1
|
Wang D, Li W, Tang Y, Zhang W, Liu T, Shi H. Alterations in spontaneous brain activity of maintenance hemodialysis patients with restless legs syndrome: a cross-sectional case-control study. BMC Neurol 2024; 24:486. [PMID: 39702164 DOI: 10.1186/s12883-024-03985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
OBJECTIVE Through resting state functional magnetic resonance imaging (rs-fMRI) we evaluate the spontaneous brain activity changes of maintenance hemodialysis (MHD) patients with restless legs syndrome (RSL) and analyzed the imaging features and related mechanisms of RLS in patients with MHD. METHOD We select 27 MHD patients with RLS and 27 patients without RSL matched by age, gender, cognitive function. Both groups underwent neuropsychological tests and MRI scans. MRI data analysis was performed to obtain and compare the amplitude of low-frequency fluctuation (ALFF), fractional amplitude of low-frequency fluctuations (fALFF), and regional homogeneity (ReHo) values, which were mALFF, mfALFF, and mReHo. Clinical data were collected and compared. Differentiated indicators and RLS scores conduct Pearson correlation analysis. RESULT Compared with the MHD-nRLS group, the MHD-RLS group showed significantly lower mALFF values in the left precentral, right precentral gyrus, and right postcentral gyrus, lower mfALFF values in the left precentral gyrus, right precentral gyrus, left calcarine fissure, left lingual gyrus, left postcentral gyrus, and right postcentral gyrus, and lower mReHo values in the left precentral gyrus, right precentral gyrus, left calcarine fissure, left lingual gyrus, left postcentral gyrus, and right postcentral gyrus, and right postcentral gyrus (P < 0.05). The MHD-RLS group exhibited lower hemoglobin levels (P = 0.001), higher total iron-binding capacity levels (P = 0.011), and higher folic acid levels (P = 0.022). The above indicators were correlated with RLS scores using Pearson correlation analysis, and it was found that the mfALFF value of the right precentral gyrus and the right postcentral gyrus, and the mReHo values of the right precentral gyrus and right postcentral gyrus were negatively correlated with the RLS score (r = -0.567, P = 0.002;r = -0.705, P < 0.001;r = -0.414, P = 0.032; r = -0.410, P = 0.034), and the hemoglobin concentration was negatively correlated with the RLS scores (r = -0.394, P = 0.042). CONCLUSION Patients with MHD-RLS exhibit abnormal spontaneous brain activity in the right precentral gyrus and right postcentral gyrus within the sensorimotor network, along with lower hemoglobin levels, which may be associated with the pathogenesis and severity of MHD-RLS.
Collapse
Affiliation(s)
- Di Wang
- Department of Nephrology, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Graduate College, Dalian Medical University, Dalian, China
| | - Wenqing Li
- Department of Radiology, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yushang Tang
- Department of Nephrology, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Hemodialysis Center, The Second People's Hospital of Changzhou, the The Third Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Wanfen Zhang
- Department of Nephrology, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
- Hemodialysis Center, The Second People's Hospital of Changzhou, the The Third Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Tongqiang Liu
- Department of Nephrology, The Second People's Hospital of Changzhou, The Third Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.
