1
|
Simpson LL, Stembridge M, Siebenmann C, Moore JP, Lawley JS. Mechanisms underpinning sympathoexcitation in hypoxia. J Physiol 2024; 602:5485-5503. [PMID: 38533641 DOI: 10.1113/jp284579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Sympathoexcitation is a hallmark of hypoxic exposure, occurring acutely, as well as persisting in acclimatised lowland populations and with generational exposure in highland native populations of the Andean and Tibetan plateaus. The mechanisms mediating altitude sympathoexcitation are multifactorial, involving alterations in both peripheral autonomic reflexes and central neural pathways, and are dependent on the duration of exposure. Initially, hypoxia-induced sympathoexcitation appears to be an adaptive response, primarily mediated by regulatory reflex mechanisms concerned with preserving systemic and cerebral tissue O2 delivery and maintaining arterial blood pressure. However, as exposure continues, sympathoexcitation is further augmented above that observed with acute exposure, despite acclimatisation processes that restore arterial oxygen content (C a O 2 ${C_{{\mathrm{a}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ). Under these conditions, sympathoexcitation may become maladaptive, giving rise to reduced vascular reactivity and mildly elevated blood pressure. Importantly, current evidence indicates the peripheral chemoreflex does not play a significant role in the augmentation of sympathoexcitation during altitude acclimatisation, although methodological limitations may underestimate its true contribution. Instead, processes that provide no obvious survival benefit in hypoxia appear to contribute, including elevated pulmonary arterial pressure. Nocturnal periodic breathing is also a potential mechanism contributing to altitude sympathoexcitation, although experimental studies are required. Despite recent advancements within the field, several areas remain unexplored, including the mechanisms responsible for the apparent normalisation of muscle sympathetic nerve activity during intermediate hypoxic exposures, the mechanisms accounting for persistent sympathoexcitation following descent from altitude and consideration of whether there are sex-based differences in sympathetic regulation at altitude.
Collapse
Affiliation(s)
- Lydia L Simpson
- Department of Sport Science, Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
| | - Mike Stembridge
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | | | - Jonathan P Moore
- School of Psychology and Sport Science, Institute of Applied Human Physiology, Bangor University, Bangor, UK
| | - Justin S Lawley
- Department of Sport Science, Performance Physiology and Prevention, Universität Innsbruck, Innsbruck, Austria
- Institute of Mountain Emergency Medicine, EURAC Research, Bolzano, Italy
| |
Collapse
|
2
|
Graça SC, Bustelli IB, Santos ÉVD, Fernandes CG, Lanaro R, Stilhano RS, Linardi A, Caetano AL. Banisteriopsis caapi extract: Implications for neuroinflammatory pathways in Locus coeruleus lesion rodent model. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118775. [PMID: 39244172 DOI: 10.1016/j.jep.2024.118775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/21/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Ayahuasca is a beverage obtained from the decoctions of Banisteriopsis caapi (Spruce ex Griseb.) Morton and Psychotria viridis Ruiz & Pav., used throughout the Amazon as a medicinal beverage for healing and spiritual exploration. The Banisteriopsis caapi extract consists of harmine, harmaline, and tetrahydroharmine (THH); which inhibit the isoforms of monoamine oxidase A and B. In the central nervous system (CNS), it can increase the norepinephrine (NE) concentration, produced in the Locus coeruleus (LC), reducing inflammation that is associated with some neurological disease, such as Parkinson's disease and Alzheimer's disease. AIM OF THE STUDY evaluate the effects of treatment with B. caapi extract on the neuroinflammatory profile in animals with selective LC lesions. MATERIAL AND METHODS male Wistar rats with LC lesions induced by 6-hydroxydopamine were treated with B. caapi extract. Subsequently, behavioral tests were conducted, including the elevated plus maze, rotarod, and open field. Tyrosine hydroxylase positive (TH+) neurons and IBA-1 positive microglia were quantified from the LC inflammatory markers and free radical products were assessed. RESULTS Both 6-Hydroxydopamine hydrochloride and the Banisteriopsis caapi extract causes reduction of LC neurons, at the concentration and frequency used. The LC depletion and the treatment of B. caapi extract interfere with locomotion. B. caapi extract and the LC lesion increased the number and activation of inflammatory cells, such as microglia. B. caapi extract decreases IL-10 in the hippocampus and BDNF gene expression. CONCLUSION This study suggests that B. caapi extract (at the concentration and frequency used) promotes noradrenergic neuron depletion and creates a proinflammatory environment in the CNS.
