1
|
Du J, Wu Q, Bae EJ. Epigenetics of Skeletal Muscle Atrophy. Int J Mol Sci 2024; 25:8362. [PMID: 39125931 PMCID: PMC11312722 DOI: 10.3390/ijms25158362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Skeletal muscle atrophy, characterized by diminished muscle strength and mass, arises from various causes, including malnutrition, aging, nerve damage, and disease-related secondary atrophy. Aging markedly escalates the prevalence of sarcopenia. Concurrently, the incidence of muscle atrophy significantly rises among patients with chronic ailments such as heart failure, diabetes, and chronic obstructive pulmonary disease (COPD). Epigenetics plays a pivotal role in skeletal muscle atrophy. Aging elevates methylation levels in the promoter regions of specific genes within muscle tissues. This aberrant methylation is similarly observed in conditions like diabetes, neurological disorders, and cardiovascular diseases. This study aims to explore the relationship between epigenetics and skeletal muscle atrophy, thereby enhancing the understanding of its pathogenesis and uncovering novel therapeutic strategies.
Collapse
Affiliation(s)
- Jiacheng Du
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Qian Wu
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Eun Ju Bae
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
2
|
Baum O. Expression of neuronal NO synthase α- and β-isoforms in skeletal muscle of mice. Biochem J 2024; 481:601-613. [PMID: 38592741 DOI: 10.1042/bcj20230458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 04/10/2024]
Abstract
Knowledge of the primary structure of neuronal NO synthase (nNOS) in skeletal muscle is still conflicting and needs further clarification. To elucidate the expression patterns of nNOS isoforms at both mRNA and protein level, systematic reverse transcription (RT)-PCR and epitope mapping by qualitative immunoblot analysis on skeletal muscle of C57/BL6 mice were performed. The ability of the nNOS isoforms to form aggregates was characterized by native low-temperature polyacrylamide electrophoresis (LT-PAGE). The molecular analysis was focused on the rectus femoris (RF) muscle, a skeletal muscle with a nearly balanced ratio of nNOS α- and β-isoforms. RT-PCR amplificates from RF muscles showed exclusive exon-1d mRNA expression, either with or without exon-μ. Epitope mapping demonstrated the simultaneous expression of the nNOS splice variants α/μ, α/non-μ, β/μ and β/non-μ. Furthermore, immunoblotting suggests that the transition between nNOS α- and β-isoforms lies within exon-3. In LT-PAGE, three protein nNOS associated aggregates were detected in homogenates of RF muscle and tibialis anterior muscle: a 320 kDa band containing nNOS α-isoforms, while 250 and 300 kDa bands consist of nNOS β-isoforms that form homodimers or heterodimers with non-nNOS proteins.
Collapse
Affiliation(s)
- Oliver Baum
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany
| |
Collapse
|
3
|
Baum O, Huber-Abel FAM, Flück M. nNOS Increases Fiber Type-Specific Angiogenesis in Skeletal Muscle of Mice in Response to Endurance Exercise. Int J Mol Sci 2023; 24:ijms24119341. [PMID: 37298293 DOI: 10.3390/ijms24119341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
We studied the relationship between neuronal NO synthase (nNOS) expression and capillarity in the tibialis anterior (TA) muscle of mice subjected to treadmill training. The mRNA (+131%) and protein (+63%) levels of nNOS were higher (p ≤ 0.05) in the TA muscle of C57BL/6 mice undergoing treadmill training for 28 days than in those of littermates remaining sedentary, indicating an up-regulation of nNOS by endurance exercise. Both TA muscles of 16 C57BL/6 mice were subjected to gene electroporation with either the pIRES2-ZsGreen1 plasmid (control plasmid) or the pIRES2-ZsGreen1-nNOS gene-inserted plasmid (nNOS plasmid). Subsequently, one group of mice (n = 8) underwent treadmill training for seven days, while the second group of mice (n = 8) remained sedentary. At study end, 12-18% of TA muscle fibers expressed the fluorescent reporter gene ZsGreen1. Immunofluorescence for nNOS was 23% higher (p ≤ 0.05) in ZsGreen1-positive fibers than ZsGreen1-negative fibers from the nNOS-transfected TA muscle of mice subjected to treadmill training. Capillary contacts around myosin heavy-chain (MHC)-IIb immunoreactive fibers (14.2%; p ≤ 0.05) were only higher in ZsGreen1-positive fibers than ZsGreen1-negative fibers in the nNOS-plasmid-transfected TA muscles of trained mice. Our observations are in line with an angiogenic effect of quantitative increases in nNOS expression, specifically in type-IIb muscle fibers after treadmill training.
