1
|
Brown AD, Marko AD, Marko DM, Baranowski BJ, Silvera S, Finch MS, Yang AJ, Dhaliwal R, Ryan CR, Roy BD, Fajardo VA, MacPherson REK. Brain-derived neurotrophic factor drives muscle adaptation similar to aerobic training in mice. FASEB J 2025; 39:e70321. [PMID: 39853792 PMCID: PMC11760663 DOI: 10.1096/fj.202402421r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/13/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025]
Abstract
This study, in vivo and in vitro, investigated the role of brain-derived neurotrophic factor (BDNF) in skeletal muscle adaptations to aerobic exercise. BDNF is a contraction-induced protein that may play a role in muscle adaptations to aerobic exercise. BDNF is involved in muscle repair, increased fat oxidation, and mitochondrial biogenesis, all of which are adaptations observed with aerobic training. The purpose of this study was two-pronged and investigated the skeletal muscle BDNF response to (1) acute and (2) chronic exercise in male C57BL/6J mice. It also examined if chronic BDNF treatment resulted in similar adaptations to chronic exercise. In aim 1, mice underwent a 2 hr. treadmill exercise bout. In aim 2, mice were assigned to one of four groups: (1) control (CON); (2) endurance training (ET; treadmill running 1 h/day, 5 days/wk); (3) BDNF (BDNF; 0.5 mg/kg·bw, 5 days/wk); (4) endurance training and BDNF (ET + BDNF) for 8 weeks. Results demonstrated that the soleus (SOL) had higher BDNF content compared with the extensor digitorum longus (EDL) and that SOL BDNF increased with acute exercise. After chronic exercise and BDNF treatment, treadmill testing to exhaustion demonstrated a main effect of BDNF and ET on increasing exercise capacity. In vitro contractile assessment of the EDL revealed BDNF treatment resulted in similar increases in the max rate of relaxation as ET. EDL force-frequency analysis showed ET + BDNF produced higher force than CON and BDNF, indicating an additive effect. BDNF increased EDL mitochondrial proteins, COXIV, and CS. These results demonstrate that BDNF contributes to muscle adaptations observed with ET.
Collapse
Affiliation(s)
- Alexander D. Brown
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Alexander D. Marko
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Daniel M. Marko
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Bradley J. Baranowski
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Sebastian Silvera
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Michael S. Finch
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Alex J. Yang
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Roopan Dhaliwal
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Chantal R. Ryan
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Brian D. Roy
- Department of KinesiologyFaculty of Applied Health Sciences, Brock UniversitySt. CatharinesOntarioCanada
| | - Val A. Fajardo
- Department of KinesiologyFaculty of Applied Health Sciences, Brock UniversitySt. CatharinesOntarioCanada
| | - Rebecca E. K. MacPherson
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
- Centre for NeuroscienceBrock UniversitySt. CatharinesOntarioCanada
| |
Collapse
|
2
|
Tandon S, Aggarwal P, Sarkar S. Polyglutamine disorders: Pathogenesis and potential drug interventions. Life Sci 2024; 344:122562. [PMID: 38492921 DOI: 10.1016/j.lfs.2024.122562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Polyglutamine/poly(Q) diseases are a group nine hereditary neurodegenerative disorders caused due to abnormally expanded stretches of CAG trinucleotide in functionally distinct genes. All human poly(Q) diseases are characterized by the formation of microscopically discernable poly(Q) positive aggregates, the inclusion bodies. These toxic inclusion bodies are responsible for the impairment of several cellular pathways such as autophagy, transcription, cell death, etc., that culminate in disease manifestation. Although, these diseases remain largely without treatment, extensive research has generated mounting evidences that various events of poly(Q) pathogenesis can be developed as potential drug targets. The present review article briefly discusses the key events of disease pathogenesis, model system-based investigations that support the development of effective therapeutic interventions against pathogenesis of human poly(Q) disorders, and a comprehensive list of pharmacological and bioactive compounds that have been experimentally shown to alleviate poly(Q)-mediated neurotoxicity. Interestingly, due to the common cause of pathogenesis, all poly(Q) diseases share etiology, thus, findings from one disease can be potentially extrapolated to other poly(Q) diseases as well.