Collapse
Affiliation(s)
- Santhiago C Graça
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 01221-020, São Paulo, SP, Brazil.
| | - Isabella B Bustelli
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 01221-020, São Paulo, SP, Brazil
| | - Érica V Dos Santos
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 01221-020, São Paulo, SP, Brazil.
| | - Carolina G Fernandes
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 01221-020, São Paulo, SP, Brazil.
| | - Rafael Lanaro
- Faculty of Medical Sciences, State University of Campinas (UNICAMP), 13083-894, Campinas, SP, Brazil.
| | - Roberta S Stilhano
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 01221-020, São Paulo, SP, Brazil.
| | - Alessandra Linardi
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 01221-020, São Paulo, SP, Brazil.
| | - Ariadiny L Caetano
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences (FCMSCSP), 01221-020, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Singh A, Chimata AV, Deshpande P, Bajpai S, Sangeeth A, Rajput M, Singh A. SARS-CoV2 Nsp3 protein triggers cell death and exacerbates amyloid β42-mediated neurodegeneration. Neural Regen Res 2024; 19:1385-1392. [PMID: 37905889 PMCID: PMC11467943 DOI: 10.4103/1673-5374.382989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/25/2023] [Accepted: 07/25/2023] [Indexed: 11/02/2023] Open
Abstract
Infection caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) virus, responsible for the coronavirus disease 2019 (COVID-19) pandemic, induces symptoms including increased inflammatory response, severe acute respiratory syndrome (SARS), cognitive dysfunction like brain fog, and cardiovascular defects. Long-term effects of SARS-CoV2 COVID-19 syndrome referred to as post-COVID-19 syndrome on age-related progressive neurodegenerative disorders such as Alzheimer’s disease remain understudied. Using the targeted misexpression of individual SARS-CoV2 proteins in the retinal neurons of the Drosophila melanogaster eye, we found that misexpression of nonstructural protein 3 (Nsp3), a papain-like protease, ablates the eye and generates dark necrotic spots. Targeted misexpression of Nsp3 in the eye triggers reactive oxygen species production and leads to apoptosis as shown by cell death reporters, terminal deoxynucleotidyl transferase (TdT) dUTP Nick-end labeling (TUNEL) assay, and dihydroethidium staining. Furthermore, Nsp3 misexpression activates both apoptosis and autophagy mechanism(s) to regulate tissue homeostasis. Transient expression of SARS-CoV2 Nsp3 in murine neuroblastoma, Neuro-2a cells, significantly reduced the metabolic activity of these cells and triggers cell death. Misexpression of SARS-CoV2 Nsp3 in an Alzheimer’s disease transgenic fly eye model (glass multiple repeats [GMR]>amyloid β42) further enhances the neurodegenerative rough eye phenotype due to increased cell death. These findings suggest that SARS-CoV2 utilizes Nsp3 protein to potentiate cell death response in a neurodegenerative disease background that has high pre-existing levels of neuroinflammation and cell death.
Collapse
Affiliation(s)
- Aditi Singh
- Department of Biology, University of Dayton, Dayton, OH, USA
| | | | | | - Soumya Bajpai
- Department of Biology, University of Dayton, Dayton, OH, USA
| | - Anjali Sangeeth
- Department of Biology, University of Dayton, Dayton, OH, USA
| | | | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, USA
- Premedical Program, University of Dayton, Dayton, OH, USA
- Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, USA
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
4
|
Hofmann GC, Gama de Barcellos Filho P, Khodadadi F, Ostrowski D, Kline DD, Hasser EM. Vagotomy blunts cardiorespiratory responses to vagal afferent stimulation via pre- and postsynaptic effects in the nucleus tractus solitarii. J Physiol 2024; 602:1147-1174. [PMID: 38377124 DOI: 10.1113/jp285854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
Viscerosensory information travels to the brain via vagal afferents, where it is first integrated within the brainstem nucleus tractus solitarii (nTS), a critical contributor to cardiorespiratory function and site of neuroplasticity. We have shown that decreasing input to the nTS via unilateral vagus nerve transection (vagotomy) induces morphological changes in nTS glia and reduces sighs during hypoxia. The mechanisms behind post-vagotomy changes are not well understood. We hypothesized that chronic vagotomy alters cardiorespiratory responses to vagal afferent stimulation via blunted nTS neuronal activity. Male Sprague-Dawley rats (6 weeks old) underwent right cervical vagotomy caudal to the nodose ganglion, or sham surgery. After 1 week, rats were anaesthetized, ventilated and instrumented to measure mean arterial pressure (MAP), heart rate (HR), and splanchnic sympathetic and phrenic nerve activity (SSNA and PhrNA, respectively). Vagal afferent stimulation (2-50 Hz) decreased cardiorespiratory parameters and increased neuronal Ca2+ measured by in vivo photometry and in vitro slice imaging of nTS GCaMP8m. Vagotomy attenuated both these reflex and neuronal Ca2+ responses compared to shams. Vagotomy also reduced presynaptic Ca2+ responses to stimulation (Cal-520 imaging) in the nTS slice. The decrease in HR, SSNA and PhrNA due to nTS nanoinjection of exogenous glutamate also was tempered following vagotomy. This effect was not restored by blocking excitatory amino acid transporters. However, the blunted responses were mimicked by NMDA, not AMPA, nanoinjection and were associated with reduced NR1 subunits in the nTS. Altogether, these results demonstrate that vagotomy induces multiple changes within the nTS tripartite synapse that influence cardiorespiratory reflex responses to afferent stimulation. KEY POINTS: Multiple mechanisms within the nucleus tractus solitarii (nTS) contribute to functional changes following vagal nerve transection. Vagotomy results in reduced cardiorespiratory reflex responses to vagal afferent stimulation and nTS glutamate nanoinjection. Blunted responses occur via reduced presynaptic Ca2+ activation and attenuated NMDA receptor expression and function, leading to a reduction in nTS neuronal activation. These results provide insight into the control of autonomic and respiratory function, as well as the plasticity that can occur in response to nerve damage and cardiorespiratory disease.
