1
|
Liao WY, Opie GM, Ziemann U, Semmler JG. Modulation of dorsal premotor cortex differentially influences visuomotor adaptation in young and older adults. Neurobiol Aging 2024; 141:34-45. [PMID: 38815412 DOI: 10.1016/j.neurobiolaging.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
The communication between dorsal premotor cortex (PMd) and primary motor cortex (M1) is important for visuomotor adaptation, but it is unclear how this relationship changes with advancing age. The present study recruited 21 young and 23 older participants for two experimental sessions during which intermittent theta burst stimulation (iTBS) or sham was applied over PMd. We assessed the effects of PMd iTBS on M1 excitability using motor evoked potentials (MEP) recorded from right first dorsal interosseous when single-pulse transcranial magnetic stimulation (TMS) was applied with posterior-anterior (PA) or anterior-posterior (AP) currents; and adaptation by quantifying error recorded during a visuomotor adaptation task (VAT). PMd iTBS potentiated PA (P < 0.0001) and AP (P < 0.0001) MEP amplitude in both young and older adults. PMd iTBS increased error in young adults during adaptation (P = 0.026), but had no effect in older adults (P = 0.388). Although PMd iTBS potentiated M1 excitability in both young and older adults, the intervention attenuated visuomotor adaptation specifically in young adults.
Collapse
Affiliation(s)
- Wei-Yeh Liao
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia.
| | - George M Opie
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - Ulf Ziemann
- Department of Neurology & Stroke, Eberhard Karls University of Tübingen, Tübingen, Germany; Hertie-Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - John G Semmler
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
2
|
Liao WY, Opie GM, Ziemann U, Semmler JG. The effects of intermittent theta burst stimulation over dorsal premotor cortex on primary motor cortex plasticity in young and older adults. Eur J Neurosci 2024; 60:4019-4033. [PMID: 38757748 DOI: 10.1111/ejn.16395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Previous transcranial magnetic stimulation (TMS) research suggests that the dorsal premotor cortex (PMd) influences neuroplasticity within the primary motor cortex (M1) through indirect (I) wave interneuronal circuits. However, it is unclear how the influence of PMd on the plasticity of M1 I-waves changes with advancing age. This study therefore investigated the neuroplastic effects of intermittent theta burst stimulation (iTBS) to M1 early and late I-wave circuits when preceded by iTBS (PMd iTBS-M1 iTBS) or sham stimulation (PMd sham-M1 iTBS) to PMd in 15 young and 16 older adults. M1 excitability was assessed with motor evoked potentials (MEP) recorded from the right first dorsal interosseous using posterior-anterior (PA) and anterior-posterior (AP) current TMS at standard stimulation intensities (PA1mV, AP1mV) and reduced stimulation intensities (PA0.5mV, early I-waves; AP0.5mV, late I-waves). PMd iTBS-M1 iTBS lowered the expected facilitation of PA0.5mV (to M1 iTBS) in young and older adults (P = 0.009), whereas the intervention had no effect on AP0.5mV facilitation in either group (P = 0.305). The modulation of PA0.5mV following PMd iTBS-M1 iTBS may reflect a specific influence of PMd on different I-wave circuits that are involved in M1 plasticity within young and older adults.
Collapse
Affiliation(s)
- Wei-Yeh Liao
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - George M Opie
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| | - Ulf Ziemann
- Department of Neurology & Stroke, Eberhard Karls University of Tübingen, Tübingen, Germany
- Hertie-Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - John G Semmler
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
3
|
Goldenkoff ER, Deluisi JA, Destiny DP, Lee TG, Michon KJ, Brissenden JA, Taylor SF, Polk TA, Vesia M. The behavioral and neural effects of parietal theta burst stimulation on the grasp network are stronger during a grasping task than at rest. Front Neurosci 2023; 17:1198222. [PMID: 37954875 PMCID: PMC10637360 DOI: 10.3389/fnins.2023.1198222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (TMS) is widely used in neuroscience and clinical settings to modulate human cortical activity. The effects of TMS on neural activity depend on the excitability of specific neural populations at the time of stimulation. Accordingly, the brain state at the time of stimulation may influence the persistent effects of repetitive TMS on distal brain activity and associated behaviors. We applied intermittent theta burst stimulation (iTBS) to a region in the posterior parietal cortex (PPC) associated with grasp control to evaluate the interaction between stimulation and brain state. Across two experiments, we demonstrate the immediate responses of motor cortex activity and motor performance to state-dependent parietal stimulation. We randomly assigned 72 healthy adult participants to one of three TMS intervention groups, followed by electrophysiological measures with TMS and behavioral measures. Participants in the first group received iTBS to PPC while performing a grasping task concurrently. Participants in the second group received iTBS to PPC while in a task-free, resting state. A third group of participants received iTBS to a parietal region outside the cortical grasping network while performing a grasping task concurrently. We compared changes in motor cortical excitability and motor performance in the three stimulation groups within an hour of each intervention. We found that parietal stimulation during a behavioral manipulation that activates the cortical grasping network increased downstream motor cortical excitability and improved motor performance relative to stimulation during rest. We conclude that constraining the brain state with a behavioral task during brain stimulation has the potential to optimize plasticity induction in cortical circuit mechanisms that mediate movement processes.