| | - Haifeng Shi
- Department of Radiology, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
2
|
Turner R, Rasmussen P, Gatterer H, Tremblay JC, Roche J, Strapazzon G, Roveri G, Lawley J, Siebenmann C. Cerebral blood flow regulation in hypobaric hypoxia: role of haemoconcentration. J Physiol 2024; 602:5643-5657. [PMID: 38687185 DOI: 10.1113/jp285169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
During acute hypoxic exposure, cerebral blood flow (CBF) increases to compensate for the reduced arterial oxygen content (CaO2). Nevertheless, as exposure extends, both CaO2 and CBF progressively normalize. Haemoconcentration is the primary mechanism underlying the CaO2 restoration and may therefore explain, at least in part, the CBF normalization. Accordingly, we tested the hypothesis that reversing the haemoconcentration associated with extended hypoxic exposure returns CBF towards the values observed in acute hypoxia. Twenty-three healthy lowlanders (12 females) completed two identical 4-day sojourns in a hypobaric chamber, one in normoxia (NX) and one in hypobaric hypoxia (HH, 3500 m). CBF was measured by ultrasound after 1, 6, 12, 48 and 96 h and compared between sojourns to assess the time course of changes in CBF. In addition, CBF was measured at the end of the HH sojourn after hypervolaemic haemodilution. Compared with NX, CBF was increased in HH after 1 h (P = 0.001) but similar at all later time points (all P > 0.199). Haemoglobin concentration was higher in HH than NX from 12 h to 96 h (all P < 0.001). While haemodilution reduced haemoglobin concentration from 14.8 ± 1.0 to 13.9 ± 1.2 g·dl-1 (P < 0.001), it did not increase CBF (974 ± 282 to 872 ± 200 ml·min-1; P = 0.135). We thus conclude that, at least at this moderate altitude, haemoconcentration is not the primary mechanism underlying CBF normalization with acclimatization. These data ostensibly reflect the fact that CBF regulation at high altitude is a complex process that integrates physiological variables beyond CaO2. KEY POINTS: Acute hypoxia causes an increase in cerebral blood flow (CBF). However, as exposure extends, CBF progressively normalizes. We investigated whether hypoxia-induced haemoconcentration contributes to the normalization of CBF during extended hypoxia. Following 4 days of hypobaric hypoxic exposure (corresponding to 3500 m altitude), we measured CBF before and after abolishing hypoxia-induced haemoconcentration by hypervolaemic haemodilution. Contrary to our hypothesis, the haemodilution did not increase CBF in hypoxia. Our findings do not support haemoconcentration as a stimulus for the CBF normalization during extended hypoxia.
Collapse
Affiliation(s)
- Rachel Turner
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
- Institut für Sportwissenschaft, Universität Innsbruck, Tyrol, Austria
| | | | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Joshua C Tremblay
- School of Sport and Health Sciences, Cardiff Metropolitan University, Wales, UK
| | - Johanna Roche
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Giacomo Strapazzon
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Giulia Roveri
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Justin Lawley
- Institut für Sportwissenschaft, Universität Innsbruck, Tyrol, Austria
| | | |
Collapse
|
3
|
Chin K, Jiang H, Steinberg BE, Goldenberg NM, Desjardins JF, Kabir G, Liu E, Vanama R, Baker AJ, Deschamps A, Simpson JA, Maynes JT, Vinogradov SA, Connelly KA, Mazer CD, Hare GMT. Bilateral nephrectomy impairs cardiovascular function and cerebral perfusion in a rat model of acute hemodilutional anemia. J Appl Physiol (1985) 2024; 136:1245-1259. [PMID: 38385183 DOI: 10.1152/japplphysiol.00858.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/30/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024] Open
Abstract
Anemia and renal failure are independent risk factors for perioperative stroke, prompting us to assess the combined impact of acute hemodilutional anemia and bilateral nephrectomy (2Nx) on microvascular brain Po2 (PBro2) in a rat model. Changes in PBro2 (phosphorescence quenching) and cardiac output (CO, echocardiography) were measured in different groups of anesthetized Sprague-Dawley rats (1.5% isoflurane, n = 5-8/group) randomized to Sham 2Nx or 2Nx and subsequently exposed to acute hemodilutional anemia (50% estimated blood volume exchange with 6% hydroxyethyl starch) or time-based controls (no hemodilution). Outcomes were assessed by ANOVA with significance assigned at P < 0.05. At baseline, 2Nx rats demonstrated reduced CO (49.9 ± 9.4 vs. 66.3 ± 19.3 mL/min; P = 0.014) and PBro2 (21.1 ± 2.9 vs. 32.4 ± 3.1 mmHg; P < 0.001) relative to Sham 2Nx rats. Following hemodilution, 2Nx rats demonstrated a further decrease in PBro2 (15.0 ± 6.3 mmHg, P = 0.022). Hemodiluted 2Nx rats did not demonstrate a comparable increase in CO after hemodilution compared with