Collapse
Affiliation(s)
- Gabrielle C Hofmann
- Comparative Medicine, University of Missouri, Columbia, Missouri, USA
- Area Pathobiology, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Procopio Gama de Barcellos Filho
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Fateme Khodadadi
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Daniela Ostrowski
- Department of Pharmacology, A.T. Still University, Kirksville, Missouri, USA
| | - David D Kline
- Area Pathobiology, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - Eileen M Hasser
- Area Pathobiology, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
5
|
Souza JR, Lima-Silveira L, Accorsi-Mendonça D, Machado BH. Enhancement of the Evoked Excitatory Transmission in the Nucleus Tractus Solitarius Neurons after Sustained Hypoxia in Mice Depends on A 2A Receptors. Neuroscience 2024; 536:57-71. [PMID: 37979842 DOI: 10.1016/j.neuroscience.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
The first synapses of the afferents of peripheral chemoreceptors are located in the Nucleus Tractus Solitarius (NTS) and there is evidence that short-term sustained hypoxia (SH - 24 h, FiO2 0.1) facilitates glutamatergic transmission in NTS neurons of rats. Adenosine is an important neuromodulator of synaptic transmission and hypoxia contributes to increase its extracellular concentration. The A2A receptors mediate the excitatory actions of adenosine and are active players in the modulation of neuronal networks in the NTS. Herein, we used knockout mice for A2A receptors (A2AKO) and electrophysiological recordings of NTS neurons were performed to evaluate the contribution of these receptors in the changes in synaptic transmission in NTS neurons of mice submitted to SH. The membrane passive properties and excitability of NTS neurons were not affected by SH and were similar between A2AKO and wild-type mice. The overall amplitude of spontaneous glutamatergic currents in NTS neurons of A2AKO mice was lower than in Balb/c WT mice. SH increased the amplitude of evoked glutamatergic currents of NTS neurons from WT mice by a non-presynaptic mechanism, but this enhancement was not observed in NTS neurons of A2AKO mice. Under normoxia, the amplitude of evoked glutamatergic currents was similar between WT and A2AKO mice. The data indicate that A2A receptors (a) modulate spontaneous glutamatergic currents, (b) do not modulate the evoked glutamatergic transmission in the NTS neurons under control conditions, and (c) are required for the enhancement of glutamatergic transmission observed in the NTS neurons of mice submitted to SH.
Collapse
Affiliation(s)
- Juliana R Souza
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Ludmila Lima-Silveira
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Daniela Accorsi-Mendonça
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil.
| |
Collapse
|
6
|
Cabral LM, Oliveira LM, Miranda NC, Kawamoto EM, K P Costa S, Moreira TS, Takakura AC. TNFR1-mediated neuroinflammation is necessary for respiratory deficits observed in 6-hydroxydopamine mouse model of Parkinsońs Disease. Brain Res 2024; 1822:148586. [PMID: 37757967 DOI: 10.1016/j.brainres.2023.148586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
Parkinson's Disease (PD) is characterized by classic motor symptoms related to movement, but PD patients can experience symptoms associated with impaired autonomic function, such as respiratory disturbances. Functional respiratory deficits are known to be associated with brainstem neurodegeneration in the mice model of PD induced by 6-hydroxydopamine (6-OHDA). Understanding the causes of neuronal death is essential for identifying specific targets to prevent degeneration. Many mechanisms can explain why neurons die in PD, and neuroinflammation is one of them. To test the influence of inflammation, mediated by microglia and astrocytes cells, in the respiratory disturbances associated with brainstem neurons death, we submitted wild-type (WT) and TNF receptor 1 (TNFR1) knockout male mice to the 6-OHDA model of PD. Also, male C57BL/6 animals were induced using the same PD model and treated with minocycline (45 mg/kg), a tetracycline antibiotic with anti-inflammatory properties. We show that degeneration of brainstem areas such as the retrotrapezoid nucleus (RTN) and the pre-Botzinger Complex (preBotC) were prevented in both protocols. Notably, respiratory disturbances were no longer observed in the animals where inflammation was suppressed. Thus, the data demonstrate that inflammation is responsible for the breathing impairment in the 6-OHDA-induced PD mouse model.
Collapse
Affiliation(s)
- Laís M Cabral
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil
| | - Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil
| | - Nicole C Miranda
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil
| | - Elisa M Kawamoto
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil
| | - Soraia K P Costa
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508-000, Brazil.
