1
|
Piao Y, Chen C, Wu D, Liu M, Li W, Chen J, Sang Y. Clinical, genetic characteristics and outcome of four Chinese patients with Bartter syndrome type 3: Further insight into a genotype-phenotype correlation. Mol Genet Metab Rep 2024; 40:101112. [PMID: 39071140 PMCID: PMC11279331 DOI: 10.1016/j.ymgmr.2024.101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 06/22/2024] [Indexed: 07/30/2024] Open
Abstract
Aim To investigate the characteristics of 4 Chinese patients with Bartter syndrome type 3 (BS Type 3). Methods The clinical data, genetic analysis, and outcome of four cases with Bartter syndrome type 3 were retrospectively summarised. Results Gene sequencing analysis showed that all children carried a compound heterozygous mutation in the CLCNKB gene and were diagnosed with BS type 3. All types of mutations were detected, including two missense mutations, one nonsense mutation, one small fragment deletion mutation, two large deletion mutations and one splice-site mutation. The splice-site mutation c.100 + 1 (IVS2) C > T was novel. Two cases carried large deletion mutations. The patients presented as classic BS with modest manifestations. The most common sign was growth retardation. There was no polyhydramnios or preterm delivery. All cases were treated with potassium chloride supplementation and indomethacin. During long-term follow-up, clinical symptoms and growth retardation improved significantly. Nephrocalcinosis or renal dysfunction was not observed. Conclusion The clinical manifestations of BS type 3 are mostly presented as cBS. Growth retardation is a common sign. BS type 3 had a good long-term prognosis. There were various types of mutations in the CLCNKB gene. Large deletions were the most common.
Collapse
Affiliation(s)
- Yurong Piao
- Department of Immunology, National Center for Children's Health, Beijing Children's Hospital of Capital Medical University, Beijing, China
| | - Congli Chen
- Department of Pediatric Endocrinology, Genetic, and Metabolism, National Center for Children's Health, Beijing Children's Hospital of Capital Medical University, Beijing, China
| | - Di Wu
- Department of Pediatric Endocrinology, Genetic, and Metabolism, National Center for Children's Health, Beijing Children's Hospital of Capital Medical University, Beijing, China
| | - Min Liu
- Department of Pediatric Endocrinology, Genetic, and Metabolism, National Center for Children's Health, Beijing Children's Hospital of Capital Medical University, Beijing, China
| | - Wenjing Li
- Department of Pediatric Endocrinology, Genetic, and Metabolism, National Center for Children's Health, Beijing Children's Hospital of Capital Medical University, Beijing, China
| | - Jiahui Chen
- Department of Pediatric Endocrinology, Genetic, and Metabolism, National Center for Children's Health, Beijing Children's Hospital of Capital Medical University, Beijing, China
| | - Yanmei Sang
- Department of Pediatric Endocrinology, Genetic, and Metabolism, National Center for Children's Health, Beijing Children's Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Andrini O, Eladari D, Picard N. ClC-K Kidney Chloride Channels: From Structure to Pathology. Handb Exp Pharmacol 2024; 283:35-58. [PMID: 36811727 DOI: 10.1007/164_2023_635] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The molecular basis of chloride transport varies all along the nephron depending on the tubular segments especially in the apical entry of the cell. The major chloride exit pathway during reabsorption is provided by two kidney-specific ClC chloride channels ClC-Ka and ClC-Kb (encoded by CLCNKA and CLCNKB gene, respectively) corresponding to rodent ClC-K1 and ClC-K2 (encoded by Clcnk1 and Clcnk2). These channels function as dimers and their trafficking to the plasma membrane requires the ancillary protein Barttin (encoded by BSND gene). Genetic inactivating variants of the aforementioned genes lead to renal salt-losing nephropathies with or without deafness highlighting the crucial role of ClC-Ka, ClC-Kb, and Barttin in the renal and inner ear chloride handling. The purpose of this chapter is to summarize the latest knowledge on renal chloride structure peculiarity and to provide some insight on the functional expression on the segments of the nephrons and on the related pathological effects.
