprecedented resolution across muscles and behaviors. High-density, flexible electrode arrays allow for stable recordings from the muscle fibers activated by a single motor neuron, called a 'motor unit,' during natural behaviors in many species, including mice, rats, primates, songbirds, frogs, and insects. This technology therefore allows the nervous system's motor output to be monitored in unprecedented detail during complex behaviors across species and muscle morphologies. We anticipate that this technology will allow rapid advances in understanding the neural control of behavior and identifying pathologies of the motor system.
Collapse
Affiliation(s)
- Bryce Chung
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Muneeb Zia
- School of Electrical and Computer Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Kyle A Thomas
- Graduate Program in Biomedical Engineering at Emory University and Georgia TechAtlantaUnited States
| | | | - Amanda Jacob
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Andrea Pack
- Neuroscience Graduate Program, Emory UniversityAtlantaUnited States
| | - Matthew J Williams
- Graduate Program in Biomedical Engineering at Emory University and Georgia TechAtlantaUnited States
| | | | - Lay Heng Teng
- Department of Biology, Emory UniversityAtlantaUnited States
| | | | | | - Nicole Oey
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Rhuna Gibbs
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Philip Anschutz
- Graduate Program in BioEngineering, Georgia TechAtlantaUnited States
| | - Jiaao Lu
- Graduate Program in Electrical and Computer Engineering, Georgia TechAtlantaUnited States
| | - Yu Wu
- School of Electrical and Computer Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Mehrdad Kashefi
- Department of Physiology and Pharmacology, Western UniversityLondonCanada
| | - Tomomichi Oya
- Department of Physiology and Pharmacology, Western UniversityLondonCanada
| | - Rhonda Kersten
- Department of Physiology and Pharmacology, Western UniversityLondonCanada
| | - Alice C Mosberger
- Zuckerman Mind Brain Behavior Institute at Columbia UniversityNew YorkUnited States
| | - Sean O'Connell
- Graduate Program in Biomedical Engineering at Emory University and Georgia TechAtlantaUnited States
| | - Runming Wang
- Department of Biomedical Engineering at Emory University and Georgia TechAtlantaUnited States
| | - Hugo Marques
- Champalimaud Neuroscience Programme, Champalimaud FoundationLisbonPortugal
| | - Ana Rita Mendes
- Champalimaud Neuroscience Programme, Champalimaud FoundationLisbonPortugal
| | - Constanze Lenschow
- Champalimaud Neuroscience Programme, Champalimaud FoundationLisbonPortugal
| | | | - Jeong Jun Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of MedicineBaltimoreUnited States
| | - William Olson
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Kiara N Quinn
- Departments of Biomedical Engineering and Neurology, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Pierce Perkins
- Departments of Biomedical Engineering and Neurology, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Graziana Gatto
- Salk Institute for Biological StudiesLa JollaUnited States
| | | | - Susan Coltman
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
| | - Taegyo Kim
- Department of Neurobiology & Anatomy, Drexel University, College of MedicinePhiladelphiaUnited States
| | - Trevor Smith
- Department of Neurobiology & Anatomy, Drexel University, College of MedicinePhiladelphiaUnited States
| | - Ben Binder-Markey
- Department of Physical Therapy and Rehabilitation Sciences, Drexel University College of Nursing and Health ProfessionsPhiladelphiaUnited States
| | - Martin Zaback
- Department of Health and Rehabilitation Sciences, Temple UniversityPhiladelphiaUnited States
| | - Christopher K Thompson
- Department of Health and Rehabilitation Sciences, Temple UniversityPhiladelphiaUnited States
| | - Simon Giszter
- Department of Neurobiology & Anatomy, Drexel University, College of MedicinePhiladelphiaUnited States
| | - Abigail Person
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical CampusAuroraUnited States
- Allen InstituteSeattleUnited States
| | | | - Eiman Azim
- Salk Institute for Biological StudiesLa JollaUnited States
| | - Nitish Thakor
- Departments of Biomedical Engineering and Neurology, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Daniel O'Connor