| |
Collapse
|
7
|
Yegen CH, Marchant D, Bernaudin JF, Planes C, Boncoeur E, Voituron N. Chronic pulmonary fibrosis alters the functioning of the respiratory neural network. Front Physiol 2023; 14:1205924. [PMID: 37383147 PMCID: PMC10293840 DOI: 10.3389/fphys.2023.1205924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/02/2023] [Indexed: 06/30/2023] Open
Abstract
Some patients with idiopathic pulmonary fibrosis present impaired ventilatory variables characterised by low forced vital capacity values associated with an increase in respiratory rate and a decrease in tidal volume which could be related to the increased pulmonary stiffness. The lung stiffness observed in pulmonary fibrosis may also have an effect on the functioning of the brainstem respiratory neural network, which could ultimately reinforce or accentuate ventilatory alterations. To this end, we sought to uncover the consequences of pulmonary fibrosis on ventilatory variables and how the modification of pulmonary rigidity could influence the functioning of the respiratory neuronal network. In a mouse model of pulmonary fibrosis obtained by 6 repeated intratracheal instillations of bleomycin (BLM), we first observed an increase in minute ventilation characterised by an increase in respiratory rate and tidal volume, a desaturation and a decrease in lung compliance. The changes in these ventilatory variables were correlated with the severity of the lung injury. The impact of lung fibrosis was also evaluated on the functioning of the medullary areas involved in the elaboration of the central respiratory drive. Thus, BLM-induced pulmonary fibrosis led to a change in the long-term activity of the medullary neuronal respiratory network, especially at the level of the nucleus of the solitary tract, the first central relay of the peripheral afferents, and the Pre-Bötzinger complex, the inspiratory rhythm generator. Our results showed that pulmonary fibrosis induced modifications not only of pulmonary architecture but also of central control of the respiratory neural network.
Collapse
Affiliation(s)
- Céline-Hivda Yegen
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France
| | - Dominique Marchant
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France
| | - Jean-François Bernaudin
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France
- Faculté de Médecine, Sorbonne Université, Paris, France
| | - Carole Planes
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France
- Service de Physiologie et d’Explorations Fonctionnelles, Hôpital Avicenne, APHP, Bobigny, France
| | - Emilie Boncoeur
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France
| | - Nicolas Voituron
- Laboratoire Hypoxie & Poumon, UMR INSERM U1272, Université Sorbonne Paris Nord, Bobigny, France
- Département STAPS, Université Sorbonne Paris Nord, Bobigny, France
| |
Collapse
|
8
|
Vicente MC, Paneghini JL, Stabile AM, Amorim M, Anibal Silva CE, Patrone LGA, Cunha TM, Bícego KC, Almeida MC, Carrettiero DC, Gargaglioni LH. Inhibition of Pro-Inflammatory Microglia with Minocycline Improves Cognitive and Sleep-Wake Dysfunction Under Respiratory Stress in a Sporadic Model for Alzheimer's Disease. J Alzheimers Dis 2023; 95:317-337. [PMID: 37522205 DOI: 10.3233/jad-230151] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
BACKGROUND Neuroinflammation in Alzheimer's disease (AD) can occur due to excessive activation of microglia in response to the accumulation of amyloid-β peptide (Aβ). Previously, we demonstrated an increased expression of this peptide in the locus coeruleus (LC) in a sporadic model for AD (streptozotocin, STZ; 2 mg/kg, ICV). We hypothesized that the STZ-AD model exhibits neuroinflammation, and treatment with an inhibitor of microglia (minocycline) can reverse the cognitive, respiratory, sleep, and molecular disorders of this model. OBJECTIVE To evaluate the effect of minocycline treatment in STZ model disorders. METHODS We treated control and STZ-treated rats for five days with minocycline (30 mg/kg, IP) and evaluated cognitive performance, chemoreflex response to hypercapnia and hypoxia, and total sleep time. Additionally, quantification of Aβ, microglia analyses, and relative expression of cytokines in the LC were performed. RESULTS Minocycline treatment improved learning and memory, which was concomitant with a decrease in microglial cell density and re-establishment of morphological changes induced by STZ in the LC region. Minocycline did not reverse the STZ-induced increase in CO2 sensitivity during wakefulness. However, it restored the daytime sleep-wake cycle in STZ-treated animals to the same levels as those observed in control animals. In the LC, levels of A and expression of Il10, Il1b, and Mcp1 mRNA remained unaffected by minocycline, but we found a strong trend of minocycline effect on Tnf- α. CONCLUSION Our findings suggest that minocycline effectively reduces microglial recruitment and the inflammatory morphological profile in the LC, while it recovers cognitive performance and restores the sleep-wake pattern impaired by STZ.
Collapse
Affiliation(s)
- Mariane C Vicente
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP/FCAV, Jaboticabal, SP, Brazil
- Mary S. Easton Center for Alzheimer's Research and Care, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Julia L Paneghini
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP/FCAV, Jaboticabal, SP, Brazil
| | - Angelita M Stabile
- Department of General and Specialized Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Mateus Amorim
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Conceição E Anibal Silva
- Department of Pharmachology, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP/FCAV, Jaboticabal, SP, Brazil
| | - Thiago M Cunha
- Department of Pharmachology, Medicine School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP/FCAV, Jaboticabal, SP, Brazil
| | - Maria C Almeida
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Daniel C Carrettiero
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University - UNESP/FCAV, Jaboticabal, SP, Brazil
| |
Collapse
|
9
|
Yoshizawa M, Fukushi I, Takeda K, Kono Y, Hasebe Y, Koizumi K, Ikeda K, Pokorski M, Toda T, Okada Y. Role of microglia in blood pressure and respiratory responses to acute hypoxic exposure in rats. J Physiol Sci 2022; 72:26. [PMID: 36229778 DOI: 10.1186/s12576-022-00848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 09/02/2022] [Indexed: 11/10/2022]
Abstract
Microglia modulate cardiorespiratory activities during chronic hypoxia. It has not been clarified whether microglia are involved in the cardiorespiratory responses to acute hypoxia. Here we investigated this issue by comparing cardiorespiratory responses to two levels of acute hypoxia (13% O2 for 4 min and 7% O2 for 5 min) in conscious unrestrained rats before and after systemic injection of minocycline (MINO), an inhibitor of microglia activation. MINO increased blood pressure but not lung ventilation in the control normoxic condition. Acute hypoxia stimulated cardiorespiratory responses in MINO-untreated rats. MINO failed to significantly affect the magnitude of hypoxia-induced blood pressure elevation. In contrast, MINO tended to suppress the ventilatory responses to hypoxia. We conclude that microglia differentially affect cardiorespiratory regulation depending on the level of blood oxygenation. Microglia suppressively contribute to blood pressure regulation in normoxia but help maintain ventilatory augmentation in hypoxia, which underscores the dichotomy of central regulatory pathways for both systems.
