1
|
Covelo J, Camassa A, Sanchez-Sanchez JM, Manasanch A, Porta LD, Cancino-Fuentes N, Barbero-Castillo A, Robles RM, Bosch M, Tapia-Gonzalez S, Merino-Serrais P, Carreño M, Conde-Blanco E, Arboix JR, Roldán P, DeFelipe J, Sanchez-Vives MV. Spatiotemporal network dynamics and structural correlates in the human cerebral cortex in vitro. Prog Neurobiol 2025; 246:102719. [PMID: 39848562 DOI: 10.1016/j.pneurobio.2025.102719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/02/2024] [Revised: 10/26/2024] [Accepted: 01/19/2025] [Indexed: 01/25/2025]
Abstract
Elucidating human cerebral cortex function is essential for understanding the physiological basis of both healthy and pathological brain states. We obtained extracellular local field potential recordings from slices of neocortical tissue from refractory epilepsy patients. Multi-electrode recordings were combined with histological information, providing a two-dimensional spatiotemporal characterization of human cortical dynamics in control conditions and following modulation of the excitation/inhibition balance. Slices expressed spontaneous rhythmic activity consistent with slow wave activity, comprising alternating active (Up) and silent (Down) states (Up-duration: 0.08 ± 0.03 s, Down-duration: 2.62 ± 2.12 s, frequency: 0.75 ± 0.39 Hz). Up states propagated from deep to superficial layers, with faster propagation speeds than in other species (vertical: 64.6 mm/s; horizontal: 65.9 mm/s). GABAA blockade progressively transformed the emergent activity into epileptiform discharges, marked by higher firing rates, faster network recruitment and propagation, and infraslow rhythmicity (0.01 Hz). This dynamical characterization broadens our understanding of the mechanistic organization of the human cortical network at the micro- and mesoscale.
Collapse
Affiliation(s)
- Joana Covelo
- Institute of Biomedical Investigations August Pi i Sunyer (IDIBAPS), Systems Neuroscience, Barcelona 08036, Spain
| | - Alessandra Camassa
- Institute of Biomedical Investigations August Pi i Sunyer (IDIBAPS), Systems Neuroscience, Barcelona 08036, Spain
| | - Jose Manuel Sanchez-Sanchez
- Institute of Biomedical Investigations August Pi i Sunyer (IDIBAPS), Systems Neuroscience, Barcelona 08036, Spain
| | - Arnau Manasanch
- Institute of Biomedical Investigations August Pi i Sunyer (IDIBAPS), Systems Neuroscience, Barcelona 08036, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona 08036, Spain
| | - Leonardo Dalla Porta
- Institute of Biomedical Investigations August Pi i Sunyer (IDIBAPS), Systems Neuroscience, Barcelona 08036, Spain
| | - Nathalia Cancino-Fuentes
- Institute of Biomedical Investigations August Pi i Sunyer (IDIBAPS), Systems Neuroscience, Barcelona 08036, Spain
| | - Almudena Barbero-Castillo
- Institute of Biomedical Investigations August Pi i Sunyer (IDIBAPS), Systems Neuroscience, Barcelona 08036, Spain
| | - Rita M Robles
- Institute of Biomedical Investigations August Pi i Sunyer (IDIBAPS), Systems Neuroscience, Barcelona 08036, Spain
| | - Miquel Bosch
- Institute of Biomedical Investigations August Pi i Sunyer (IDIBAPS), Systems Neuroscience, Barcelona 08036, Spain
| | - Silvia Tapia-Gonzalez
- Laboratorio Cajal de Circuitos Corticales, CTB, Universidad Politécnica de Madrid, Madrid 28223, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain; Laboratorio de Neurofisiología Celular, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Paula Merino-Serrais
- Laboratorio Cajal de Circuitos Corticales, CTB, Universidad Politécnica de Madrid, Madrid 28223, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid 28029, Spain
| | - Mar Carreño
- Unidad de Epilepsia (affiliate member of ERN epiCARE), Hospital Clínic de Barcelona, Barcelona 08036, Spain
| | - Estefania Conde-Blanco
- Institute of Biomedical Investigations August Pi i Sunyer (IDIBAPS), Systems Neuroscience, Barcelona 08036, Spain; Unidad de Epilepsia (affiliate member of ERN epiCARE), Hospital Clínic de Barcelona, Barcelona 08036, Spain
| | - Jordi Rumià Arboix
- Unidad de Epilepsia (affiliate member of ERN epiCARE), Hospital Clínic de Barcelona, Barcelona 08036, Spain
| | - Pedro Roldán
- Unidad de Epilepsia (affiliate member of ERN epiCARE), Hospital Clínic de Barcelona, Barcelona 08036, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, CTB, Universidad Politécnica de Madrid, Madrid 28223, Spain; Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid 28029, Spain
| | - Maria V Sanchez-Vives
- Institute of Biomedical Investigations August Pi i Sunyer (IDIBAPS), Systems Neuroscience, Barcelona 08036, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain.