Collapse
Affiliation(s)
- Olga Andrini
- Univ Lyon, University Claude Bernard Lyon 1, CNRS UMR 5284, INSERM U 1314, Melis, Lyon, France.
| | - Dominique Eladari
- CHU Amiens Picardie, Service de Médecine de Précision des maladies Métaboliques et Rénales, Université de Picardie Jules Verne, Amiens, France
| | - Nicolas Picard
- CNRS, LBTI UMR5305, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
3
|
Coppola MA, Pusch M, Imbrici P, Liantonio A. Small Molecules Targeting Kidney ClC-K Chloride Channels: Applications in Rare Tubulopathies and Common Cardiovascular Diseases. Biomolecules 2023; 13:biom13040710. [PMID: 37189456 DOI: 10.3390/biom13040710] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Given the key role played by ClC-K chloride channels in kidney and inner ear physiology and pathology, they can be considered important targets for drug discovery. Indeed, ClC-Ka and ClC-Kb inhibition would interfere with the urine countercurrent concentration mechanism in Henle's loop, which is responsible for the reabsorption of water and electrolytes from the collecting duct, producing a diuretic and antihypertensive effect. On the other hand, ClC-K/barttin channel dysfunctions in Bartter Syndrome with or without deafness will require the pharmacological recovery of channel expression and/or activity. In these cases, a channel activator or chaperone would be appealing. Starting from a brief description of the physio-pathological role of ClC-K channels in renal function, this review aims to provide an overview of the recent progress in the discovery of ClC-K channel modulators.
Collapse
Affiliation(s)
| | - Michael Pusch
- Institute of Biophysics, National Research Council, 16149 Genova, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| |
Collapse
|
4
|
Lin MH, Chen JC, Tian X, Lee CM, Yu IS, Lo YF, Uchida S, Huang CL, Chen BC, Cheng CJ. Impairment in renal medulla development underlies salt wasting in Clc-k2 channel deficiency. JCI Insight 2021; 6:e151039. [PMID: 34499620 PMCID: PMC8564913 DOI: 10.1172/jci.insight.151039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
The prevailing view is that the ClC-Ka chloride channel (mouse Clc-k1) functions in the thin ascending limb to control urine concentration, whereas the ClC-Kb channel (mouse Clc-k2) functions in the thick ascending limb (TAL) to control salt reabsorption. Mutations of ClC-Kb cause classic Bartter syndrome, characterized by renal salt wasting, with perinatal to adolescent onset. We studied the roles of Clc-k channels in perinatal mouse kidneys using constitutive or inducible kidney-specific gene ablation and 2D and advanced 3D imaging of optically cleared kidneys. We show that Clc-k1 and Clc-k2 were broadly expressed and colocalized in perinatal kidneys. Deletion of Clc-k1 and Clc-k2 revealed that both participated in NKCC2- and NCC-mediated NaCl reabsorption in neonatal kidneys. Embryonic deletion of Clc-k2 caused tubular injury and impaired renal medulla and TAL development. Inducible deletion of Clc-k2 beginning after medulla maturation produced mild salt wasting resulting from reduced NCC activity. Thus, both Clc-k1 and Clc-k2 contributed to salt reabsorption in TAL and distal convoluted tubule (DCT) in neonates, potentially explaining the less-severe phenotypes in classic Bartter syndrome. As opposed to the current understanding that salt wasting in adult patients with Bartter syndrome is due to Clc-k2 deficiency in adult TAL, our results suggest that it originates mainly from defects occurring in the medulla and TAL during development.
Collapse
Affiliation(s)
- Meng-Hsuan Lin
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, and.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Jen-Chi Chen
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, and
| | - Xuejiao Tian
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Chia-Ming Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Fen Lo
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, and
| | - Shinichi Uchida
- Department of Nephrology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chou-Long Huang
- Division of Nephrology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Bi-Chang Chen
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan.,Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-Jen Cheng
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, and.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Division of Nephrology, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Mrad FCC, Soares SBM, de Menezes Silva LAW, Dos Anjos Menezes PV, Simões-E-Silva AC. Bartter's syndrome: clinical findings, genetic causes and therapeutic approach. World J Pediatr 2021; 17:31-39. [PMID: 32488762 DOI: 10.1007/s12519-020-00370-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023]
Abstract
BACKGOUND Bartter's syndrome (BS) is a rare group of salt losing tubulopathies due to the impairment of transport mechanisms at the thick ascending limb of the Henle's loop. DATA SOURCES Literature reviews and original research articles were collected from database, including PubMed and Scopus. RESULTS According to the time of onset and symptoms, BS can be classified into antenatal and classic BS. Molecular studies have identified different subtypes of BS. BS types I, II and III are caused by mutations on genes encoding the luminal Na+-K+-2Cl- co-transporter, the luminal K+ channel ROMK, and the basolateral chloride channel ClC-Kb (CLCNKB), respectively. Loss-of-function mutations of Barttin CLCNK type accessory beta subunit cause BS type IVa. Simultaneous mutations of CLCNKB and CLCNKA cause BS type IVb. BS type V consists in a novel transient form characterized by antenatal presentation due to mutations in the MAGE family member D2. Severe gain-of-function mutations of the extracellular calcium sensing receptor gene can result in an autosomal dominant condition of BS. Main clinical and biochemical alterations in BS include polyuria, dehydration, hypokalemia, hypochloremic metabolic alkalosis, hyperreninemia, high levels of prostaglandins, normal or low blood pressure, hypercalciuria and failure to thrive. Treatment focuses mainly at correcting dehydration and electrolyte disturbances and in measures to reduce polyuria, including the use of nonsteroidal anti-inflammatory medications to control excessive renal prostaglandin E2 production. CONCLUSIONS Early diagnosis and treatment of BS may prevent long-term consequences such as growth failure, nephrocalcinosis and end-stage renal disease.