Collapse
Affiliation(s)
- Oliver Baum
- Institute of Physiology, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | | | - Martin Flück
- Heart Repair and Regeneration Laboratory, Department EMC, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
5
|
Aghagoli G, Del Re A, Yano N, Zhang Z, Gheit AA, Phillips RK, Sellke FW, Fedulov AV. Methylome of skeletal muscle tissue in patients with hypertension and diabetes undergoing cardiopulmonary bypass. Epigenomics 2021; 13:1853-1866. [PMID: 34802257 PMCID: PMC8619827 DOI: 10.2217/epi-2021-0388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/08/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Epigenomic changes occurring during surgery have been neglected in research; diabetes and hypertension can affect the epigenome but little is known about the epigenetics of skeletal muscle (SKM). Methods: DNA methylation was profiled via Illumina MethylationEPIC arrays in SKM samples obtained at the beginning and end of heart surgery with cardiopulmonary bypass. Results: Methylation in patients with hypertension and diabetes was significantly different, more so for uncontrolled diabetes; hypertension alone produced minimal effect. The affected pathways involved IL-1, IL-12, IL-18, TNF-α, IFN-γ, VEGF, NF-κB and Wnt signaling, apoptosis and DNA damage response. Significant changes occurred during surgery and included loci in the Hippo-YAP/TAZ pathway. Conclusion: Cardiopulmonary bypass surgery affects the SKM methylome, and the combination of hypertension and diabetes induces changes in the SKM epigenome in contrast to hypertension alone.
Collapse
Affiliation(s)
- Ghazal Aghagoli
- Alpert Medical School of Brown University, Department of Surgery, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Andrew Del Re
- Alpert Medical School of Brown University, Department of Surgery, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Naohiro Yano
- Alpert Medical School of Brown University, Department of Surgery, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Zhiqi Zhang
- Alpert Medical School of Brown University, Department of Surgery, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Ahmad Aboul Gheit
- Alpert Medical School of Brown University, Department of Surgery, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Ronald K Phillips
- Alpert Medical School of Brown University, Department of Surgery, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Frank W Sellke
- Alpert Medical School of Brown University, Department of Surgery, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Alexey V Fedulov
- Alpert Medical School of Brown University, Department of Surgery, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| |
Collapse
|
6
|
Tomiga Y, Sakai K, Ra SG, Kusano M, Ito A, Uehara Y, Takahashi H, Kawanaka K, Soejima H, Higaki Y. Short-term running exercise alters DNA methylation patterns in neuronal nitric oxide synthase and brain-derived neurotrophic factor genes in the mouse hippocampus and reduces anxiety-like behaviors. FASEB J 2021; 35:e21767. [PMID: 34325488 DOI: 10.1096/fj.202100630r] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 06/14/2021] [Indexed: 02/04/2023]
Abstract
Running exercise has beneficial effects on brain health. However, the effects of relatively short-term running exercise (STEx) on behavior, and its underlying signaling pathways, are poorly understood. In this study, we evaluated the possibility that the regulation by STEx of brain-derived neurotrophic factor (BDNF) and neuronal nitric oxide synthase (nNOS, encoded by NOS1), which are important molecules for anxiety regulation, might involve mechanisms of epigenetic modification, such as DNA methylation. C57BL/6J male mice were divided into sedentary (SED, n = 12) and STEx (EX, n = 15) groups; STEx was conducted with the mice for a duration of 11 days. STEx reduced anxiety-like behaviors, and STEx reduced Nos1α and increased Bdnf exon I and IV mRNA levels in the hippocampus. Interestingly, behavioral parameters were associated with Bdnf exon I and IV and Nos1α mRNA levels in the ventral, but not dorsal, hippocampal region. However, STEx had no effect on peroxisome