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Barry Trimmer
- Department of Biology, Tufts UniversityMedfordUnited States
| | - Susana Q Lima
- Champalimaud Neuroscience Programme, Champalimaud FoundationLisbonPortugal
| | - Megan R Carey
- Champalimaud Neuroscience Programme, Champalimaud FoundationLisbonPortugal
| | - Chethan Pandarinath
- Department of Biomedical Engineering at Emory University and Georgia TechAtlantaUnited States
| | - Rui M Costa
- Zuckerman Mind Brain Behavior Institute at Columbia UniversityNew YorkUnited States
| | | | - Muhannad Bakir
- School of Electrical and Computer Engineering, Georgia Institute of TechnologyAtlantaUnited States
| | - Samuel J Sober
- Department of Biology, Emory UniversityAtlantaUnited States
| |
Collapse
|
3
|
Chung B, Zia M, Thomas KA, Michaels JA, Jacob A, Pack A, Williams MJ, Nagapudi K, Teng LH, Arrambide E, Ouellette L, Oey N, Gibbs R, Anschutz P, Lu J, Wu Y, Kashefi M, Oya T, Kersten R, Mosberger AC, O'Connell S, Wang R, Marques H, Mendes AR, Lenschow C, Kondakath G, Kim JJ, Olson W, Quinn KN, Perkins P, Gatto G, Thanawalla A, Coltman S, Kim T, Smith T, Binder-Markey B, Zaback M, Thompson CK, Giszter S, Person A, Goulding M, Azim E, Thakor N, O'Connor D, Trimmer B, Lima SQ, Carey MR, Pandarinath C, Costa RM, Pruszynski JA, Bakir M, Sober SJ. Myomatrix arrays for high-definition muscle recording. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529200. [PMID: 36865176 PMCID: PMC9980060 DOI: 10.1101/2023.02.21.529200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Neurons coordinate their activity to produce an astonishing variety of motor behaviors. Our present understanding of motor control has grown rapidly thanks to new methods for recording and analyzing populations of many individual neurons over time. In contrast, current methods for recording the nervous system's actual motor output - the activation of muscle fibers by motor neurons - typically cannot detect the individual electrical events produced by muscle fibers during natural behaviors and scale poorly across species and muscle groups. Here we present a novel class of electrode devices ("Myomatrix arrays") that record muscle activity at unprecedented resolution across muscles and behaviors. High-density, flexible electrode arrays allow for stable recordings from the muscle fibers activated by a single motor neuron, called a "motor unit", during natural behaviors in many species, including mice, rats, primates, songbirds, frogs, and insects. This technology therefore allows the nervous system's motor output to be monitored in unprecedented detail during complex behaviors across species and muscle morphologies. We anticipate that this technology will allow rapid advances in understanding the neural control of behavior and in identifying pathologies of the motor system.
Collapse
Affiliation(s)
- Bryce Chung
- Department of Biology, Emory University (Atlanta, GA, USA)
| | - Muneeb Zia
- School of Electrical and Computer Engineering, Georgia Institute of Technology (Atlanta, GA, USA)
| | - Kyle A Thomas
- Graduate Program in Biomedical Engineering at Emory University and Georgia Tech (Atlanta, GA, USA)
| | - Jonathan A Michaels
- Department of Physiology and Pharmacology, Western University (London, ON, Canada)
| | - Amanda Jacob
- Department of Biology, Emory University (Atlanta, GA, USA)
| | - Andrea Pack
- Neuroscience Graduate Program, Emory University (Atlanta, GA, USA)
| | - Matthew J Williams
- Graduate Program in Biomedical Engineering at Emory University and Georgia Tech (Atlanta, GA, USA)
| | | | - Lay Heng Teng
- Department of Biology, Emory University (Atlanta, GA, USA)
| | | | | | - Nicole Oey
- Department of Biology, Emory University (Atlanta, GA, USA)
| | - Rhuna Gibbs
- Department of Biology, Emory University (Atlanta, GA, USA)
| | - Philip Anschutz
- Graduate Program in BioEngineering, Georgia Tech (Atlanta, GA, USA)
| | - Jiaao Lu
- Graduate Program in Electrical and Computer Engineering, Georgia Tech (Atlanta, GA, USA)
| | - Yu Wu
- School of Electrical and Computer Engineering, Georgia Institute of Technology (Atlanta, GA, USA)
| | - Mehrdad Kashefi
- Department of Physiology and Pharmacology, Western University (London, ON, Canada)
| | - Tomomichi Oya
- Department of Physiology and Pharmacology, Western University (London, ON, Canada)