| |
Collapse
|
2
|
Debanne D, Mylonaki K, Musella ML, Russier M. Voltage-gated ion channels in epilepsies: circuit dysfunctions and treatments. Trends Pharmacol Sci 2024; 45:1018-1032. [PMID: 39406591 DOI: 10.1016/j.tips.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/04/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 11/10/2024]
Abstract
Epileptic encephalopathies are generally considered to be functional disruptions in the balance between neural excitation and inhibition. Excitatory and inhibitory voltage-gated ion channels are key targets of antiepileptic drugs, playing a critical role in regulating neuronal excitation and synaptic transmission. Recent research has highlighted the significance of ion channels in various aspects of epilepsy, including presynaptic neurotransmitter release, intrinsic neuronal excitability, and neural synchrony. Genetic alterations in excitatory and inhibitory ion channels within principal neurons and in inhibitory interneurons have also been identified as key contributors to the development of epilepsies. We review these recent studies and shed light on the bidirectional relationship between epilepsy and neuronal excitability and the latest advancements in pharmacological therapeutics targeting ion channels for epilepsy treatment.
Collapse
|
3
|
Paulk AC, Salami P, Zelmann R, Cash SS. Electrode Development for Epilepsy Diagnosis and Treatment. Neurosurg Clin N Am 2024; 35:135-149. [PMID: 38000837 DOI: 10.1016/j.nec.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2023]
Abstract
Recording neural activity has been a critical aspect in the diagnosis and treatment of patients with epilepsy. For those with intractable epilepsy, intracranial neural monitoring has been of substantial importance. Clinically, however, methods for recording neural information have remained essentially unchanged for decades. Over the last decade or so, rapid advances in electrode technology have begun to change this landscape. New systems allow for the observation of neural activity with high spatial resolution and, in some cases, at the level of the activity of individual neurons. These new tools have contributed greatly to our understanding of brain function and dysfunction. Here, the authors review the primary technologies currently in use in humans. The authors discuss other possible systems, some of the challenges which come along with these devices, and how they will become incorporated into the clinical workflow. Ultimately, the expectation is that these new, high-density, high-spatial-resolution recording systems will become a valuable part of the clinical arsenal used in the diagnosis and surgical management of epilepsy.
Collapse
Affiliation(s)
- Angelique C Paulk
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.