Collapse
Affiliation(s)
- Shweta Tandon
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Prerna Aggarwal
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
3
|
Hirunagi T, Nakatsuji H, Sahashi K, Yamamoto M, Iida M, Tohnai G, Kondo N, Yamada S, Murakami A, Noda S, Adachi H, Sobue G, Katsuno M. Exercise attenuates polyglutamine-mediated neuromuscular degeneration in a mouse model of spinal and bulbar muscular atrophy. J Cachexia Sarcopenia Muscle 2024; 15:159-172. [PMID: 37937369 PMCID: PMC10834330 DOI: 10.1002/jcsm.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Spinal and bulbar muscular atrophy (SBMA) is a hereditary neuromuscular disorder caused by the expansion of trinucleotide cytosine-adenine-guanine (CAG) repeats, which encodes a polyglutamine (polyQ) tract in the androgen receptor (AR) gene. Recent evidence suggests that, in addition to motor neuron degeneration, defective skeletal muscles are also the primary contributors to the pathogenesis in SBMA. While benefits of physical exercise have been suggested in SBMA, underlying mechanism remains elusive. METHODS We investigated the effect of running exercise in a transgenic mouse model of SBMA carrying human AR with 97 expanded CAGs (AR97Q). We assigned AR97Q mice to exercise and sedentary control groups, and mice in the exercise group received 1-h forced running wheel (5 m/min) 5 days a week for 4 weeks during the early stage of the disease. Motor function (grip strength and rotarod performance) and survival of each group were analysed, and histopathological and biological features in skeletal muscles and motor neurons were evaluated. RESULTS AR97Q mice in the exercise group showed improvement in motor function (~40% and ~50% increase in grip strength and rotarod performance, respectively, P < 0.05) and survival (median survival 23.6 vs. 16.7 weeks, P < 0.05) with amelioration of neuronal and muscular histopathology (~1.4-fold and ~2.8-fold increase in motor neuron and muscle fibre size, respectively, P < 0.001) compared to those in the sedentary group. Nuclear accumulation of polyQ-expanded AR in skeletal muscles and motor neurons was suppressed in the mice with exercise compared to the sedentary mice (~50% and ~30% reduction in 1C2-positive cells in skeletal muscles and motor neurons, respectively, P < 0.05). We found that the exercise activated 5'-adenosine monophosphate-activated protein kinase (AMPK) signalling and inhibited mammalian target of rapamycin pathway that regulates protein synthesis in skeletal muscles of SBMA mice. Pharmacological activation of AMPK inhibited protein synthesis and reduced polyQ-expanded AR proteins in C2C12 muscle cells. CONCLUSIONS Our findings suggest the therapeutic potential of exercise-induced effect via AMPK activation in SBMA.
Collapse
Affiliation(s)
- Tomoki Hirunagi
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Hideaki Nakatsuji
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Kentaro Sahashi
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Mikiyasu Yamamoto
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Madoka Iida
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Genki Tohnai
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
- Aichi Medical UniversityNagakuteJapan
| | - Naohide Kondo
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Shinichiro Yamada
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Ayuka Murakami
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Seiya Noda
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
- Department of NeurologyNational Hospital Organization Suzuka HospitalSuzukaJapan
| | - Hiroaki Adachi
- Department of NeurologyUniversity of Occupational and Environmental Health School of MedicineKitakyushuJapan
| | - Gen Sobue
- Aichi Medical UniversityNagakuteJapan
| | - Masahisa Katsuno
- Department of NeurologyNagoya University Graduate School of MedicineNagoyaJapan
- Department of Clinical Research EducationNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
4
|
Deng C, Chen H. Brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling in spinal muscular atrophy and amyotrophic lateral sclerosis. Neurobiol Dis 2024; 190:106377. [PMID: 38092270 DOI: 10.1016/j.nbd.2023.106377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
Tropomyosin receptor kinase B (TrkB) and its primary ligand brain-derived neurotrophic factor (BDNF) are expressed in the neuromuscular system, where they affect neuronal survival, differentiation, and functions. Changes in BDNF levels and full-length TrkB (TrkB-FL) signaling have been revealed in spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS), two common forms of motor neuron diseases that are characterized by defective neuromuscular junctions in early disease stages and subsequently progressive muscle weakness. This review summarizes the current understanding of BDNF/TrkB-FL-related research in SMA and ALS, with an emphasis on their alterations in the neuromuscular system and possible BDNF/TrkB-FL-targeting therapeutic strategies. The limitations of current studies and future directions are also discussed, giving the hope of discovering novel and effective treatments.