Collapse
Affiliation(s)
- Flavia Cristina Carvalho Mrad
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Av. Prof. Alfredo Balena, 190, Room # 281, Belo Horizonte, MG 30130-100, Brazil.,Pediatric Nephrology Unit, Faculty of Medicine, UFMG, Belo Horizonte, Brazil
| | - Sílvia Bouissou Morais Soares
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Av. Prof. Alfredo Balena, 190, Room # 281, Belo Horizonte, MG 30130-100, Brazil
| | - Luiz Alberto Wanderley de Menezes Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Av. Prof. Alfredo Balena, 190, Room # 281, Belo Horizonte, MG 30130-100, Brazil
| | - Pedro Versiani Dos Anjos Menezes
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Av. Prof. Alfredo Balena, 190, Room # 281, Belo Horizonte, MG 30130-100, Brazil
| | - Ana Cristina Simões-E-Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Av. Prof. Alfredo Balena, 190, Room # 281, Belo Horizonte, MG 30130-100, Brazil.
| |
Collapse
|
6
|
Calò LA, Davis PA. Are the Clinical Presentations (Phenotypes) of Gitelman's and Bartter's Syndromes Gene Mutations Driven by Their Effects on Intracellular pH, Their "pH" Enotype? Int J Mol Sci 2020; 21:E5660. [PMID: 32784543 PMCID: PMC7460608 DOI: 10.3390/ijms21165660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Gitelman's syndrome (GS) and Bartter's syndrome (BS) are rare inherited salt-losing tubulopathies whose variations in genotype do not correlate well with either clinical course or electrolyte requirements. Using GS/BS patients as nature's experiments, we found them to be a human model of endogenous Ang II antagonism with activated Renin-Angiotensin System (RAS), resulting in high Ang II levels with blunted cardiovascular effects. These patients are also characterized by increased and directly correlated levels of both Angiotensin Converting Enzyme 2 (ACE2) and Ang 1-7. Understanding the myriad of distinctive and frequently overlapping clinical presentations of GS/BS arises remains challenging. Efforts to find a treatment for COVID-19 has fueled a recent surge in interest in chloroquine/hydroxychloroquine and its effects. Of specific interest are chloroquine/hydroxychloroquine's ability to inhibit SARS-CoV infection by impairing ACE2, the SARS-CoV2 entry point, through terminal glycosylation via effects on TGN/post-Golgi pH homeostasis. Several different studies with a GS or a BS phenotype, along with a nonsyndromic form of X-linked intellectual disability linked to a mutated SLC9A7, provide additional evidence that specific gene defects can act via misregulation of TGN/post-Golgi pH homeostasis, which leads to a common mechanistic basis resulting in overlapping phenotypes. We suggest that linkage between the specific gene defects identified in GS and BS and the myriad of distinctive and frequently overlapping clinical findings may be the result of aberrant glycosylation of ACE2 driven by altered TGN/endosome system acidification caused by the metabolic alkalosis brought about by these salt-losing tubulopathies in addition to their altered intracellular calcium signaling due to a blunted second messenger induced intracellular calcium release that is, in turn, amplified by the RAS system.