| | - Rhonda Kersten
- Department of Physiology and Pharmacology, Western University (London, ON, Canada)
| | - Alice C Mosberger
- Zuckerman Mind Brain Behavior Institute at Columbia University (New York, NY, USA)
| | - Sean O'Connell
- Graduate Program in Biomedical Engineering at Emory University and Georgia Tech (Atlanta, GA, USA)
| | - Runming Wang
- Department of Biomedical Engineering at Emory University and Georgia Tech (Atlanta, GA, USA)
| | - Hugo Marques
- Champalimaud Neuroscience Programme, Champalimaud Foundation (Lisbon, Portugal)
| | - Ana Rita Mendes
- Champalimaud Neuroscience Programme, Champalimaud Foundation (Lisbon, Portugal)
| | - Constanze Lenschow
- Champalimaud Neuroscience Programme, Champalimaud Foundation (Lisbon, Portugal)
- current address: Institute of Biology, Otto-von-Guericke University, (Magdeburg, Germany)
| | | | - Jeong Jun Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine (Baltimore, MD, USA)
| | - William Olson
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine (Baltimore, MD, USA)
| | - Kiara N Quinn
- Departments of Biomedical Engineering and Neurology, Johns Hopkins School of Medicine (Baltimore, MD, USA)
| | - Pierce Perkins
- Departments of Biomedical Engineering and Neurology, Johns Hopkins School of Medicine (Baltimore, MD, USA)
| | - Graziana Gatto
- Salk Institute for Biological Studies (La Jolla, CA, USA)
- current address: Department of Neurology, University Hospital of Cologne (Cologne, Germany)
| | | | - Susan Coltman
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus (Aurora, CO, USA)
| | - Taegyo Kim
- Department of Neurobiology & Anatomy, Drexel University, College of Medicine (Philadelphia, PA, USA)
| | - Trevor Smith
- Department of Neurobiology & Anatomy, Drexel University, College of Medicine (Philadelphia, PA, USA)
| | - Ben Binder-Markey
- Department of Physical Therapy and Rehabilitation Sciences, Drexel University College of Nursing and Health Professions (Philadelphia, PA)
| | - Martin Zaback
- Department of Health and Rehabilitation Sciences, Temple University (Philadelphia, PA, USA)
| | - Christopher K Thompson
- Department of Health and Rehabilitation Sciences, Temple University (Philadelphia, PA, USA)
| | - Simon Giszter
- Department of Neurobiology & Anatomy, Drexel University, College of Medicine (Philadelphia, PA, USA)
| | - Abigail Person
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus (Aurora, CO, USA)
| | | | - Eiman Azim
- Salk Institute for Biological Studies (La Jolla, CA, USA)
| | - Nitish Thakor
- Departments of Biomedical Engineering and Neurology, Johns Hopkins School of Medicine (Baltimore, MD, USA)
| | - Daniel O'Connor
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine (Baltimore, MD, USA)
| | - Barry Trimmer
- Department of Biology, Tufts University (Medford, MA, USA)
| | - Susana Q Lima
- Champalimaud Neuroscience Programme, Champalimaud Foundation (Lisbon, Portugal)
| | - Megan R Carey
- Champalimaud Neuroscience Programme, Champalimaud Foundation (Lisbon, Portugal)
| | - Chethan Pandarinath
- Department of Biomedical Engineering at Emory University and Georgia Tech (Atlanta, GA, USA)
| | - Rui M Costa
- Zuckerman Mind Brain Behavior Institute at Columbia University (New York, NY, USA)
- Allen Institute (Seattle, WA, USA)
| | - J Andrew Pruszynski
- Department of Physiology and Pharmacology, Western University (London, ON, Canada)
| | - Muhannad Bakir
- School of Electrical and Computer Engineering, Georgia Institute of Technology (Atlanta, GA, USA)
| | - Samuel J Sober
- Department of Biology, Emory University (Atlanta, GA, USA)
| |
Collapse
|
4
|
Cavarsan CF, Steele PR, Genry LT, Reedich EJ, McCane LM, LaPre KJ, Puritz AC, Manuel M, Katenka N, Quinlan KA. Inhibitory interneurons show early dysfunction in a SOD1 mouse model of amyotrophic lateral sclerosis. J Physiol 2023; 601:647-667. [PMID: 36515374 PMCID: PMC9898203 DOI: 10.1113/jp284192] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Few studies in amyotrophic lateral sclerosis (ALS) measure effects of the disease on inhibitory interneurons synapsing onto motoneurons (MNs). However, inhibitory interneurons could contribute to dysfunction, particularly if altered before MN neuropathology, and establish a long-term imbalance of inhibition/excitation. We directly assessed excitability and morphology of glycinergic (GlyT2 expressing) ventral lumbar interneurons from SOD1G93AGlyT2eGFP (SOD1) and wild-type GlyT2eGFP (WT) mice on postnatal days 6-10. Patch clamp revealed dampened excitability in SOD1 interneurons, including depolarized persistent inward currents (PICs), increased voltage and current threshold for firing action potentials, along with a marginal decrease in afterhyperpolarization duration. Primary neurites of ventral SOD1 inhibitory interneurons were larger in volume and surface area than WT. GlyT2 interneurons were then divided into three subgroups based on location: (1) interneurons within 100 μm of the ventral white matter, where Renshaw cells (RCs) are located, (2) interneurons interspersed with MNs in lamina IX, and (3) interneurons in the intermediate ventral area including laminae VII and VIII. Ventral interneurons in the RC area were the most profoundly affected, exhibiting more depolarized PICs and larger primary neurites. Interneurons in lamina IX had depolarized PIC onset. In lamina VII-VIII, interneurons were least affected. In summary, inhibitory interneurons show very early region-specific perturbations poised to impact excitatory/inhibitory balance of MNs, modify motor output and provide early biomarkers of ALS. Therapeutics like riluzole that universally reduce CNS excitability could exacerbate the inhibitory dysfunction described here. KEY POINTS: Spinal inhibitory interneurons could contribute to amyotrophic lateral sclerosis (ALS) pathology, but their excitability has never been directly measured. We studied the excitability and morphology of glycinergic interneurons in early postnatal transgenic mice (SOD1G93A GlyT2eGFP). Interneurons were less excitable and had marginally smaller somas but larger primary neurites in SOD1 mice. GlyT2 interneurons were analysed according to their localization within the ventral spinal cord. Interestingly, the greatest differences were observed in the most ventrally located interneurons. We conclude that inhibitory interneurons show presymptomatic changes that may contribute to excitatory/inhibitory imbalance in ALS.
Collapse
Affiliation(s)
- Clarissa F Cavarsan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Preston R Steele
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - Landon T Genry
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - Emily J Reedich
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Lynn M McCane
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - Kay J LaPre
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Alyssa C Puritz
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marin Manuel
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Natallia Katenka
- Department of Computer Science and Statistics, University of Rhode Island, Kingston, RI, USA
| | - Katharina A Quinlan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
5
|
Fuchs J, Bockay A, Liptak T, Ledecky V, Kuricova M. Practical use of electromyography in veterinary medicine - A review. VET MED-CZECH 2022; 67:113-122. [PMID: 39170597 PMCID: PMC11334769 DOI: 10.17221/60/2021-vetmed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/08/2021] [Indexed: 08/23/2024] Open
Abstract
Electromyography (EMG) is a sophisticated electrodiagnostic-neurophysiological method, which serves to diagnose neuromuscular system diseases. It is based on the measurement of the electrical potentials created by the skeletal muscle activity. For this technique, surface electrodes and needle electrodes can be used, which read the action potential of a large number of motor units and read a small number of motor units, respectively. The wide-spectrum application of this method extends our diagnostic possibilities of the clinical examination in veterinary practice. Together with a clinical neurological examination and imaging methods, EMG forms a part of the diagnosis of nervous system diseases and it is a useful diagnostic technique for differentiating neuropathies, junctionopathies, and myopathies. The results of the neurophysiological examination inform us about the functional state of the peripheral and central nervous system; it can demonstrate subclinical diseases and monitor the dynamics of changes in the functional state of individual nervous systems over time. In this article, we review the electromyographic method and its use in veterinary practice.