Collapse
Affiliation(s)
- Chunchu Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Marchioretti C, Andreotti R, Zuccaro E, Lieberman AP, Basso M, Pennuto M. Spinal and bulbar muscular atrophy: From molecular pathogenesis to pharmacological intervention targeting skeletal muscle. Curr Opin Pharmacol 2023; 71:102394. [PMID: 37463556 DOI: 10.1016/j.coph.2023.102394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023]
Abstract
The clinical characteristics of SBMA, also known as Kennedy's disease (OMIM 313200), were initially documented by Dr. H Kawahara in the 18th century and a hundred years later by Dr. W. Kennedy. SBMA is a neuromuscular disease caused by expansions of a CAG microsatellite tandem repeat in exon 1 of the androgen receptor (AR) gene located on the X chromosome. These expansions result in the production of AR with an aberrantly expanded polyglutamine (polyQ) tract. In this review, we explore recent advancements in the significance of gene expression changes in skeletal muscle and discuss how pharmacological interventions targeting this aspect of disease pathogenesis can potentially be translated into therapies for SBMA patients.
Collapse
Affiliation(s)
- Caterina Marchioretti
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Roberta Andreotti
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Emanuela Zuccaro
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine (VIMM), Padova, Italy.
| |
Collapse
|
6
|
Rai M, Demontis F. Muscle-to-Brain Signaling Via Myokines and Myometabolites. Brain Plast 2022; 8:43-63. [PMID: 36448045 PMCID: PMC9661353 DOI: 10.3233/bpl-210133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle health and function are important determinants of systemic metabolic homeostasis and organism-wide responses, including disease outcome. While it is well known that exercise protects the central nervous system (CNS) from aging and disease, only recently this has been found to depend on the endocrine capacity of skeletal muscle. Here, we review muscle-secreted growth factors and cytokines (myokines), metabolites (myometabolites), and other unconventional signals (e.g. bioactive lipid species, enzymes, and exosomes) that mediate muscle-brain and muscle-retina communication and neuroprotection in response to exercise and associated processes, such as the muscle unfolded protein response and metabolic stress. In addition to impacting proteostasis, neurogenesis, and cognitive functions, muscle-brain signaling influences complex brain-dependent behaviors, such as depression, sleeping patterns, and biosynthesis of neurotransmitters. Moreover, myokine signaling adapts feeding behavior to meet the energy demands of skeletal muscle. Contrary to protective myokines induced by exercise and associated signaling pathways, inactivity and muscle wasting may derange myokine expression and secretion and in turn compromise CNS function. We propose that tailoring muscle-to-CNS signaling by modulating myokines and myometabolites may combat age-related neurodegeneration and brain diseases that are influenced by systemic signals.
Collapse
Affiliation(s)
- Mamta Rai
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
7
|
Is Brain-Derived Neurotrophic Factor a Metabolic Hormone in Peripheral Tissues? BIOLOGY 2022; 11:biology11071063. [PMID: 36101441 PMCID: PMC9312804 DOI: 10.3390/biology11071063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 12/06/2022]
Abstract
Simple Summary The activity of brain-derived neurotrophic factor (BDF) in the central nervous system has been well-studied, but its physiological role in other organs has not been clearly defined. This review summarizes the current findings on the functionality of BDNF in various peripheral tissues and discusses several unresolved questions in the field. Abstract Brain-derived neurotrophic factor (BDNF) is an important growth factor in the central nervous system. In addition to its well-known activities in promoting neuronal survival, neuron differentiation, and synaptic plasticity, neuronal BDNF also regulates energy homeostasis by modulating the hypothalamus’s hormonal signals. In the past decades, several peripheral tissues, including liver, skeletal muscle, and white adipose tissue, were demonstrated as the active sources of BDNF synthesis in response to different metabolic challenges. Nevertheless, the functions of BDNF in these tissues remain obscure. With the use of tissue-specific Bdnf knockout animals and the availability of non-peptidyl BDNF mimetic, increasing evidence has reported that peripheral tissues-derived BDNF might play a significant role in maintaining systemic metabolism, possibly through the regulation of mitochondrial dynamics in the various tissues. This article reviews the autocrine/paracrine/endocrine functions of BDNF in non-neuronal tissues and discusses the unresolved questions about BDNF’s function.