Collapse
Affiliation(s)
- Lorenzo A Calò
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Paul A Davis
- Department of Nutrition, University of California at Davis, Davis, CA 95616, USA;
| |
Collapse
|
7
|
Sahbani D, Strumbo B, Tedeschi S, Conte E, Camerino GM, Benetti E, Montini G, Aceto G, Procino G, Imbrici P, Liantonio A. Functional Study of Novel Bartter's Syndrome Mutations in ClC-Kb and Rescue by the Accessory Subunit Barttin Toward Personalized Medicine. Front Pharmacol 2020; 11:327. [PMID: 32256370 PMCID: PMC7092721 DOI: 10.3389/fphar.2020.00327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Type III and IV Bartter syndromes (BS) are rare kidney tubulopathies caused by loss-of-function mutations in the CLCNKB and BSND genes coding respectively for the ClC-Kb chloride channels and accessory subunit barttin. ClC-K channels are expressed in the Henle's loop, distal convoluted tubule, and cortical collecting ducts of the kidney and contribute to chloride absorption and urine concentration. In our Italian cohort, we identified two new mutations in CLCNKB, G167V and G289R, in children affected by BS and previously reported genetic variants, A242E, a chimeric gene and the deletion of the whole CLCNKB. All the patients had hypokalemia and metabolic alkalosis, increased serum renin and aldosterone levels and were treated with a symptomatic therapy. In order to define the molecular mechanisms responsible for BS, we co-expressed ClC-Kb wild type and channels with point mutations with barttin in HEK 293 cells and characterized chloride currents through the patch-clamp technique. In addition, we attempted to revert the functional defect caused by BS mutations through barttin overexpression. G167V and A242E channels showed a drastic current reduction compared to wild type, likely suggesting compromised expression of mutant channels at the plasma membrane. Conversely, G289R channel was similar to wild type raising the doubt that an additional mutation in another gene or other mechanisms could account for the clinical phenotype. Interestingly, increasing ClC-K/barttin ratio augmented G167V and A242E mutants' chloride current amplitudes towards wild type levels. These results confirm a genotype-phenotype correlation in BS and represent a preliminary proof of concept that molecules functioning as molecular chaperones can restore channel function in expression-defective ClC-Kb mutants.
Collapse
Affiliation(s)
- Dalila Sahbani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Bice Strumbo
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvana Tedeschi
- Laboratory of Medical Genetics, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | | | - Elisa Benetti
- Nephrology, Dialysis and Transplant Unit, Department of Women's and Children's Health, University-Hospital of Padova, Padova, Italy
| | - Giovanni Montini
- Pediatric Nephrology, Dialysis, and Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
8
|
Wang C, Han Y, Zhou J, Zheng B, Zhou W, Bao H, Jia Z, Zhang A, Huang S, Ding G, Zhao F. Splicing Characterization of CLCNKB Variants in Four Patients With Type III Bartter Syndrome. Front Genet 2020; 11:81. [PMID: 32153641 PMCID: PMC7047732 DOI: 10.3389/fgene.2020.00081] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/24/2020] [Indexed: 12/22/2022] Open
Abstract
Objective Type III Bartter syndrome (BS) is caused by loss-of-function mutations in the gene encoding basolateral chloride channel ClC-Kb (CLCNKB), and is characterized by hypokalemic metabolic alkalosis and hyperreninemic hyperaldosteronism. Here, we investigated the molecular defects in four Chinese children with clinical manifestations of Bartter syndrome. Methods The genomic DNA of the four patients was screened for gene variations using whole-exome sequencing (WES). The candidate variants were validated by direct Sanger sequencing. Quantitative PCR (qPCR) was subsequently performed to confirm the whole CLCNK gene deletion mutation. A minigene assay and reverse transcription PCR (RT-PCR) were performed to analyze the effect of splice variants in vitro. Results Our patients showed early onset age with hyponatremia, hypokalemia, hypochloremia, repeated vomiting and growth retardation, suggesting Bartter syndrome. Genetic analysis revealed that all patients carried compound heterozygous or homozygous truncating variants in the CLCNKB gene. In particular, we identified a novel nonsense variant c.239G > A (p.(Trp80*)), two splice site variants (c.1053-1 G > A and c.1228-2A > G), a whole gene deletion, and a novel synonymous variant c.228A > C (p.(Arg76Arg)) which located -2 bp from the 5′ splice donor site in exon 3. Furthermore, our in vitro minigene analysis revealed c.228A > C, c.1053-1G > A, and c.1228-2A > G cause the skipping of exon 3, exon 12, and exon 13, respectively. Conclusion Our results support that the whole CLCNKB gene deletion is the most common mutation in Chinese patients with type III BS, and truncating and whole gene deletion variants may account for a more severe phenotype of patients. We verified the pathogenic effect of three splicing variants (c.228A > C, c.1053-1G > A, and c.1228-2A > G) which disturbed the normal mRNA splicing, suggesting that splice variants play an important role in the molecular basis of type III BS, and careful molecular profiling of these patients will be essential for future effective personalized treatment options.