Collapse
Affiliation(s)
- Jakub Fuchs
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - Andrej Bockay
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - Tomas Liptak
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - Valent Ledecky
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| | - Maria Kuricova
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Košice, Slovak Republic
| |
Collapse
|
6
|
Bączyk M, Alami NO, Delestrée N, Martinot C, Tang L, Commisso B, Bayer D, Doisne N, Frankel W, Manuel M, Roselli F, Zytnicki D. Synaptic restoration by cAMP/PKA drives activity-dependent neuroprotection to motoneurons in ALS. J Exp Med 2021; 217:151829. [PMID: 32484501 PMCID: PMC7398175 DOI: 10.1084/jem.20191734] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/03/2020] [Accepted: 05/01/2020] [Indexed: 12/26/2022] Open
Abstract
Excessive excitation is hypothesized to cause motoneuron (MN) degeneration in amyotrophic lateral sclerosis (ALS), but actual proof of hyperexcitation in vivo is missing, and trials based on this concept have failed. We demonstrate, by in vivo single-MN electrophysiology, that, contrary to expectations, excitatory responses evoked by sensory and brainstem inputs are reduced in MNs of presymptomatic mutSOD1 mice. This impairment correlates with disrupted postsynaptic clustering of Homer1b, Shank, and AMPAR subunits. Synaptic restoration can be achieved by activation of the cAMP/PKA pathway, by either intracellular injection of cAMP or DREADD-Gs stimulation. Furthermore, we reveal, through independent control of signaling and excitability allowed by multiplexed DREADD/PSAM chemogenetics, that PKA-induced restoration of synapses triggers an excitation-dependent decrease in misfolded SOD1 burden and autophagy overload. In turn, increased MN excitability contributes to restoring synaptic structures. Thus, the decrease of excitation to MN is an early but reversible event in ALS. Failure of the postsynaptic site, rather than hyperexcitation, drives disease pathobiochemistry.
Collapse
Affiliation(s)
- Marcin Bączyk
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Najwa Ouali Alami
- Department of Neurology, Ulm University, Ulm, Germany.,International Graduate School in Molecular Medicine Ulm, Ulm University, Ulm, Germany
| | - Nicolas Delestrée
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Clémence Martinot
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Linyun Tang
- Department of Neurology, Ulm University, Ulm, Germany.,Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Barbara Commisso
- Department of Neurology, Ulm University, Ulm, Germany.,Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - David Bayer
- Department of Neurology, Ulm University, Ulm, Germany.,Cellular and Molecular Mechanisms in Aging Research Training Group, Ulm University, Ulm, Germany
| | - Nicolas Doisne
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Wayne Frankel
- Department of Genetics & Development, Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY
| | - Marin Manuel
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany.,Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.,German Center for Neurodegenerative Diseases, Ulm, Germany.,Neurozentrum Ulm, Ulm, Germany
| | - Daniel Zytnicki
- Université de Paris, Saints-Pères Paris Institute for the Neurosciences (SPPIN), Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
7
|
Spitale FM, Vicario N, Rosa MD, Tibullo D, Vecchio M, Gulino R, Parenti R. Increased expression of connexin 43 in a mouse model of spinal motoneuronal loss. Aging (Albany NY) 2020; 12:12598-12608. [PMID: 32579130 PMCID: PMC7377853 DOI: 10.18632/aging.103561] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the most common motoneuronal disease, characterized by motoneuronal loss and progressive paralysis. Despite research efforts, ALS remains a fatal disease, with a survival of 2-5 years after disease onset. Numerous gene mutations have been correlated with both sporadic (sALS) and familiar forms of the disease, but the pathophysiological mechanisms of ALS onset and progression are still largely uncertain. However, a common profile is emerging in ALS pathological features, including misfolded protein accumulation and a cross-talk between neuroinflammatory and degenerative processes. In particular, astrocytes and microglial cells have been proposed as detrimental influencers of perineuronal microenvironment, and this role may be exerted via gap junctions (GJs)- and hemichannels (HCs)-mediated communications. Herein we investigated the role of the main astroglial GJs-forming connexin, Cx43, in human ALS and the effects of focal spinal cord motoneuronal depletion onto the resident glial cells and Cx43 levels. Our data support the hypothesis that motoneuronal depletion may affect glial activity, which in turn results in reactive Cx43 expression, further promoting neuronal suffering and degeneration.