| | - Pariya Salami
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Rina Zelmann
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Sydney S Cash
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
4
|
Bod R, Tóth K, Essam N, Tóth EZ, Erõss L, Entz L, Bagó AG, Fabó D, Ulbert I, Wittner L. Synaptic alterations and neuronal firing in human epileptic neocortical excitatory networks. Front Synaptic Neurosci 2023; 15:1233569. [PMID: 37635750 PMCID: PMC10450510 DOI: 10.3389/fnsyn.2023.1233569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Epilepsy is a prevalent neurological condition, with underlying neuronal mechanisms involving hyperexcitability and hypersynchrony. Imbalance between excitatory and inhibitory circuits, as well as histological reorganization are relatively well-documented in animal models or even in the human hippocampus, but less is known about human neocortical epileptic activity. Our knowledge about changes in the excitatory signaling is especially scarce, compared to that about the inhibitory cell population. This study investigated the firing properties of single neurons in the human neocortex in vitro, during pharmacological blockade of glutamate receptors, and additionally evaluated anatomical changes in the excitatory circuit in tissue samples from epileptic and non-epileptic patients. Both epileptic and non-epileptic tissues exhibited spontaneous population activity (SPA), NMDA receptor antagonization reduced SPA recurrence only in epileptic tissue, whereas further blockade of AMPA/kainate receptors reversibly abolished SPA emergence regardless of epilepsy. Firing rates did not significantly change in excitatory principal cells and inhibitory interneurons during pharmacological experiments. Granular layer (L4) neurons showed an increased firing rate in epileptic compared to non-epileptic tissue. The burstiness of neurons remained unchanged, except for that of inhibitory cells in epileptic recordings, which decreased during blockade of glutamate receptors. Crosscorrelograms computed from single neuron discharge revealed both mono- and polysynaptic connections, particularly involving intrinsically bursting principal cells. Histological investigations found similar densities of SMI-32-immunopositive long-range projecting pyramidal cells in both groups, and shorter excitatory synaptic active zones with a higher proportion of perforated synapses in the epileptic group. These findings provide insights into epileptic modifications from the perspective of the excitatory system and highlight discrete alterations in firing patterns and synaptic structure. Our data suggest that NMDA-dependent glutamatergic signaling, as well as the excitatory synaptic machinery are perturbed in epilepsy, which might contribute to epileptic activity in the human neocortex.
Collapse
Affiliation(s)
- Réka Bod
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
| | - Kinga Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Nour Essam
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Estilla Zsófia Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
| | - Loránd Erõss
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - László Entz
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Attila G. Bagó
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - Dániel Fabó
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Lucia Wittner
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
- National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| |
Collapse
|
5
|
Jean G, Carton J, Haq K, Musto AE. The role of dendritic spines in epileptogenesis. Front Cell Neurosci 2023; 17:1173694. [PMID: 37601280 PMCID: PMC10433379 DOI: 10.3389/fncel.2023.1173694] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/24/2023] [Accepted: 07/06/2023] [Indexed: 08/22/2023] Open
Abstract
Epilepsy is a chronic central nervous system (CNS) disease associated with high morbidity. To date, there is no known disease-modifying therapy for epilepsy. A leading hypothesis for a mechanism of epileptogenesis is the generation of aberrant neuronal networks. Although the underlying biological mechanism is not clear, scientific evidence indicates that it is associated with a hyperexcitable synchronous neuronal network and active dendritic spine plasticity. Changes in dendritic spine morphology are related to altered expression of synaptic cytoskeletal proteins, inflammatory molecules, neurotrophic factors, and extracellular matrix signaling. However, it remains to be determined if these aberrant dendritic spine formations lead to neuronal hyperexcitability and abnormal synaptic connections or whether they constitute an underlying mechanism of seizure susceptibility. Focusing on dendritic spine machinery as a potential target for medications could limit or reverse the development of epilepsy.