Collapse
Affiliation(s)
- Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Han
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaran Zhou
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Huaying Bao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Guixia Ding
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Zhao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Bignon Y, Sakhi I, Bitam S, Bakouh N, Keck M, Frachon N, Paulais M, Planelles G, Teulon J, Andrini O. Analysis of CLCNKB mutations at dimer-interface, calcium-binding site, and pore reveals a variety of functional alterations in ClC-Kb channel leading to Bartter syndrome. Hum Mutat 2019; 41:774-785. [PMID: 31803959 DOI: 10.1002/humu.23962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/14/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022]
Abstract
Pathological missense mutations in CLCNKB gene give a wide spectrum of clinical phenotypes in Bartter syndrome type III patients. Molecular analysis of the mutated ClC-Kb channels can be helpful to classify the mutations according to their functional alteration. We investigated the functional consequences of nine mutations in the CLCNKB gene causing Bartter syndrome. We first established that all tested mutations lead to decreased ClC-Kb currents. Combining electrophysiological and biochemical methods in Xenopus laevis oocytes and in MDCKII cells, we identified three classes of mutations. One class is characterized by altered channel trafficking. p.A210V, p.P216L, p.G424R, and p.G437R are totally or partially retained in the endoplasmic reticulum. p.S218N is characterized by reduced channel insertion at the plasma membrane and altered pH-sensitivity; thus, it falls in the second class of mutations. Finally, we found a novel class of functionally inactivated mutants normally present at the plasma membrane. Indeed, we found that p.A204T alters the pH-sensitivity, p.A254V abolishes the calcium-sensitivity. p.G219C and p.G465R are probably partially inactive at the plasma membrane. In conclusion, most pathogenic mutants accumulate partly or totally in intracellular compartments, but some mutants are normally present at the membrane surface and simultaneously show a large range of altered channel gating properties.
Collapse
Affiliation(s)
- Yohan Bignon
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Laboratoire Physiologie Rénale et Tubulopathies, Paris, France.,CNRS ERL8228, Paris, France
| | - Imene Sakhi
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Laboratoire Physiologie Rénale et Tubulopathies, Paris, France.,CNRS ERL8228, Paris, France
| | - Sara Bitam
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Laboratoire Physiologie Rénale et Tubulopathies, Paris, France.,CNRS ERL8228, Paris, France
| | - Naziha Bakouh
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Laboratoire Physiologie Rénale et Tubulopathies, Paris, France.,CNRS ERL8228, Paris, France
| | - Mathilde Keck
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Laboratoire Physiologie Rénale et Tubulopathies, Paris, France.,CNRS ERL8228, Paris, France
| | | | - Marc Paulais
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Laboratoire Physiologie Rénale et Tubulopathies, Paris, France.,CNRS ERL8228, Paris, France
| | - Gabrielle Planelles
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Laboratoire Physiologie Rénale et Tubulopathies, Paris, France.,CNRS ERL8228, Paris, France
| | - Jacques Teulon
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Laboratoire Physiologie Rénale et Tubulopathies, Paris, France.,CNRS ERL8228, Paris, France
| | - Olga Andrini
- Institut NeuroMyoGène, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
10
|
Thakore P, Anderson M, Yosypiv IV. Classic Bartter Syndrome: A Cause of Severe Hypokalemic Metabolic Alkalosis. Clin Pediatr (Phila) 2019; 58:1557-1561. [PMID: 31230456 DOI: 10.1177/0009922819857535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Li Y, Wu C, Gu J, Li D, Yang Y. A novel mutation associated with Type III Bartter syndrome: A report of five cases. Mol Med Rep 2019; 20:65-72. [PMID: 31115572 DOI: 10.3892/mmr.2019.10255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 02/06/2019] [Indexed: 11/05/2022] Open
Abstract
The clinical, biochemical and mutation spectra of Chinese patients with Type III Bartter syndrome (type III BS), a rare autosomal recessive disorder, were investigated. A total of five unrelated Chinese patients aged 8 months to 24 years were diagnosed with type III BS via analysis of biochemical markers, including chloride, potassium and calcium, and genetic sequencing. The levels of insulin‑like growth factor‑1 (IGF‑1) were evaluated via ELISA and a mutation study of cultured amniocytes was conducted for prenatal diagnosis. The child patients were admitted for polydipsia, polyuria, myasthenia and developmental delay, whereas the adult patients were hospitalized for limb numbness, polydipsia and polyuria. Nine variants in the chloride voltage‑gated channel Kb (CLCNKB) gene were detected, including eight sequence variants and one whole CLCNKB gene deletion. One sequence variant (c.1967T>C) was novel, whereas the remaining