Collapse
Affiliation(s)
- Federica Maria Spitale
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Sciences, University of Catania, Catania 95123, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, Catania 95123, Italy
| | - Michele Vecchio
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95123, Italy.,Rehabilitation Unit, "AOU Policlinico Vittorio Emanuele", University of Catania, Catania 95123, Italy
| | - Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy
| |
Collapse
|
8
|
Cholinergic modulation of motor neurons through the C-boutons are necessary for the locomotor compensation for severe motor neuron loss during amyotrophic lateral sclerosis disease progression. Behav Brain Res 2019; 369:111914. [DOI: 10.1016/j.bbr.2019.111914] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/02/2019] [Accepted: 04/13/2019] [Indexed: 12/11/2022]
|
9
|
Gulino R, Vicario N, Giunta MAS, Spoto G, Calabrese G, Vecchio M, Gulisano M, Leanza G, Parenti R. Neuromuscular Plasticity in a Mouse Neurotoxic Model of Spinal Motoneuronal Loss. Int J Mol Sci 2019; 20:ijms20061500. [PMID: 30917493 PMCID: PMC6471664 DOI: 10.3390/ijms20061500] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/19/2019] [Accepted: 03/24/2019] [Indexed: 12/11/2022] Open
Abstract
Despite the relevant research efforts, the causes of amyotrophic lateral sclerosis (ALS) are still unknown and no effective cure is available. Many authors suggest that ALS is a multi-system disease caused by a network failure instead of a cell-autonomous pathology restricted to motoneurons. Although motoneuronal loss is the critical hallmark of ALS given their specific vulnerability, other cell populations, including muscle and glial cells, are involved in disease onset and progression, but unraveling their specific role and crosstalk requires further investigation. In particular, little is known about the plastic changes of the degenerating motor system. These spontaneous compensatory processes are unable to halt the disease progression, but their elucidation and possible use as a therapeutic target represents an important aim of ALS research. Genetic animal models of disease represent useful tools to validate proven hypotheses or to test potential therapies, and the conception of novel hypotheses about ALS causes or the study of pathogenic mechanisms may be advantaged by the use of relatively simple in vivo models recapitulating specific aspects of the disease, thus avoiding the inclusion of too many confounding factors in an experimental setting. Here, we used a neurotoxic model of spinal motoneuron depletion induced by injection of cholera toxin-B saporin in the gastrocnemius muscle to investigate the possible occurrence of compensatory changes in both the muscle and spinal cord. The results showed that, following the lesion, the skeletal muscle became atrophic and displayed electromyographic activity similar to that observed in ALS patients. Moreover, the changes in muscle fiber morphology were different from that observed in ALS models, thus suggesting that some muscular effects of disease may be primary effects instead of being simply caused by denervation. Notably, we found plastic changes in the surviving motoneurons that can produce a functional restoration probably similar to the compensatory changes occurring in disease. These changes could be at least partially driven by glutamatergic signaling, and astrocytes contacting the surviving motoneurons may support this process.
Collapse
Affiliation(s)
- Rosario Gulino
- Laboratory of Neurophysiology, Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Catania 95123, Italy.
| | - Nunzio Vicario
- Laboratory of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy.
| | - Maria A S Giunta
- Laboratory of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy.
| | - Graziana Spoto
- Laboratory of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy.
| | - Giovanna Calabrese
- Laboratory of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy.
| | - Michele Vecchio
- Rehabilitation Unit, "AOU Policlinico Vittorio Emanuele" and Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95123, Italy.
| | - Massimo Gulisano
- Laboratory of Synthetic and Systems Biology, Department of Drug Sciences, University of Catania, Catania 95125, Italy.
| | - Giampiero Leanza
- Laboratory of Neurogenesis and Repair, Department of Drug Sciences, University of Catania, Catania 95125, Italy.
| | - Rosalba Parenti
- Laboratory of Cellular and Molecular Physiology, Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy.