Collapse
Affiliation(s)
- Gary Jean
- Medical Program, School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Joseph Carton
- Medical Program, School of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Kaleem Haq
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Alberto E. Musto
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, United States
- Department of Neurology, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
6
|
Fabo D, Bokodi V, Szabó JP, Tóth E, Salami P, Keller CJ, Hajnal B, Thesen T, Devinsky O, Doyle W, Mehta A, Madsen J, Eskandar E, Erőss L, Ulbert I, Halgren E, Cash SS. The role of superficial and deep layers in the generation of high frequency oscillations and interictal epileptiform discharges in the human cortex. Sci Rep 2023; 13:9620. [PMID: 37316509 DOI: 10.1038/s41598-022-22497-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023] Open
Abstract
Describing intracortical laminar organization of interictal epileptiform discharges (IED) and high frequency oscillations (HFOs), also known as ripples. Defining the frequency limits of slow and fast ripples. We recorded potential gradients with laminar multielectrode arrays (LME) for current source density (CSD) and multi-unit activity (MUA) analysis of interictal epileptiform discharges IEDs and HFOs in the neocortex and mesial temporal lobe of focal epilepsy patients. IEDs were observed in 20/29, while ripples only in 9/29 patients. Ripples were all detected within the seizure onset zone (SOZ). Compared to hippocampal HFOs, neocortical ripples proved to be longer, lower in frequency and amplitude, and presented non-uniform cycles. A subset of ripples (≈ 50%) co-occurred with IEDs, while IEDs were shown to contain variable high-frequency activity, even below HFO detection threshold. The limit between slow and fast ripples was defined at 150 Hz, while IEDs' high frequency components form clusters separated at 185 Hz. CSD analysis of IEDs and ripples revealed an alternating sink-source pair in the supragranular cortical layers, although fast ripple CSD appeared lower and engaged a wider cortical domain than slow ripples MUA analysis suggested a possible role of infragranularly located neural populations in ripple and IED generation. Laminar distribution of peak frequencies derived from HFOs and IEDs, respectively, showed that supragranular layers were dominated by slower (< 150 Hz) components. Our findings suggest that cortical slow ripples are generated primarily in upper layers while fast ripples and associated MUA in deeper layers. The dissociation of macro- and microdomains suggests that microelectrode recordings may be more selective for SOZ-linked ripples. We found a complex interplay between neural activity in the neocortical laminae during ripple and IED formation. We observed a potential leading role of cortical neurons in deeper layers, suggesting a refined utilization of LMEs in SOZ localization.
Collapse
Affiliation(s)
- Daniel Fabo
- Epilepsy Unit, Department of Neurology, National Institute of Mental Health, Neurology and Neurosurgery, Amerikai Út 57. 1145, Budapest, Hungary.
| | - Virag Bokodi
- Epilepsy Unit, Department of Neurology, National Institute of Mental Health, Neurology and Neurosurgery, Amerikai Út 57. 1145, Budapest, Hungary
- Roska Tamás Doctoral School of Sciences and Technologies, Budapest, Hungary
| | - Johanna-Petra Szabó
- Epilepsy Unit, Department of Neurology, National Institute of Mental Health, Neurology and Neurosurgery, Amerikai Út 57. 1145, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Budapest, Hungary
| | - Emilia Tóth
- Epilepsy Unit, Department of Neurology, National Institute of Mental Health, Neurology and Neurosurgery, Amerikai Út 57. 1145, Budapest, Hungary
- Department of Neurology, University of Texas, McGovern Medical School, Houston, TX, USA
| | - Pariya Salami
- Epilepsy Division, Department of Neurology, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Boglárka Hajnal
- Epilepsy Unit, Department of Neurology, National Institute of Mental Health, Neurology and Neurosurgery, Amerikai Út 57. 1145, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Budapest, Hungary
| | - Thomas Thesen
- Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY, USA
- Department of Biomedical Sciences, College of Medicine, University of Houston, Houston, TX, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY, USA
| | - Werner Doyle
- Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY, USA
| | - Ashesh Mehta
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell and Feinstein Institute for Medical Research, Manhasset, NY, USA
| | | | - Emad Eskandar
- Massachusetts General Hospital Neurosurgery Research, Boston, MA, USA
| | - Lorand Erőss
- Department of Functional Neurosurgery, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - István Ulbert
- Epilepsy Unit, Department of Neurology, National Institute of Mental Health, Neurology and Neurosurgery, Amerikai Út 57. 1145, Budapest, Hungary
- Institute of Psychology, Eötvös Loránd Research Network, Budapest, Hungary
| | - Eric Halgren
- Department of Radiology, Neurosciences and Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - Sydney S Cash
- Epilepsy Division, Department of Neurology, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Hofer KT, Kandrács Á, Tóth K, Hajnal B, Bokodi V, Tóth EZ, Erőss L, Entz L, Bagó AG, Fabó D, Ulbert I, Wittner L. Bursting of excitatory cells is linked to interictal epileptic discharge generation in humans. Sci Rep 2022; 12:6280. [PMID: 35428851 PMCID: PMC9012754 DOI: 10.1038/s41598-022-10319-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/24/2021] [Accepted: 03/25/2022] [Indexed: 11/23/2022] Open
Abstract
Knowledge about the activity of single neurons is essential in understanding the mechanisms of synchrony generation, and particularly interesting if related to pathological conditions. The generation of interictal spikes—the hypersynchronous events between seizures—is linked to hyperexcitability and to bursting behaviour of neurons in animal models. To explore its cellular mechanisms in humans we investigated the activity of clustered single neurons in a human in vitro model generating both physiological and epileptiform synchronous events. We show that non-epileptic synchronous events resulted from the finely balanced firing of excitatory and inhibitory cells, which was shifted towards an enhanced excitability in epileptic tissue. In contrast, interictal-like spikes were characterised by an asymmetric overall neuronal discharge initiated by excitatory neurons with the presumptive leading role of bursting pyramidal cells, and possibly terminated by inhibitory interneurons. We found that the overall burstiness of human neocortical neurons is not necessarily related to epilepsy, but the bursting behaviour of excitatory cells comprising both intrinsic and synaptically driven bursting is clearly linked to the generation of epileptiform synchrony.