variants (c.595G>T, c.908A>C, c.1004T>C, c.1312C>T, c.1334_1335delCT and c.1718C>A) and the whole gene deletion had been previously reported. The whole gene deletion was frequently observed in patients with early‑onset type III BS in the present study. Two patients showed IGF‑1 deficiency with normal growth hormone level. All patients were treated with potassium supplementation and indometacin. The mother of one patient underwent amniocentesis during her second pregnancy; the fetus was not affected by type III BS based on screening for sequence variants, and normal development and blood electrolyte analysis following birth confirmed the diagnosis. In conclusion, five cases of type III BS in patients from mainland China were reported. Large deletions were frequently detected, particularly in early‑onset patients; isolated IGF‑1 deficiency was found, one novel sequence variant was identified. Prenatal diagnosis was successfully established using genetic analysis of cultured amniocytes, and may facilitate the prevention of congenital defect of type III BS in the next pregnancy.
Collapse
Affiliation(s)
- Yanhan Li
- Department of Laboratory Animal Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Chengcheng Wu
- Department of Cardiology, General Hospital of Tianjin Medical University, Tianjin 300052, P.R. China
| | - Jie Gu
- Department of Laboratory Animal Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, P.R. China
| | - Dong Li
- Department of Nephrology, General Hospital of Tianjin Medical University, Tianjin 300052, P.R. China
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, P.R. China
| |
Collapse
|
12
|
Teulon J, Planelles G, Sepúlveda FV, Andrini O, Lourdel S, Paulais M. Renal Chloride Channels in Relation to Sodium Chloride Transport. Compr Physiol 2018; 9:301-342. [DOI: 10.1002/cphy.c180024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Abstract
Bartter syndrome is an inherited renal tubular disorder caused by a defective salt reabsorption in the thick ascending limb of loop of Henle, resulting in salt wasting, hypokalemia, and metabolic alkalosis. Mutations of several genes encoding the transporters and channels involved in salt reabsorption in the thick ascending limb cause different types of Bartter syndrome. A poor phenotype-genotype relationship due to the interaction with other cotransporters and different degrees of compensation through alternative pathways is currently reported. However, phenotypic identification still remains the first step to guide the suspicion of Bartter syndrome. Given the rarity of the syndrome, and the lack of genetic characterization in most cases, limited clinical evidence for treatment is available and the therapy is based mainly on the comprehension of renal physiology and relies on the physician's personal experiences. A better understanding of the mutated channels and transporters could possibly generate targets for specific treatment in the future, also encompassing drugs aiming to correct deficiencies in folding or plasma membrane expression of the mutated proteins.
Collapse
Affiliation(s)
- Tamara da Silva Cunha
- Nephrology Division, Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, São Paulo, Brazil,
| | - Ita Pfeferman Heilberg
- Nephrology Division, Universidade Federal de São Paulo (UNIFESP), Escola Paulista de Medicina, São Paulo, Brazil,
| |
Collapse
|
14
|
Wang C, Chen Y, Zheng B, Zhu M, Fan J, Wang J, Jia Z, Huang S, Zhang A. Novel compound heterozygous CLCNKB gene mutations (c.1755A>G/c.848_850delTCT) cause classic Bartter syndrome. Am J Physiol Renal Physiol 2018; 315:F844-F851. [PMID: 29442545 DOI: 10.1152/ajprenal.00077.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inactivated variants in CLCNKB gene encoding the basolateral chloride channel ClC-Kb cause classic Bartter syndrome characterized by hypokalemic metabolic alkalosis and hyperreninemic hyperaldosteronism. Here, we identified two cBS siblings presenting hypokalemia in a Chinese family due to novel compound heterozygous CLCNKB mutations (c.848_850delTCT/c.1755A>G). Compound heterozygosity was confirmed by amplifying and sequencing the patient's genomic DNA. The synonymous mutation c.1755A>G (Thr585Thr) was located at +2 bp from the 5' splice donor site in exon 15. Further transcript analysis demonstrated that this single nucleotide mutation causes exclusion of exon 15 in the cDNA from the proband and his mother. Furthermore, we investigated the expression and protein trafficking change of c.848_850delTCT (ΔTCT) and exon 15 deletion (ΔE15) mutation in vitro. The ΔE15 mutation markedly decreased the expression of ClC-Kb and resulted in a low-molecular-weight band (~55 kDa) trapping in the endoplasmic reticulum, while the ΔTCT mutant only decreased the total and plasma membrane ClC-Kb protein expression but did not affect the subcellular localization. Finally, we studied the physiological functions of mutations by using whole cell patch-clamp and found that the ΔE15 or ΔTCT mutation decreased the current of the ClC-Kb/barttin channel. These results suggested that the compound defective mutations of the CLCNKB gene are the molecular mechanism of the two cBS siblings.