Collapse
Affiliation(s)
- Masashi Yoshizawa
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.,Clinical Research Center, Murayama Medical Center, Tokyo, Japan
| | - Isato Fukushi
- Clinical Research Center, Murayama Medical Center, Tokyo, Japan.,Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Kotaro Takeda
- Clinical Research Center, Murayama Medical Center, Tokyo, Japan.,Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Yosuke Kono
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.,Clinical Research Center, Murayama Medical Center, Tokyo, Japan
| | - Yohei Hasebe
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.,Clinical Research Center, Murayama Medical Center, Tokyo, Japan
| | - Keiichi Koizumi
- Department of Pediatrics, Fujiyoshida Municipal Hospital, Yamanashi, Japan
| | - Keiko Ikeda
- Institute of Innovative Research, Homeostatic Mechanism Research Unit, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Takako Toda
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yasumasa Okada
- Clinical Research Center, Murayama Medical Center, Tokyo, Japan.
| |
Collapse
|
10
|
Lima-Silveira L, Hasser EM, Kline DD. Cardiovascular deconditioning increases GABA signaling in the nucleus tractus solitarii. J Neurophysiol 2022; 128:28-39. [PMID: 35642806 PMCID: PMC9236861 DOI: 10.1152/jn.00102.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nucleus tractus solitarii (nTS) is the major integrative brainstem region for autonomic modulation and processing of cardiovascular reflexes. GABA and glutamate are the main inhibitory and excitatory neurotransmitters, respectively, within this nucleus. Alterations in the GABA-glutamate regulation in the nTS are related to numerous cardiovascular comorbidities. Bedridden individuals and people exposed to microgravity exhibit dysautonomia and cardiovascular deconditioning that are mimicked in the hindlimb unloading (HU) rat model. We have previously shown in the nTS that HU increases glutamatergic neurotransmission yet decreases neuronal excitability. In this study, we investigated the effects of HU on nTS GABAergic neurotransmission. We hypothesized that HU potentiates GABA signaling via increased GABAergic release and postsynaptic GABA receptor expression. Following HU or control postural exposure, GABAergic neurotransmission was assessed using whole cell patch clamp whereas the magnitude of GABA release was evaluated via an intensity-based GABA sensing fluorescence reporter (iGABASnFR). In response to GABA interneuron stimulation, the evoked inhibitory postsynaptic current (nTS-IPSC) amplitude and area, as well as iGABASnFR fluorescence, were greater in HU than in control. HU also elevated the frequency but not the amplitude of spontaneous miniature IPSCs. Picoapplication of GABA produced similar postsynaptic current responses in nTS neurons of HU and control. Moreover, HU did not alter GABAA receptor α1 subunit expression, indicating minimal alterations in postsynaptic membrane receptor expression. These results indicate that HU increases GABAergic signaling in the nTS likely via augmented release of GABA from presynaptic terminals. Altogether, our data indicate GABA plasticity contributes to the autonomic and cardiovascular alterations following cardiovascular deconditioning (CVD).NEW & NOTEWORTHY Gravity influences distribution of blood volume and autonomic function. Microgravity and prolonged bed rest induce cardiovascular deconditioning (CVD). We used hindlimb unloading (HU), a rat analog for bed rest, to investigate CVD-induced neuroplasticity in the brainstem. Our data demonstrate that HU increases GABA modulation of nucleus tractus solitarii (nTS) neurons via presynaptic plasticity. Given the importance of nTS in integrating cardiovascular reflexes, this study provides new evidence on the central mechanisms behind CVD following HU.