Collapse
|
8
|
Kytikova OY, Novgorodtseva TP, Denisenko YK, Antonyuk MV, Gvozdenko TA, Atamas OV. Brain-Derived Neurotrophic Factor And Coronary Artery Disease. RUSSIAN OPEN MEDICAL JOURNAL 2022. [DOI: 10.15275/rusomj.2022.0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Coronary artery disease (CAD) is defined as myocardial damage developing as a result of its organic and functional changes, and leading to impaired blood flow through the coronary arteries. An important pathogenetic component of CAD is atherosclerosis. Currently, key aspects of the molecular relationship between inflammation and atherosclerosis are being actively studied, the immunometabolic theory of atherosclerosis is being discussed, along with an involvement of perivascular adipose tissue in the pathogenesis of this pathology, due to its ability to respond to atherogenic stimuli via developing inflammatory reactions. Evidence has been accumulated that in patients with CAD, both in their blood and perivascular adipose tissue, the level of neurotrophic factors (in particular, brain-derived neurotrophic factor, BDNF) changes, which may be a promising area of research from the standpoint of studying this factor as a therapeutic target for atherosclerosis in CAD. Neurotrophic growth factors control the functioning of both immune and nervous systems, and the balance of energy metabolism and innervation of adipose tissue. They affect vascular homeostasis, and are also involved in causing and stopping inflammation. Currently, there are data on the role of BDNF in the pathogenesis of cardiovascular, neurodegenerative and metabolic diseases, and on the effect of polyunsaturated fatty acids and eicosanoids on the level of BDNF and, accordingly, the development and progression of coronary artery atherosclerosis. Our review summarizes published data (2019-2021) on the pathophysiological and pathogenetic mechanisms of the relationship between BDNF and CAD (atherosclerosis).
Collapse
Affiliation(s)
- Oksana Yu. Kytikova
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Scientific Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok, Russia
| | - Tatyana P. Novgorodtseva
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Scientific Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok, Russia
| | - Yulia K. Denisenko
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Scientific Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok, Russia
| | - Marina V. Antonyuk
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Scientific Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok, Russia
| | - Tatyana A. Gvozdenko
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Scientific Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok, Russia
| | - Olga V. Atamas
- Vladivostok Branch of Far Eastern Scientific Center of Physiology and Pathology of Respiration, Scientific Research Institute of Medical Climatology and Rehabilitation Therapy, Vladivostok, Russia
| |
Collapse
|
9
|
Cefis M, Chaney R, Quirié A, Santini C, Marie C, Garnier P, Prigent-Tessier A. Endothelial cells are an important source of BDNF in rat skeletal muscle. Sci Rep 2022; 12:311. [PMID: 35013359 PMCID: PMC8748777 DOI: 10.1038/s41598-021-03740-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/09/2021] [Indexed: 12/27/2022] Open
Abstract
BDNF (brain-derived neurotrophic factor) is present in skeletal muscle, controlling muscular metabolism, strength and regeneration processes. However, there is no consensus on BDNF cellular source. Furthermore, while endothelial tissue expresses BDNF in large amount, whether endothelial cells inside muscle expressed BDNF has never been explored. The aim of the present study was to provide a comprehensive analysis of BDNF localization in rat skeletal muscle. Cellular localization of BDNF and activated Tropomyosin-related kinase B (TrkB) receptors was studied by immunohistochemical analysis on soleus (SOL) and gastrocnemius (GAS). BDNF and activated TrkB levels were also measured in muscle homogenates using Western blot analysis and/or Elisa tests. The results revealed BDNF immunostaining in all cell types examined with a prominent staining in endothelial cells and a stronger staining in type II than type I muscular fibers. Endothelial cells but not other cells displayed easily detectable activated TrkB receptor expression. Levels of BDNF and activated TrkB receptors were higher in SOL than GAS. In conclusion, endothelial cells are an important and still unexplored source of BDNF present in skeletal muscle. Endothelial BDNF expression likely explains why oxidative muscle exhibits higher BDNF levels than glycolytic muscle despite higher the BDNF expression by type II fibers.