Collapse
Affiliation(s)
| | - Joseph A. Deluisi
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - Danielle P. Destiny
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Taraz G. Lee
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Katherine J. Michon
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - James A. Brissenden
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Stephan F. Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Thad A. Polk
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - Michael Vesia
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Liao W, Opie GM, Ziemann U, Semmler JG. Modulation of dorsal premotor cortex differentially influences I-wave excitability in primary motor cortex of young and older adults. J Physiol 2023; 601:2959-2974. [PMID: 37194369 PMCID: PMC10952229 DOI: 10.1113/jp284204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/12/2023] [Indexed: 05/18/2023] Open
Abstract
Previous research using transcranial magnetic stimulation (TMS) has demonstrated weakened connectivity between dorsal premotor cortex (PMd) and motor cortex (M1) with age. While this alteration is probably mediated by changes in the communication between the two regions, the effect of age on the influence of PMd on specific indirect (I) wave circuits within M1 remains unclear. The present study therefore investigated the influence of PMd on early and late I-wave excitability in M1 of young and older adults. Twenty-two young (mean ± SD, 22.9 ± 2.9 years) and 20 older (66.6 ± 4.2 years) adults participated in two experimental sessions involving either intermittent theta burst stimulation (iTBS) or sham stimulation over PMd. Changes within M1 following the intervention were assessed with motor-evoked potentials (MEPs) recorded from the right first dorsal interosseous muscle. We applied posterior-anterior (PA) and anterior-posterior (AP) current single-pulse TMS to assess corticospinal excitability (PA1mV ; AP1mV ; PA0.5mV , early; AP0.5mV , late), and paired-pulse TMS short intracortical facilitation for I-wave excitability (PA SICF, early; AP SICF, late). Although PMd iTBS potentiated PA1mV and AP1mV MEPs in both age groups (both P < 0.05), the time course of this effect was delayed for AP1mV in older adults (P = 0.001). Furthermore, while AP0.5mV , PA SICF and AP SICF were potentiated in both groups (all P < 0.05), potentiation of PA0.5mV was only apparent in young adults (P < 0.0001). While PMd influences early and late I-wave excitability in young adults, direct PMd modulation of the early circuits is specifically reduced in older adults. KEY POINTS: Interneuronal circuits responsible for late I-waves within primary motor cortex (M1) mediate projections from dorsal premotor cortex (PMd), but this communication probably changes with advancing age. We investigated the effects of intermittent theta burst stimulation (iTBS) to PMd on transcranial magnetic stimulation (TMS) measures of M1 excitability in young and older adults. We found that PMd iTBS facilitated M1 excitability assessed with posterior-anterior (PA, early I-waves) and anterior-posterior (AP, late I-waves) current TMS in young adults, with a stronger effect for AP TMS. M1 excitability assessed with AP TMS also increased in older adults following PMd iTBS, but there was no facilitation for PA TMS responses. We conclude that changes in M1 excitability following PMd iTBS are specifically reduced for the early I-waves in older adults, which could be a potential target for interventions that enhance cortical excitability in older adults.