Collapse
Affiliation(s)
- Ludmila Lima-Silveira
- 1Department of Biomedical Sciences, University of Missouri, Columbia, Missouri,3Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Eileen M. Hasser
- 1Department of Biomedical Sciences, University of Missouri, Columbia, Missouri,2Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri,3Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - David D. Kline
- 1Department of Biomedical Sciences, University of Missouri, Columbia, Missouri,2Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri,3Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
11
|
Oliveira LM, Fernandes-Junior SA, Cabral LMC, Miranda NCS, Czeisler CM, Otero JJ, Moreira TS, Takakura AC. Regulation of blood vessels by ATP in the ventral medullary surface in a rat model of Parkinson's disease. Brain Res Bull 2022; 187:138-154. [PMID: 35777704 DOI: 10.1016/j.brainresbull.2022.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/26/2022] [Accepted: 06/25/2022] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) patients often experience impairment of autonomic and respiratory functions. These include conditions such as orthostatic hypotension and sleep apnea, which are highly correlated with dysfunctional central chemoreception. Blood flow is a fundamental determinant of tissue CO2/H+, yet the extent to which blood flow regulation within chemoreceptor regions contributes to respiratory behavior during neurological disease remains unknown. Here, we tested the hypothesis that 6-hydroxydopamine injection to inducing a known model of PD results in dysfunctional vascular homeostasis, biochemical dysregulation, and glial morphology of the ventral medullary surface (VMS). We show that hypercapnia (FiCO2 = 10%) induced elevated VMS pial vessel constriction in PD animals through a P2-receptor dependent mechanism. Similarly, we found a greater CO2-induced vascular constriction after ARL67156 (an ectonucleotidase inhibitor) in control and PD-induced animals. In addition, we also report that weighted gene correlational network analysis of the proteomic data showed a protein expression module differentially represented between both groups. This module showed that gene ontology enrichment for components of the ATP machinery were reduced in our PD-model compared to control animals. Altogether, our data indicate that dysfunction in purinergic signaling, potentially through altered ATP bioavailability in the VMS region, may compromise the RTN neuroglial vascular unit in a PD animal model.
Collapse
Affiliation(s)
- Luiz M Oliveira
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | - Silvio A Fernandes-Junior
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil; The Ohio State University College of Medicine, Department of Pathology, USA
| | - Laís M C Cabral
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | - Nicole C S Miranda
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | | | - José J Otero
- The Ohio State University College of Medicine, Department of Pathology, USA
| | - Thiago S Moreira
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil
| | - Ana C Takakura
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
12
|
Hofmann GC, Hasser EM, Kline DD. Unilateral vagotomy alters astrocyte and microglial morphology in the nucleus tractus solitarii of the rat. Am J Physiol Regul Integr Comp Physiol 2021; 320:R945-R959. [PMID: 33978480 PMCID: PMC8285617 DOI: 10.1152/ajpregu.00019.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/09/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022]
Abstract
The nucleus tractus solitarii (nTS) is the initial site of integration of sensory information from the cardiorespiratory system and contributes to reflex responses to hypoxia. Afferent fibers of the bilateral vagus nerves carry input from the heart, lungs, and other organs to the nTS where it is processed and modulated. Vagal afferents and nTS neurons are integrally associated with astrocytes and microglia that contribute to neuronal activity and influence cardiorespiratory control. We hypothesized that vagotomy would alter glial morphology and cardiorespiratory responses to hypoxia. Unilateral vagotomy (or sham surgery) was performed in rats. Prior to and seven days after surgery, baseline and hypoxic cardiorespiratory responses were monitored in conscious and anesthetized animals. The brainstem was sectioned and caudal, mid-area postrema (mid-AP), and rostral sections of the nTS were prepared for immunohistochemistry. Vagotomy increased immunoreactivity (-IR) of astrocytic glial fibrillary acidic protein (GFAP), specifically at mid-AP in the nTS. Similar results were found in the dorsal motor nucleus of the vagus (DMX). Vagotomy did not alter nTS astrocyte number, yet increased astrocyte branching and altered morphology. In addition, vagotomy both increased nTS microglia number and produced morphologic changes indicative of activation. Cardiorespiratory baseline parameters and hypoxic responses remained largely unchanged, but vagotomized animals displayed fewer augmented breaths (sighs) in response to hypoxia. Altogether, vagotomy alters nTS glial morphology, indicative of functional changes in astrocytes and microglia that may affect cardiorespiratory function in health and disease.
Collapse
Affiliation(s)
- Gabrielle C Hofmann
- Comparative Medicine, University of Missouri, Columbia, Missouri
- Area Pathobiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Eileen M Hasser
- Area Pathobiology, University of Missouri, Columbia, Missouri
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - David D Kline
- Area Pathobiology, University of Missouri, Columbia, Missouri
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
13
|
Pascoaloti-Lima JC, Machado BH, Accorsi-Mendonça D. Sustained Hypoxia Reduces GABAergic Modulation on NTS Neurons Sending Projections to Ventral Medulla of Rats. Neuroscience 2021; 457:1-11. [PMID: 33421568 DOI: 10.1016/j.neuroscience.2020.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 11/26/2022]
Abstract
Peripheral chemoreflex is activated during short-term sustained hypoxia (SH), and the first synapse of these afferents is located in Nucleus Tractus Solitarius(NTS). NTS neurons projecting to the ventral lateral medulla (NTS-VLM) are part of the respiratory pathways of the chemoreflex. SH increases the magnitude of basal respiratory parameters in rats from Wistar-Hannover strain. In this study, we hypothesized that the observed changes in the respiratory pattern in response to SH were due to changes in the GABAergic modulation of the synaptic transmission of NTS-VLM neurons. We used an electrophysiological approach to record the synaptic activity of NTS neurons labeled with a retrograde tracer previously microinjected into VLM of Wistar-Hannover rats submitted to 24 h SH. The data are showing that: (a) the amplitude of evoked inhibitory currents in NTS-VLM neurons of SH rats was reduced and not accompanied by any change in rise-time and decay-time; (b) the 1/CV2 and the number of failures in response to evoked currents were also affected by SH; (c) the frequency of spontaneous inhibitory currents was reduced by SH without changes in amplitude and half-width. These effects of SH were observed in NTS-VLM neurons located in caudal and intermediate NTS, but not in NTS-VLM neurons located in the rostral NTS. We conclude that SH causes a reduction in inhibitory modulation onto NTS-VLM neurons by pre-synaptic mechanisms, which may contribute to the observed changes in the respiratory pattern of Wistar-Hannover rats submitted to SH.