Collapse
Affiliation(s)
- Marina Cefis
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR Des Sciences de Santé, 21000, Dijon, France
| | - Remi Chaney
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR Des Sciences de Santé, 21000, Dijon, France
| | - Aurore Quirié
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR Des Sciences de Santé, 21000, Dijon, France
| | - Clélia Santini
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR Des Sciences de Santé, 21000, Dijon, France
| | - Christine Marie
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR Des Sciences de Santé, 21000, Dijon, France
| | - Philippe Garnier
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR Des Sciences de Santé, 21000, Dijon, France
- Département Génie Biologique, IUT, 21000, Dijon, France
| | - Anne Prigent-Tessier
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR Des Sciences de Santé, 21000, Dijon, France.
- UFR Des Sciences de Santé, 7 boulevard Jeanne d'Arc, 21078, Dijon, France.
| |
Collapse
|
10
|
Liu T, Li H, Conley YP, Primack BA, Wang J, Li C. The Brain-Derived Neurotrophic Factor Functional Polymorphism and Hand Grip Strength Impact the Association between Brain-Derived Neurotrophic Factor Levels and Cognition in Older Adults in the United States. Biol Res Nurs 2022; 24:226-234. [PMID: 34974714 DOI: 10.1177/10998004211065151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Aging is associated with subtle cognitive decline in attention, memory, executive function, processing speed, and reasoning. Although lower brain-derived neurotrophic factor (BDNF) has been linked to cognitive decline among older adults, it is not known if the association differs among individuals with various BDNF Val66Met (rs6265) genotypes. In addition, it is not clear whether these associations vary by hand grip strength or physical activity (PA). METHODS A total of 2904 older adults were included in this study using data from the Health and Retirement Study. Associations between serum BDNF and measures of cognitive function were evaluated using multivariable linear regression models stratified by Met allele status. PA and hand grip strength were added to the model to evaluate whether including these variables altered associations between serum BDNF and cognition. RESULTS Mean age was 71.4 years old, and mean body mass index was 28.3 kg/m2. Serum BDNF levels were positively associated with higher total cognitive score (beta = 0.34, p = .07), mental status (beta = 0.16, p = .07), and word recall (beta = 0.22, p =.04) among Met carriers, while serum BDNF levels were negatively associated with mental status (beta = -0.09, p = .07) among non-Met carriers. Furthermore, associations changed when hand grip strength was added to the model but not when PA was added to the model. CONCLUSIONS The BDNF Val66Met variant may moderate the association between serum BDNF levels and cognitive function in older adults. Furthermore, such associations differ according to hand grip strength but not PA.