| |
Collapse
|
10
|
Barroso FO, Yoder B, Tentler D, Wallner JJ, Kinkhabwala AA, Jantz MK, Flint RD, Tostado PM, Pei E, Satish ADR, Brodnick SK, Suminski AJ, Williams JC, Miller LE, Tresch MC. Decoding neural activity to predict rat locomotion using intracortical and epidural arrays. J Neural Eng 2019; 16:036005. [DOI: 10.1088/1741-2552/ab0698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Martínez-Silva MDL, Imhoff-Manuel RD, Sharma A, Heckman CJ, Shneider NA, Roselli F, Zytnicki D, Manuel M. Hypoexcitability precedes denervation in the large fast-contracting motor units in two unrelated mouse models of ALS. eLife 2018; 7:30955. [PMID: 29580378 PMCID: PMC5922970 DOI: 10.7554/elife.30955] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/14/2018] [Indexed: 12/17/2022] Open
Abstract
Hyperexcitability has been suggested to contribute to motoneuron degeneration in amyotrophic lateral sclerosis (ALS). If this is so, and given that the physiological type of a motor unit determines the relative susceptibility of its motoneuron in ALS, then one would expect the most vulnerable motoneurons to display the strongest hyperexcitability prior to their degeneration, whereas the less vulnerable should display a moderate hyperexcitability, if any. We tested this hypothesis in vivo in two unrelated ALS mouse models by correlating the electrical properties of motoneurons with their physiological types, identified based on their motor unit contractile properties. We found that, far from being hyperexcitable, the most vulnerable motoneurons become unable to fire repetitively despite the fact that their neuromuscular junctions were still functional. Disease markers confirm that this loss of function is an early sign of degeneration. Our results indicate that intrinsic hyperexcitability is unlikely to be the cause of motoneuron degeneration. Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is a fatal disorder of the nervous system. Early symptoms include muscle weakness, unsteadiness and slurred speech. These symptoms arise because the neurons that control muscles – the motoneurons – lose their ability to make the muscles contract. Eventually, the muscles become paralyzed, with more and more muscles affected over time. Most patients die within a few years of diagnosis when the disease destroys the muscles that control breathing. Muscles are made up of muscle fibers. Each motoneuron controls a bundle of muscle fibers, and the motoneuron and its muscle fibers together make up a motor unit. A single muscle contains hundreds of motor units. These consist of several different types, which differ in how many muscle fibers they contain, how fast those muscle fibers can contract, and how fatigable the muscle fibers are. In ALS, motoneurons become detached from their muscle fibers, causing motor units to break down. But what triggers this process? One long-standing idea is that motoneurons begin to respond excessively to commands from the brain and spinal cord. In other words, they become hyperexcitable, which ultimately leads to their death. But some more recent studies of ALS suggest the opposite, namely that motoneurons become less active, or hypoexcitable. To distinguish between these possibilities, Martinez-Silva et al. took advantage of the fact that different types of motor unit break down at different rates in ALS. Large motor units containing fast-contracting muscle fibers break down before smaller motor units. By measuring the activity of motor units in two mouse models of ALS, Martinez-Silva et al. showed that large motoneurons are hypoexcitable. In other words, the motoneurons that are most vulnerable to ALS respond too little to commands from the nervous system, rather than too much. Studies of specific proteins inside the cells confirmed that hypoexcitable motoneurons are further along in the disease process than other motoneurons. Hypoexcitability is thus a key player in the ALS disease process. Developing drugs to target this hypoexcitability may be a promising strategy for the future of this condition.
Collapse
Affiliation(s)
| | - Rebecca D Imhoff-Manuel
- Centre de Neurophysique, Physiologie et Pathologie, CNRS, Université Paris Descartes, Paris, France
| | - Aarti Sharma
- Center for Motor Neuron Biology and Disease, Department of Neurology, Columbia University, New York, United States
| | - C J Heckman
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University, Feinberg School of Medicine, Chicago, United States.,Department of Physical Therapy and Human Movement Science, Northwestern University, Feinberg School of Medicine, Chicago, United States
| | - Neil A Shneider
- Center for Motor Neuron Biology and Disease, Department of Neurology, Columbia University, New York, United States
| | | | - Daniel Zytnicki
- Centre de Neurophysique, Physiologie et Pathologie, CNRS, Université Paris Descartes, Paris, France
| | - Marin Manuel
- Centre de Neurophysique, Physiologie et Pathologie, CNRS, Université Paris Descartes, Paris, France.,Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, United States
| |
Collapse
|