proliferator-activated receptor-γ coactivator 1α (Pgc-1α) or fibronectin type III domain-containing 5 (Fndc5) mRNA levels, which are relatively long-term exercise-induced upstream regulators of BDNF. In parallel with gene expression changes, we found, for the first time, that STEx downregulated Bdnf promoter IV and upregulated Nos1 DNA methylation levels in the hippocampus, and these patterns were partially different between the dorsal and ventral regions. These findings suggest that the beneficial effects of running exercise on mood regulation may be controlled by alterations in epigenetic mechanisms, especially in the ventral hippocampus. These effects occur even after a relatively short-term period of exercise.
Collapse
Affiliation(s)
- Yuki Tomiga
- The Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan.,Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kazuya Sakai
- Graduate School of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Song-Gyu Ra
- The Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan.,Institute of Liberal Arts and Sciences, Tokushima University, Tokushima, Japan.,Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Masaki Kusano
- Graduate School of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Ai Ito
- The Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan
| | - Yoshinari Uehara
- The Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan.,Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan.,Liver Center, Saga University Hospital, Saga, Japan
| | - Kentaro Kawanaka
- The Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan.,Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Yasuki Higaki
- The Fukuoka University Institute for Physical Activity, Fukuoka University, Fukuoka, Japan.,Faculty of Sports and Health Science, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
7
|
Makhnovskii PA, Bokov RO, Kolpakov FA, Popov DV. Transcriptomic Signatures and Upstream Regulation in Human Skeletal Muscle Adapted to Disuse and Aerobic Exercise. Int J Mol Sci 2021; 22:ijms22031208. [PMID: 33530535 PMCID: PMC7866200 DOI: 10.3390/ijms22031208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 02/08/2023] Open
Abstract
Inactivity is associated with the development of numerous disorders. Regular aerobic exercise is broadly used as a key intervention to prevent and treat these pathological conditions. In our meta-analysis we aimed to identify and compare (i) the transcriptomic signatures related to disuse, regular and acute aerobic exercise in human skeletal muscle and (ii) the biological effects and transcription factors associated with these transcriptomic changes. A standardized workflow with robust cut-off criteria was used to analyze 27 transcriptomic datasets for the vastus lateralis muscle of healthy humans subjected to disuse, regular and acute aerobic exercise. We evaluated the role of transcriptional regulation in the phenotypic changes described in the literature. The responses to chronic interventions (disuse and regular training) partially correspond to the phenotypic effects. Acute exercise induces changes that are mainly related to the regulation of gene expression, including a strong enrichment of several transcription factors (most of which are related to the ATF/CREB/AP-1 superfamily) and a massive increase in the expression levels of genes encoding transcription factors and co-activators. Overall, the adaptation strategies of skeletal muscle to decreased and increased levels of physical activity differ in direction and demonstrate qualitative differences that are closely associated with the activation of different sets of transcription factors.
Collapse
Affiliation(s)
- Pavel A. Makhnovskii
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (P.A.M.); (R.O.B.)
| | - Roman O. Bokov
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (P.A.M.); (R.O.B.)
| | - Fedor A. Kolpakov
- Institute of Computational Technologies of the Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Daniil V. Popov
- Institute of Biomedical Problems of the Russian Academy of Sciences, 123007 Moscow, Russia; (P.A.M.); (R.O.B.)
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|