Collapse
Affiliation(s)
- Tingting Liu
- 16081University of Arkansas Eleanor Mann School of Nursing, Fayetteville, AR, USA
| | - Hongjin Li
- 16100University of Illinois at Chicago College of Nursing, Chicago, IL, USA
| | - Yvette P Conley
- University of Pittsburgh School of Nursing, Pittsburgh, PA, USA
| | - Brian A Primack
- 137660University of Arkansas College of Education and Health Professions, Fayetteville, AR, USA
| | - Jing Wang
- 15805Florida State University College of Nursing, Tallahassee, FL, USA
| | - Changwei Li
- Department of Epidemiology, 5783Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| |
Collapse
|
11
|
Pikatza-Menoio O, Elicegui A, Bengoetxea X, Naldaiz-Gastesi N, López de Munain A, Gerenu G, Gil-Bea FJ, Alonso-Martín S. The Skeletal Muscle Emerges as a New Disease Target in Amyotrophic Lateral Sclerosis. J Pers Med 2021; 11:671. [PMID: 34357138 PMCID: PMC8307751 DOI: 10.3390/jpm11070671] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 01/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that leads to progressive degeneration of motor neurons (MNs) and severe muscle atrophy without effective treatment. Most research on ALS has been focused on the study of MNs and supporting cells of the central nervous system. Strikingly, the recent observations of pathological changes in muscle occurring before disease onset and independent from MN degeneration have bolstered the interest for the study of muscle tissue as a potential target for delivery of therapies for ALS. Skeletal muscle has just been described as a tissue with an important secretory function that is toxic to MNs in the context of ALS. Moreover, a fine-tuning balance between biosynthetic and atrophic pathways is necessary to induce myogenesis for muscle tissue repair. Compromising this response due to primary metabolic abnormalities in the muscle could trigger defective muscle regeneration and neuromuscular junction restoration, with deleterious consequences for MNs and thereby hastening the development of ALS. However, it remains puzzling how backward signaling from the muscle could impinge on MN death. This review provides a comprehensive analysis on the current state-of-the-art of the role of the skeletal muscle in ALS, highlighting its contribution to the neurodegeneration in ALS through backward-signaling processes as a newly uncovered mechanism for a peripheral etiopathogenesis of the disease.
Collapse
Affiliation(s)
- Oihane Pikatza-Menoio
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Amaia Elicegui
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Xabier Bengoetxea
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
| | - Neia Naldaiz-Gastesi
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Adolfo López de Munain
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
- Department of Neurology, Donostialdea Integrated Health Organization, Osakidetza Basque Health Service, 20014 Donostia/San Sebastián, Spain
- Department of Neurosciences, Faculty of Medicine and Nursery, University of the Basque Country UPV-EHU, 20014 Donostia/San Sebastián, Spain
| | - Gorka Gerenu
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
- Department of Physiology, University of the Basque Country UPV-EHU, 48940 Leioa, Spain
| | - Francisco Javier Gil-Bea
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Sonia Alonso-Martín
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| |
Collapse
|
12
|
Clenbuterol-sensitive delayed outward potassium currents in a cell model of spinal and bulbar muscular atrophy. Pflugers Arch 2021; 473:1213-1227. [PMID: 34021780 DOI: 10.1007/s00424-021-02559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by polyglutamine (polyQ) expansions in the androgen receptor (AR) gene. SBMA is characterized by selective dysfunction and degeneration of motor neurons in the brainstem and spinal cord through still unclear mechanisms in which ion channel modulation might play a central role as for other neurodegenerative diseases. The beta2-adrenergic agonist clenbuterol was observed to ameliorate the SBMA phenotype in mice and patient-derived myotubes. However, the underlying molecular mechanism has yet to be clarified. Here, we unveil that ionic current alterations induced by the expression of polyQ-expanded AR in motor neuron-derived MN-1 cells are attenuated by the administration of clenbuterol. Our combined electrophysiological and pharmacological approach allowed us to reveal that clenbuterol modifies delayed outward potassium currents. Overall, we demonstrated that the protection provided by clenbuterol restores the normal function through the modulation of KV2-type outward potassium currents, possibly contributing to the protective effect on motor neuron toxicity in SBMA.
Collapse
|
13
|
Hang PZ, Zhu H, Li PF, Liu J, Ge FQ, Zhao J, Du ZM. The Emerging Role of BDNF/TrkB Signaling in Cardiovascular Diseases. Life (Basel) 2021; 11:life11010070. [PMID: 33477900 PMCID: PMC7833389 DOI: 10.3390/life11010070] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/08/2021] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is one of the most abundantneurotrophins in the central nervous system. Numerous studies suggestthat BDNF has extensive roles by binding to its specific receptor, tropomyosin-related kinase receptor B (TrkB), and thereby triggering downstream signaling pathways. Recently, growing evidence highlightsthat the BDNF/TrkB pathway is expressed in the cardiovascular system andclosely associated with the development and outcome of cardiovascular diseases (CVD), including coronary artery disease, heart failure, cardiomyopathy, hypertension, and metabolic diseases. Furthermore, circulating BDNF has also been revealed as a new potential biomarker for both diagnosis and prognosis of CVD. In this review, we discuss the current evidence of the emerging role of BDNF/TrkBsignalingand address the challenges that remain in translating these discoveries to novel therapeutic strategies for CVD.