Collapse
Affiliation(s)
- Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University , Nanjing , China
| | - Ying Chen
- Department of Nephrology, Children's Hospital of Nanjing Medical University , Nanjing , China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University , Nanjing , China
| | - Mengshu Zhu
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University , Nanjing , China
| | - Jia Fan
- Department of Physiology, Nanjing Medical University , Nanjing , China
| | - Juejin Wang
- Department of Physiology, Nanjing Medical University , Nanjing , China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University , Nanjing , China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University , Nanjing , China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University , Nanjing , China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University , Nanjing , China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University , Nanjing , China
| |
Collapse
|
15
|
Mikhaylenko DS, Prosyannikov MY, Baranova A, Nemtsova MV. [Genetic and biochemical features of the monogenic hereditary urolithiasis]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2018; 64:315-325. [PMID: 30135278 DOI: 10.18097/pbmc20186404315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Urolithiasis is a common urological problem. In most cases, this multifactorial pathology develops due to the combination of inherited low-penetrance gene variants and environment factors such as urinary tract infections and unbalanced diet. However, some cases are monogenic. These hereditary forms of urolithiasis manifest in childhood, and are characterized by multiple, bilateral and recurrent kidney stones and progress to chronic renal failure relatively early. Due to widening acceptance of exome and gene panel sequencing, substantially larger percentages of urolithiasis cases are now attributed to hereditary causes, up to 20% among patients of 18 years old or younger. Here we review genetic and biochemical mechanisms of urolithiasis, with an emphasis on its hereditary forms, including fermentopathies (primary hyperoxaluria, adenine phosphorobosyltransferase deficiency, phosphoribosyl-pyrophosphate-synthetase deficiency, xanthinuria, Lesch-Nihan syndrome) and these caused by membrane transport alterations (Dent's disease, familial hypomagnesia with hypercalciuria and nephrocalcinosis, hypophosphatemic urolithiasis, distal tubular acidosis, cystinuria, Bartter's syndrome). We suggest a comprehensive gene panel for NGS diagnostics of the hereditary urolithiasis. It is expected that accurate and timely diagnosis of hereditary forms of urolithiasis would enable the counselling of the carriers in affected families, and ensure personalized management of the patients with these conditions.
Collapse
Affiliation(s)
- D S Mikhaylenko
- Institute of Molecular Medicine of the Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Lopatkin Research Institute of Urology and Interventional Radiology - branch of the National Medical Research Center of Radiology, Moscow, Russia; Research Centre for Medical Genetics, Moscow, Russia
| | - M Y Prosyannikov
- Lopatkin Research Institute of Urology and Interventional Radiology - branch of the National Medical Research Center of Radiology, Moscow, Russia
| | - A Baranova
- Center for the Study of Chronic Metabolic and Rare Diseases, George Mason University, Fairfax, Virginia, USA
| | - M V Nemtsova
- Institute of Molecular Medicine of the Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Research Centre for Medical Genetics, Moscow, Russia
| |
Collapse
|
16
|
Jentsch TJ, Pusch M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol Rev 2018; 98:1493-1590. [DOI: 10.1152/physrev.00047.2017] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CLC anion transporters are found in all phyla and form a gene family of eight members in mammals. Two CLC proteins, each of which completely contains an ion translocation parthway, assemble to homo- or heteromeric dimers that sometimes require accessory β-subunits for function. CLC proteins come in two flavors: anion channels and anion/proton exchangers. Structures of these two CLC protein classes are surprisingly similar. Extensive structure-function analysis identified residues involved in ion permeation, anion-proton coupling and gating and led to attractive biophysical models. In mammals, ClC-1, -2, -Ka/-Kb are plasma membrane Cl−channels, whereas ClC-3 through ClC-7 are 2Cl−/H+-exchangers in endolysosomal membranes. Biological roles of CLCs were mostly studied in mammals, but also in plants and model organisms like yeast and Caenorhabditis elegans. CLC Cl−channels have roles in the control of electrical excitability, extra- and intracellular ion homeostasis, and transepithelial transport, whereas anion/proton exchangers influence vesicular ion composition and impinge on endocytosis and lysosomal function. The surprisingly diverse roles of CLCs are highlighted by human and mouse disorders elicited by mutations in their genes. These pathologies include neurodegeneration, leukodystrophy, mental retardation, deafness, blindness, myotonia, hyperaldosteronism, renal salt loss, proteinuria, kidney stones, male infertility, and osteopetrosis. In this review, emphasis is laid on biophysical structure-function analysis and on the cell biological and organismal roles of mammalian CLCs and their role in disease.