Collapse
Affiliation(s)
- Júlio C Pascoaloti-Lima
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Daniela Accorsi-Mendonça
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
14
|
Bazilio DS, Rodrigues KL, Moraes DJA, Machado BH. Distinct cardiovascular and respiratory responses to short-term sustained hypoxia in juvenile Sprague Dawley and Wistar Hannover rats. Auton Neurosci 2020; 230:102746. [PMID: 33260056 DOI: 10.1016/j.autneu.2020.102746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/01/2022]
Abstract
Short-term sustained hypoxia (SH) elicits active expiration, augmented late-expiratory (late-E) sympathetic activity, increased arterial pressure and ventilation, and amplified sympathetic and abdominal expiratory responses to chemoreflex activation in rats of the Wistar-Ribeirão Preto (WRP) strain. Herein, we investigated whether SH can differentially affect the cardiovascular and respiratory outcomes of Sprague-Dawley (SD) and Wistar Hannover (WH) rats and compared the results with previous data using WRP rats. For this, we exposed SD and WH rats to SH (FiO2 = 0.1) for 24 h and evaluated arterial pressure, sympathetic activity, and respiratory pattern. SD rats presented increased arterial pressure, respiratory rate and tidal volume, as well as augmented late-E expiratory motor output and increased sympathetic outflow due to post-inspiratory and late-E sympathetic overactivity. WH rats presented reduced changes, suggesting lower responsiveness of this strain to this SH protocol. The magnitudes of changes in sympathetic and abdominal expiratory motor activities to chemoreflex activation in SD rats were reduced by SH. Pressor responses to chemoreflex activation were shown to be blunted in SD and WH rats after SH. The data are showing that SD, WH, and WRP rat strains exhibit marked differences in their cardiovascular, autonomic and respiratory responses to 24-h SH and draw attention to the importance of rat strain for studies exploring the underlying mechanisms involved in the neuronal changes induced by the experimental model of SH.
Collapse
Affiliation(s)
- Darlan S Bazilio
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Karla L Rodrigues
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil.
| |
Collapse
|
15
|
Lima-Silveira L, Martinez D, Hasser EM, Kline DD. Mechanisms Underlying Neuroplasticity in the Nucleus Tractus Solitarii Following Hindlimb Unloading in Rats. Neuroscience 2020; 449:214-227. [PMID: 33039526 DOI: 10.1016/j.neuroscience.2020.09.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 12/11/2022]
Abstract
Hindlimb unloading (HU) in rats induces cardiovascular deconditioning (CVD) analogous to that observed in individuals exposed to microgravity or bed rest. Among other physiological changes, HU rats exhibit autonomic imbalance and altered baroreflex function. Lack of change in visceral afferent activity that projects to the brainstem in HU rats suggests that neuronal plasticity within central nuclei processing cardiovascular afferents may be responsible for these changes in CVD and HU. The nucleus tractus solitarii (nTS) is a critical brainstem region for autonomic control and integration of cardiovascular reflexes. In this study, we used patch electrophysiology, live-cell calcium imaging and molecular methods to investigate the effects of HU on glutamatergic synaptic transmission and intrinsic properties of nTS neurons. HU increased the amplitude of monosynaptic excitatory postsynaptic currents and presynaptic calcium entry evoked by afferent tractus solitarii stimulus (TS-EPSC); spontaneous (s) EPSCs were unaffected. The addition of a NMDA receptor antagonist (AP5) reduced TS-EPSC amplitude and sEPSC frequency in HU but not control. Despite the increase in glutamatergic inputs, HU neurons were more hyperpolarized and exhibited intrinsic decreased excitability compared to controls. After block of ionotropic glutamatergic and GABAergic synaptic transmission (NBQX, AP5, Gabazine), HU neuronal membrane potential depolarized and neuronal excitability was comparable to controls. These data demonstrate that HU increases presynaptic release and TS-EPSC amplitude, which includes a NMDA receptor component. Furthermore, the decreased excitability and hyperpolarized membrane after HU are associated with enhanced GABAergic modulation. This functional neuroplasticity in the nTS may underly the CVD induced by HU.