Collapse
Affiliation(s)
- Wei‐Yeh Liao
- Discipline of Physiology, School of BiomedicineThe University of AdelaideAdelaideAustralia
| | - George M. Opie
- Discipline of Physiology, School of BiomedicineThe University of AdelaideAdelaideAustralia
| | - Ulf Ziemann
- Department of Neurology & StrokeEberhard Karls University of TübingenTübingenGermany
- Hertie‐Institute for Clinical Brain ResearchEberhard Karls University of TübingenTübingenGermany
| | - John G. Semmler
- Discipline of Physiology, School of BiomedicineThe University of AdelaideAdelaideAustralia
| |
Collapse
|
5
|
King EM, Edwards LL, Borich MR. Short-term arm immobilization modulates excitability of inhibitory circuits within, and between, primary motor cortices. Physiol Rep 2022; 10:e15359. [PMID: 35757848 PMCID: PMC9234616 DOI: 10.14814/phy2.15359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/14/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023] Open
Abstract
Previous research has suggested that short-term immobilization of the arm may be a low-cost, non-invasive strategy to enhance the capacity for long-term potentiation (LTP)-like plasticity in primary motor cortex (M1). Short-term immobilization reduces corticospinal excitability (CSE) in the contralateral M1, and interhemispheric inhibition (IHI) from ipsi- onto contralateral M1 is increased. However, it is unclear whether reduced CSE and increased IHI are associated with changes in intracortical inhibition, which has been shown to be important for regulating neuroplasticity in M1. The current study used transcranial magnetic stimulation to evaluate the effects of short-term (6 h) arm immobilization on CSE, IHI, and intracortical inhibition measured bilaterally in 43 neurotypical young adults (23 immobilized). We replicated previous findings demonstrating that immobilization decreased CSE in, and increased IHI onto, the immobilized hemisphere, but a significant change in intracortical inhibition was not observed at the group level. Across individuals, decreased CSE was associated with a decreased short-interval intracortical inhibition, an index of GABAA -ergic inhibition, within the immobilized hemisphere only in the immobilization group. Previous research has demonstrated that decreases in GABAA -ergic inhibition are necessary for the induction of LTP-like plasticity in M1; therefore, decreased intracortical inhibition after short-term arm immobilization may provide a novel mechanism to enhance the capacity for LTP-like plasticity within M1 and may be a potential target for strategies to augment plasticity capacity to enhance motor learning in health and disease.
Collapse
Affiliation(s)
- Erin M. King
- Neuroscience Graduate ProgramGraduate Division of Biological and Biomedical SciencesEmory UniversityAtlantaGeorgiaUSA
- Department of Rehabilitation MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Lauren L. Edwards
- Department of Rehabilitation MedicineEmory UniversityAtlantaGeorgiaUSA
| | - Michael R. Borich
- Department of Rehabilitation MedicineEmory UniversityAtlantaGeorgiaUSA
- Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
6
|
Pavlova E, Semenov R, Pavlova-Deb M, Guekht A. Transcranial direct current stimulation of the premotor cortex aimed to improve hand motor function in chronic stroke patients. Brain Res 2022; 1780:147790. [DOI: 10.1016/j.brainres.2022.147790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/16/2021] [Accepted: 01/12/2022] [Indexed: 11/27/2022]
|
7
|
Offline low-frequency rTMS of the primary and premotor cortices does not impact motor sequence memory consolidation despite modulation of corticospinal excitability. Sci Rep 2021; 11:24186. [PMID: 34921224 PMCID: PMC8683442 DOI: 10.1038/s41598-021-03737-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Motor skills are acquired and refined across alternating phases of practice (online) and subsequent consolidation in the absence of further skill execution (offline). Both stages of learning are sustained by dynamic interactions within a widespread motor learning network including the premotor and primary motor cortices. Here, we aimed to investigate the role of the dorsal premotor cortex (dPMC) and its interaction with the primary motor cortex (M1) during motor memory consolidation. Forty-eight healthy human participants (age 22.1 ± 3.1 years) were assigned to three different groups corresponding to either low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) of left dPMC, rTMS of left M1, or sham rTMS. rTMS was applied immediately after explicit motor sequence training with the right hand. Motor evoked potentials were recorded before training and after rTMS to assess potential stimulation-induced changes in corticospinal excitability (CSE). Participants were retested on motor sequence performance after eight hours to assess consolidation. While rTMS of dPMC significantly increased CSE and rTMS of M1 significantly decreased CSE, no CSE modulation was induced by sham rTMS. However, all groups demonstrated similar significant offline learning indicating that consolidation was not modulated by the post-training low-frequency rTMS intervention despite evidence of an interaction of dPMC and M1 at the level of CSE. Motor memory consolidation ensuing explicit motor sequence training seems to be a rather robust process that is not affected by low-frequency rTMS-induced perturbations of dPMC or M1. Findings further indicate that consolidation of explicitly acquired motor skills is neither mediated nor reflected by post-training CSE.