Collapse
Affiliation(s)
- Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Michael Pusch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; and Istituto di Biofisica, Consiglio Nazionale delle Ricerche, Genova, Italy
| |
Collapse
|
17
|
Kleta R, Bockenhauer D. Salt-Losing Tubulopathies in Children: What's New, What's Controversial? J Am Soc Nephrol 2018; 29:727-739. [PMID: 29237739 PMCID: PMC5827598 DOI: 10.1681/asn.2017060600] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Renal tubulopathies provide insights into the inner workings of the kidney, yet also pose therapeutic challenges. Because of the central nature of sodium in tubular transport physiology, disorders of sodium handling may affect virtually all aspects of the homeostatic functions of the kidney. Yet, owing to the rarity of these disorders, little clinical evidence regarding treatment exists. Consequently, treatment can vary widely between individual physicians and centers and is based mainly on understanding of renal physiology, reported clinical observations, and individual experiences. Salt-losing tubulopathies can affect all tubular segments, from the proximal tubule to the collecting duct. But the more frequently observed disorders are Bartter and Gitelman syndrome, which affect salt transport in the thick ascending limb of Henle's loop and/or the distal convoluted tubule, and these disorders generate the greatest controversies regarding management. Here, we review clinical and molecular aspects of salt-losing tubulopathies and discuss novel insights provided mainly by genetic investigations and retrospective clinical reviews. Additionally, we discuss controversial topics in the management of these disorders to highlight areas of importance for future clinical trials. International collaboration will be required to perform clinical studies to inform the treatment of these rare disorders.
Collapse
Affiliation(s)
- Robert Kleta
- UCL Centre for Nephrology and Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Detlef Bockenhauer
- UCL Centre for Nephrology and Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
18
|
Imbrici P, Conte D, Liantonio A. Paving the way for Bartter syndrome type 3 drug discovery: a hope from basic research. J Physiol 2017; 595:5403-5404. [PMID: 28598505 DOI: 10.1113/jp274645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | - Diana Conte
- Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy
| | | |
Collapse
|
19
|
Cheng CJ, Rodan AR, Huang CL. Emerging Targets of Diuretic Therapy. Clin Pharmacol Ther 2017; 102:420-435. [PMID: 28560800 DOI: 10.1002/cpt.754] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/15/2017] [Accepted: 05/21/2017] [Indexed: 12/14/2022]
Abstract
Diuretics are commonly prescribed for treatment in patients with hypertension, edema, or heart failure. Studies on hypertensive and salt-losing disorders and on urea transporters have contributed to better understanding of mechanisms of renal salt and water reabsorption and their regulation. Proteins involved in the regulatory pathways are emerging targets for diuretic and aquaretic therapy. Integrative high-throughput screening, protein structure analysis, and chemical modification have identified promising agents for preclinical testing in animals. These include WNK-SPAK inhibitors, ClC-K channel antagonists, ROMK channel antagonists, and pendrin and urea transporter inhibitors. We discuss the potential advantages and side effects of these potential diuretics.
Collapse
Affiliation(s)
- C-J Cheng
- Department of Medicine, Division of Nephrology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 114, Taiwan
| | - A R Rodan
- Department of Medicine, Division of Nephrology, University of Utah, Salt Lake City, Utah, USA
| | - C-L Huang
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|