Collapse
Affiliation(s)
- Ludmila Lima-Silveira
- Department of Biomedical Sciences, University of Missouri, 134 Research Park Dr., Columbia, MO 65211, USA; Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Dr., Columbia, MO 65211, USA.
| | - Diana Martinez
- Department of Biomedical Sciences, University of Missouri, 134 Research Park Dr., Columbia, MO 65211, USA; Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Dr., Columbia, MO 65211, USA.
| | - Eileen M Hasser
- Department of Biomedical Sciences, University of Missouri, 134 Research Park Dr., Columbia, MO 65211, USA; Department of Medical Pharmacology and Physiology, University of Missouri, 134 Research Park Dr., Columbia, MO 65211, USA; Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Dr., Columbia, MO 65211, USA.
| | - David D Kline
- Department of Biomedical Sciences, University of Missouri, 134 Research Park Dr., Columbia, MO 65211, USA; Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Dr., Columbia, MO 65211, USA.
| |
Collapse
|
16
|
Xia Y, Zhang Z, Lin W, Yan J, Zhu C, Yin D, He S, Su Y, Xu N, Caldwell RW, Yao L, Chen Y. Modulating microglia activation prevents maternal immune activation induced schizophrenia-relevant behavior phenotypes via arginase 1 in the dentate gyrus. Neuropsychopharmacology 2020; 45:1896-1908. [PMID: 32599605 PMCID: PMC7608378 DOI: 10.1038/s41386-020-0743-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/31/2022]
Abstract
Prenatal infection during pregnancy increases the risk for developing neuropsychiatric disorders such as schizophrenia. This is linked to an inflammatory microglial phenotype in the offspring induced by maternal immune activation (MIA). Microglia are crucial for brain development and maintenance of neuronal niches, however, whether and how their activation is involved in the regulation of neurodevelopment remains unclear. Here, we used a MIA rodent model in which polyinosinic: polycytidylic acid (poly (I:C)) was injected into pregnant mice. We found fewer parvalbumin positive (PV+) cells and impaired GABAergic transmission in the dentate gyrus (DG), accompanied by schizophrenia-like behavior in the adult offspring. Minocycline, a potent inhibitor of microglia activation, successfully prevented the above-mentioned deficits in the offspring. Furthermore, by using microglia-specific arginase 1 (Arg1) ablation as well as overexpression in DG, we identified a critical role of Arg1 in microglia activation to protect against poly (I:C) imparted neuropathology and altered behavior in offspring. Taken together, our results highlight that Arg1-mediated alternative activation of microglia are potential therapeutic targets for psychiatric disorders induced by MIA.
Collapse
Affiliation(s)
- Yucen Xia
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Zhiqing Zhang
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Weipeng Lin
- grid.22069.3f0000 0004 0369 6365Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062 China
| | - Jinglan Yan
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Chuan’an Zhu
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Dongmin Yin
- grid.22069.3f0000 0004 0369 6365Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062 China
| | - Su He
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Yang Su
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Nenggui Xu
- grid.411866.c0000 0000 8848 7685South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Robert William Caldwell
- grid.410427.40000 0001 2284 9329Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912 USA
| | - Lin Yao
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China. .,School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yongjun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China. .,Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, 510515, China. .,Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
17
|
Matott MP, Hasser EM, Kline DD. Sustained Hypoxia Alters nTS Glutamatergic Signaling and Expression and Function of Excitatory Amino Acid Transporters. Neuroscience 2020; 430:131-140. [PMID: 32032667 PMCID: PMC7560968 DOI: 10.1016/j.neuroscience.2020.01.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/11/2020] [Accepted: 01/23/2020] [Indexed: 01/16/2023]
Abstract
Glutamate is the major excitatory neurotransmitter in the nucleus tractus solitarii (nTS) and mediates chemoreflex function during periods of low oxygen (i.e. hypoxia). We have previously shown that nTS excitatory amino acid transporters (EAATs), specifically EAAT-2, located on glia modulate neuronal activity, cardiorespiratory and chemoreflex function under normal conditions via its tonic uptake of extracellular glutamate. Chronic sustained hypoxia (SH) elevates nTS synaptic transmission and chemoreflex function. The goal of this study was to determine the extent to which glial EAAT-2 contributes to SH-induced nTS synaptic alterations. To do so, male Sprague-Dawley rats (4-7 weeks) were exposed to either 1, 3, or 7 days of SH (10% O2, 24 h/day) and compared to normoxic controls (21% O2, 24 h/day, i.e., 0 days SH). After which, the nTS was harvested for patch clamp electrophysiology, quantitative real-time PCR, immunohistochemistry and immunoblots. SH induced time- and parameter-dependent increases in excitatory postsynaptic currents (EPSCs). TS-evoked EPSC amplitude increased after 1D SH which returned at 3D and 7D SH. Spontaneous EPSC frequency increased only after 3D SH, which returned to normoxic levels at 7D SH. EPSC enhancement occurred primarily by presynaptic mechanisms. Inhibition of EAAT-2 with dihydrokainate (DHK, 300 µM) did not alter EPSCs following 1D SH but induced depolarizing inward currents (Ihold). After 3D SH, DHK decreased TS-EPSC amplitude yet its resulting Ihold was eliminated. EAAT-2 mRNA and protein increased after 3D and 7D SH, respectively. These data suggest that SH alters the expression and function of EAAT-2 which may have a neuroprotective effect.
Collapse
Affiliation(s)
- Michael P Matott
- Dept. of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO 65211, USA
| | - Eileen M Hasser
- Dept. of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO 65211, USA
| | - David D Kline
- Dept. of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Drive, Columbia, MO 65211, USA.
| |
Collapse
|