Collapse
|
8
|
Rossi S, Antal A, Bestmann S, Bikson M, Brewer C, Brockmöller J, Carpenter LL, Cincotta M, Chen R, Daskalakis JD, Di Lazzaro V, Fox MD, George MS, Gilbert D, Kimiskidis VK, Koch G, Ilmoniemi RJ, Lefaucheur JP, Leocani L, Lisanby SH, Miniussi C, Padberg F, Pascual-Leone A, Paulus W, Peterchev AV, Quartarone A, Rotenberg A, Rothwell J, Rossini PM, Santarnecchi E, Shafi MM, Siebner HR, Ugawa Y, Wassermann EM, Zangen A, Ziemann U, Hallett M. Safety and recommendations for TMS use in healthy subjects and patient populations, with updates on training, ethical and regulatory issues: Expert Guidelines. Clin Neurophysiol 2021; 132:269-306. [PMID: 33243615 PMCID: PMC9094636 DOI: 10.1016/j.clinph.2020.10.003] [Citation(s) in RCA: 570] [Impact Index Per Article: 190.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
This article is based on a consensus conference, promoted and supported by the International Federation of Clinical Neurophysiology (IFCN), which took place in Siena (Italy) in October 2018. The meeting intended to update the ten-year-old safety guidelines for the application of transcranial magnetic stimulation (TMS) in research and clinical settings (Rossi et al., 2009). Therefore, only emerging and new issues are covered in detail, leaving still valid the 2009 recommendations regarding the description of conventional or patterned TMS protocols, the screening of subjects/patients, the need of neurophysiological monitoring for new protocols, the utilization of reference thresholds of stimulation, the managing of seizures and the list of minor side effects. New issues discussed in detail from the meeting up to April 2020 are safety issues of recently developed stimulation devices and pulse configurations; duties and responsibility of device makers; novel scenarios of TMS applications such as in the neuroimaging context or imaging-guided and robot-guided TMS; TMS interleaved with transcranial electrical stimulation; safety during paired associative stimulation interventions; and risks of using TMS to induce therapeutic seizures (magnetic seizure therapy). An update on the possible induction of seizures, theoretically the most serious risk of TMS, is provided. It has become apparent that such a risk is low, even in patients taking drugs acting on the central nervous system, at least with the use of traditional stimulation parameters and focal coils for which large data sets are available. Finally, new operational guidelines are provided for safety in planning future trials based on traditional and patterned TMS protocols, as well as a summary of the minimal training requirements for operators, and a note on ethics of neuroenhancement.
Collapse
Affiliation(s)
- Simone Rossi
- Department of Scienze Mediche, Chirurgiche e Neuroscienze, Unit of Neurology and Clinical Neurophysiology, Brain Investigation and Neuromodulation Lab (SI-BIN Lab), University of Siena, Italy.
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University of Goettingen, Germany; Institue of Medical Psychology, Otto-Guericke University Magdeburg, Germany
| | - Sven Bestmann
- Department of Movement and Clinical Neurosciences, UCL Queen Square Institute of Neurology, London, UK and Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Carmen Brewer
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jürgen Brockmöller
- Department of Clinical Pharmacology, University Medical Center, Georg-August University of Goettingen, Germany
| | - Linda L Carpenter
- Butler Hospital, Brown University Department of Psychiatry and Human Behavior, Providence, RI, USA
| | - Massimo Cincotta
- Unit of Neurology of Florence - Central Tuscany Local Health Authority, Florence, Italy
| | - Robert Chen
- Krembil Research Institute and Division of Neurology, Department of Medicine, University of Toronto, Canada
| | - Jeff D Daskalakis
- Center for Addiction and Mental Health (CAMH), University of Toronto, Canada
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico, Roma, Italy
| | - Michael D Fox
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mark S George
- Medical University of South Carolina, Charleston, SC, USA
| | - Donald Gilbert
- Division of Neurology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Vasilios K Kimiskidis
- Laboratory of Clinical Neurophysiology, Aristotle University of Thessaloniki, AHEPA University Hospital, Greece
| | | | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering (NBE), Aalto University School of Science, Aalto, Finland
| | - Jean Pascal Lefaucheur
- EA 4391, ENT Team, Faculty of Medicine, Paris Est Creteil University (UPEC), Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, Assistance Publique Hôpitaux de Paris, (APHP), Créteil, France
| | - Letizia Leocani
- Department of Neurology, Institute of Experimental Neurology (INSPE), IRCCS-San Raffaele Hospital, Vita-Salute San Raffaele University, Milano, Italy