Collapse
Affiliation(s)
- Katharina T Hofer
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2., 1117, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083, Budapest, Hungary.,Department of Neurobiology, School of Medicine and Institute for Medical Research Israel-Canada, The Hebrew University, 91120, Jerusalem, Israel
| | - Ágnes Kandrács
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2., 1117, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083, Budapest, Hungary
| | - Kinga Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2., 1117, Budapest, Hungary
| | - Boglárka Hajnal
- National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary.,Semmelweis University Doctoral School, 1026, Budapest, Hungary
| | - Virág Bokodi
- National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary
| | - Estilla Zsófia Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2., 1117, Budapest, Hungary.,Semmelweis University Doctoral School, 1026, Budapest, Hungary
| | - Loránd Erőss
- National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary
| | - László Entz
- National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary
| | - Attila G Bagó
- National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary
| | - Dániel Fabó
- National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2., 1117, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083, Budapest, Hungary.,National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary
| | - Lucia Wittner
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2., 1117, Budapest, Hungary. .,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083, Budapest, Hungary. .,National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary.
| |
Collapse
|
8
|
Malkin SL, Khachatryan VA, Fedorov EV, Zaitsev AV. The Electrophysiological Properties of Cortical Neurons in the Epileptic Foci of Children with Refractory Temporal Lobe Epilepsy. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
|
9
|
Perisomatic Inhibition and Its Relation to Epilepsy and to Synchrony Generation in the Human Neocortex. Int J Mol Sci 2021; 23:ijms23010202. [PMID: 35008628 PMCID: PMC8745731 DOI: 10.3390/ijms23010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/17/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/21/2022] Open
Abstract
Inhibitory neurons innervating the perisomatic region of cortical excitatory principal cells are known to control the emergence of several physiological and pathological synchronous events, including epileptic interictal spikes. In humans, little is known about their role in synchrony generation, although their changes in epilepsy have been thoroughly investigated. This paper demonstraits how parvalbumin (PV)- and type 1 cannabinoid receptor (CB1R)-positive perisomatic interneurons innervate pyramidal cell bodies, and their role in synchronous population events spontaneously emerging in the human epileptic and non-epileptic neocortex, in vitro. Quantitative electron microscopy showed that the overall, PV+ and CB1R+ somatic inhibitory inputs remained unchanged in focal cortical epilepsy. On the contrary, the size of PV-stained synapses increased, and their number decreased in epileptic samples, in synchrony generating regions. Pharmacology demonstrated—in conjunction with the electron microscopy—that although both perisomatic cell types participate, PV+ cells have stronger influence on the generation of population activity in epileptic samples. The somatic inhibitory input of neocortical pyramidal cells remained almost intact in epilepsy, but the larger and consequently more efficient somatic synapses might account for a higher synchrony in this neuron population. This, together with epileptic hyperexcitability, might make a cortical region predisposed to generate or participate in hypersynchronous events.
Collapse
|
10
|
Köhling R. Translational perspectives: Interneurones start seizures. J Physiol 2019; 597:5525-5526. [PMID: 31603536 DOI: 10.1113/jp278966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|