Collapse
Affiliation(s)
- Peng-Zhou Hang
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou 225001, China; (P.-Z.H.); (H.Z.); (F.-Q.G.)
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research), Harbin 150086, China; (P.-F.L.); (J.L.)
| | - Hua Zhu
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou 225001, China; (P.-Z.H.); (H.Z.); (F.-Q.G.)
| | - Pei-Feng Li
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research), Harbin 150086, China; (P.-F.L.); (J.L.)
| | - Jie Liu
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research), Harbin 150086, China; (P.-F.L.); (J.L.)
| | - Feng-Qin Ge
- Department of Pharmacy, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou 225001, China; (P.-Z.H.); (H.Z.); (F.-Q.G.)
| | - Jing Zhao
- Medical Research Center, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou 225001, China
- Correspondence: or (J.Z.); or (Z.-M.D.); Tel.: +86-514-8737-3691 (J.Z.); +86-451-8660-5353 (Z.-M.D.); Fax: +86-514-8737-3039 (J.Z.); +86-451-8666-5559 (Z.-M.D.)
| | - Zhi-Min Du
- Institute of Clinical Pharmacology, The Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research), Harbin 150086, China; (P.-F.L.); (J.L.)
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau 999078, China
- Correspondence: or (J.Z.); or (Z.-M.D.); Tel.: +86-514-8737-3691 (J.Z.); +86-451-8660-5353 (Z.-M.D.); Fax: +86-514-8737-3039 (J.Z.); +86-451-8666-5559 (Z.-M.D.)
| |
Collapse
|
14
|
ProNGF/p75NTR Axis Drives Fiber Type Specification by Inducing the Fast-Glycolytic Phenotype in Mouse Skeletal Muscle Cells. Cells 2020; 9:cells9102232. [PMID: 33023189 PMCID: PMC7599914 DOI: 10.3390/cells9102232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Despite its undisputable role in the homeostatic regulation of the nervous system, the nerve growth factor (NGF) also governs the relevant cellular processes in other tissues and organs. In this study, we aimed at assessing the expression and the putative involvement of NGF signaling in skeletal muscle physiology. To reach this objective, we employed satellite cell-derived myoblasts as an in vitro culture model. In vivo experiments were performed on Tibialis anterior from wild-type mice and an mdx mouse model of Duchenne muscular dystrophy. Targets of interest were mainly assessed by means of morphological, Western blot and qRT-PCR analysis. The results show that proNGF is involved in myogenic differentiation. Importantly, the proNGF/p75NTR pathway orchestrates a slow-to-fast fiber type transition by counteracting the expression of slow myosin heavy chain and that of oxidative markers. Concurrently, proNGF/p75NTR activation facilitates the induction of fast myosin heavy chain and of fast/glycolytic markers. Furthermore, we also provided evidence that the oxidative metabolism is impaired in mdx mice, and that these alterations are paralleled by a prominent buildup of proNGF and p75NTR. These findings underline that the proNGF/p75NTR pathway may play a crucial role in fiber type determination and suggest its prospective modulation as an innovative therapeutic approach to counteract muscle disorders.
Collapse
|
15
|
Whitley KC, Brown AD, Ryan CR, Cleverdon REG. Muscle BDNF: a potential therapeutic target for Kennedy's disease. J Physiol 2020; 598:3547-3548. [PMID: 32506451 DOI: 10.1113/jp280094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Kennedy C Whitley
- Department of Kinesiology, Brock University, St Catharines, ON, L2S 3A1, Canada
| | - Alexander D Brown
- Department of Health Sciences, Brock University, St Catharines, ON, L2S 3A1, Canada
| | - Chantal R Ryan
- Department of Health Sciences, Brock University, St Catharines, ON, L2S 3A1, Canada
| | - Riley E G Cleverdon
- Department of Kinesiology, Brock University, St Catharines, ON, L2S 3A1, Canada
| |
Collapse
|
16
|
Affiliation(s)
- Takashi Yokota
- Clinical Research and Medical Innovation Center, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|