| | - Sarah H Lisanby
- National Institute of Mental Health (NIMH), National Institutes of Health (NIH), Bethesda, MD, USA; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institut, Institut Guttmann, Universitat Autonoma Barcelona, Spain
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August University of Goettingen, Germany
| | - Angel V Peterchev
- Departments of Psychiatry & Behavioral Sciences, Biomedical Engineering, Electrical & Computer Engineering, and Neurosurgery, Duke University, Durham, NC, USA
| | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Alexander Rotenberg
- Department of Neurology, Division of Epilepsy and Clinical Neurophysiology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - John Rothwell
- Department of Movement and Clinical Neurosciences, UCL Queen Square Institute of Neurology, London, UK and Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Paolo M Rossini
- Department of Neuroscience and Rehabilitation, IRCCS San Raffaele-Pisana, Roma, Italy
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yoshikatzu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Eric M Wassermann
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Abraham Zangen
- Zlotowski Center of Neuroscience, Ben Gurion University, Beer Sheva, Israel
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
9
|
Berns C, Brüchle W, Scho S, Schneefeld J, Schneider U, Rosenkranz K. Intensity dependent effect of cognitive training on motor cortical plasticity and cognitive performance in humans. Exp Brain Res 2020; 238:2805-2818. [PMID: 33025030 PMCID: PMC7644474 DOI: 10.1007/s00221-020-05933-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/24/2020] [Indexed: 01/28/2023]
Abstract
Intervention-induced neuroplastic changes within the motor or cognitive system have been shown in the human brain. While cognitive and motor brain areas are densely interconnected, it is unclear whether this interconnectivity allows for a shared susceptibility to neuroplastic changes. Using the preparation for a theoretical exam as training intervention that primarily engages the cognitive system, we tested the hypothesis whether neuroplasticity acts across interconnected brain areas by investigating the effect on excitability and synaptic plasticity in the motor cortex. 39 healthy students (23 female) underwent 4 weeks of cognitive training while revision time, physical activity, concentration, fatigue, sleep quality and stress were monitored. Before and after cognitive training, cognitive performance was evaluated, as well as motor excitability using transcranial magnetic stimulation and long-term-potentiation-like (LTP-like) plasticity using paired-associative-stimulation (PAS). Cognitive training ranged individually from 1 to 7 h/day and enhanced attention and verbal working memory. While motor excitability did not change, LTP-like plasticity increased in an intensity-depending manner: the longer the daily revision time, the smaller the increase of neuroplasticity, and vice versa. This effect was not influenced by physical activity, concentration, fatigue, sleep quality or stress. Motor cortical plasticity is strengthened by a behavioural intervention that primarily engages cognitive brain areas. We suggest that this effect is due to an enhanced susceptibility to LTP-like plasticity, probably induced by heterosynaptic activity that modulates postsynaptic excitability in motorcortical neurones. The smaller increase of PAS efficiency with higher cognitive training intensity suggests a mechanism that balances and stabilises the susceptibility for synaptic potentiation.
Collapse
Affiliation(s)
- Christina Berns
- Ruhr- University of Bochum, Medical Faculty, University Clinic for Psychiatry and Psychotherapy, Campus East-Westphalia, Virchowstraße 65, 32312, Luebbecke, Germany
| | - Wanja Brüchle
- Ruhr- University of Bochum, Medical Faculty, University Clinic for Psychiatry and Psychotherapy, Campus East-Westphalia, Virchowstraße 65, 32312, Luebbecke, Germany
| | - Sebastian Scho
- Ruhr- University of Bochum, Medical Faculty, University Clinic for Psychiatry and Psychotherapy, Campus East-Westphalia, Virchowstraße 65, 32312, Luebbecke, Germany
| | - Jessica Schneefeld
- Ruhr- University of Bochum, Medical Faculty, University Clinic for Psychiatry and Psychotherapy, Campus East-Westphalia, Virchowstraße 65, 32312, Luebbecke, Germany
| | - Udo Schneider
- Ruhr- University of Bochum, Medical Faculty, University Clinic for Psychiatry and Psychotherapy, Campus East-Westphalia, Virchowstraße 65, 32312, Luebbecke, Germany
| | - Karin Rosenkranz
- Ruhr- University of Bochum, Medical Faculty, University Clinic for Psychiatry and Psychotherapy, Campus East-Westphalia, Virchowstraße 65, 32312, Luebbecke, Germany.
| |
Collapse
|
10
|
Sehatpour P, Dondé C, Hoptman MJ, Kreither J, Adair D, Dias E, Vail B, Rohrig S, Silipo G, Lopez-Calderon J, Martinez A, Javitt DC. Network-level mechanisms underlying effects of transcranial direct current stimulation (tDCS) on visuomotor learning. Neuroimage 2020; 223:117311. [PMID: 32889116 PMCID: PMC7778833 DOI: 10.1016/j.neuroimage.2020.117311] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/15/2020] [Accepted: 08/18/2020] [Indexed: 02/02/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation approach in which low level currents are administered over the scalp to influence underlying brain function. Prevailing theories of tDCS focus on modulation of excitation-inhibition balance at the local stimulation location. However, network level effects are reported as well, and appear to depend upon differential underlying mechanisms. Here, we evaluated potential network-level effects of tDCS during the Serial Reaction Time Task (SRTT) using convergent EEG- and fMRI-based connectivity approaches. Motor learning manifested as a significant (p <.0001) shift from slow to fast responses and corresponded to a significant increase in beta-coherence (p <.0001) and fMRI connectivity (p <.01) particularly within the visual-motor pathway. Differential patterns of tDCS effect were observed within different parametric task versions, consistent with network models. Overall, these findings demonstrate objective physiological effects of tDCS at the network level that result in effective behavioral modulation when tDCS parameters are matched to network-level requirements of the underlying task.
Collapse
Affiliation(s)
- Pejman Sehatpour
- Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University/New York State Psychiatric Institute, New York, NY, USA; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| | - Clément Dondé
- Université Grenoble Alpes, Inserm U1216, Grenoble Institut des Neurosciences, CHU Grenoble-Alpes, F-38000 Grenoble, France
| | - Matthew J Hoptman
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Johanna Kreither
- PIA Ciencias Cognitivas, Centro de Investigación en Ciencias Cognitivas, Centro de Psicología Aplicada, Facultad de Psicología, Universidad de Talca, Chile
| | - Devin Adair
- Department of Biomedical Engineering, The City College of New York, CUNY, NY, USA
| | - Elisa Dias
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Blair Vail
- Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University/New York State Psychiatric Institute, New York, NY, USA
| | - Stephanie Rohrig
- Department of Psychology, Hofstra University, New Hempstead, NY, USA
| | - Gail Silipo
- Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | | | - Antigona Martinez
- Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University/New York State Psychiatric Institute, New York, NY, USA; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Daniel C Javitt
- Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University/New York State Psychiatric Institute, New York, NY, USA; Schizophrenia Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| |
Collapse
|
11
|
Theta burst stimulation in humans: a need for better understanding effects of brain stimulation in health and disease. Exp Brain Res 2020; 238:1707-1714. [PMID: 32671422 DOI: 10.1007/s00221-020-05880-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022]
Abstract
Repetitive transcranial stimulation (rTMS) paradigms have been used to induce lasting changes in brain activity and excitability. Previous methods of stimulation were long, often ineffective and produced short-lived and variable results. A new non-invasive brain stimulation technique was developed in John Rothwell's laboratory in the early 2000s, which was named 'theta burst stimulation' (TBS). This used rTMS applied in burst patterns of newly acquired 50 Hz rTMS machines, which emulated long-term potentiation/depression-like effects in brain slices. This stimulation paradigm created long-lasting changes in brain excitability, using efficient, very rapid stimulation, which would affect behaviour, with the aim to influence neurological diseases in humans. We describe the development of this technique, including findings and limitations identified since then. We discuss how pitfalls facing TBS reflect those involving both older and newer, non-invasive stimulation techniques, with suggestions of how to overcome these, using personalised, 'closed loop' stimulation methods. The challenge in most non-invasive stimulation techniques remains in identifying their exact mechanisms of action in the context of neurological disease models. The development of TBS provides the backdrop for describing John's contribution to the field, inspiring our own scientific endeavour thanks to his unconditional support, and unfailing kindness.
Collapse
|