Sham 2Nx (74.8 ± 22.4 vs. 108.9 ± 18.8 mL/min, P = 0.003) that likely contributed to the observed reduction in PBro2. This impaired CO response was associated with reduced fractional shortening (33 ± 9 vs. 51 ± 5%) and increased left ventricular end-systolic volume (156 ± 51 vs. 72 ± 15 µL, P < 0.001) suggestive of systolic dysfunction. By contrast, hemodiluted Sham 2Nx animals demonstrated a robust increase in CO and preserved PBro2. These data support the hypothesis that the kidney plays a central role in maintaining cerebral perfusion and initiating the adaptive increase in CO required to optimize PBro2 during acute anemia.NEW & NOTEWORTHY This study has demonstrated that bilateral nephrectomy acutely impaired cardiac output (CO) and microvascular brain Po2 (PBro2), at baseline. Following acute hemodilution, nephrectomy prevented the adaptive increase in CO associated with acute hemodilution leading to a further reduction in PBro2, accentuating the degree of cerebral tissue hypoxia. These data support a role for the kidney in maintaining PBro2 and initiating the increase in CO that optimized brain perfusion during acute anemia.
Collapse
Affiliation(s)
- Kyle Chin
- Department of Anesthesiology and Pain Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Helen Jiang
- Department of Anesthesiology and Pain Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin E Steinberg
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, The University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Neil M Goldenberg
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, The University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jean-Francois Desjardins
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Golam Kabir
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Elaine Liu
- Department of Anesthesiology and Pain Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Ramesh Vanama
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, The University of Toronto, Toronto, Ontario, Canada
| | - Andrew J Baker
- Department of Anesthesiology and Pain Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Alain Deschamps
- Institut de Cardiologie de Montréal, Université de Montréal, Montreal Quebec, Canada
| | - Jeremy A Simpson
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
- IMPART investigator team Canada (https://impart.team/), Saint John, New Brunswick, Canada
| | - Jason T Maynes
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, The University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
- Program in Molecular Medicine, Hospital for Sick Children's Research Institute, Toronto, Ontario, Canada
| | - Sergei A Vinogradov
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Kim A Connelly
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - C David Mazer
- Department of Anesthesiology and Pain Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Gregory M T Hare
- Department of Anesthesiology and Pain Medicine, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Centre for Biomedical Science in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- IMPART investigator team Canada (https://impart.team/), Saint John, New Brunswick, Canada
| |
Collapse
|
4
|
Bozkurt S, Bozkurt S. Evaluation of Potential Effects of Increased Outdoor Temperatures Due to Global Warming on Cerebral Blood Flow Rate and Respiratory Function in Chronic Obstructive Disease and Anemia. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300120. [PMID: 37829676 PMCID: PMC10566812 DOI: 10.1002/gch2.202300120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/19/2023] [Indexed: 10/14/2023]
Abstract
Global warming due to increased outdoor carbon dioxide (CO2) levels may cause several health problems such as headaches, cognitive impairment, or kidney dysfunction. It is predicted that further increases in CO2 levels will increase the morbidity and mortality of patients affected by a variety of diseases. For instance, patients with Chronic Obstructive Pulmonary Disease (COPD) may suffer cognitive impairments or intracranial bleeding due to an increased cerebral blood flow rate. Predicting the harmful effects of global warming on human health will help to take measures for potential problems. Therefore, the quantification of physiological parameters is an essential step to investigate the effects of global warming on human health. In this study, the effects of increased outdoor temperatures due to climate change on cerebral blood flow rate and respiratory function in healthy subjects and COPD patients with anemia and respiratory acidosis are evaluated utilizing numerical simulations. The numerical model simulates cardiac function and blood circulation in systemic, pulmonary and cerebral circulations, cerebral autoregulatory functions, respiratory function, alveolar gas exchange, oxygen (O2) and CO2 contents, and hemoglobin levels in the blood. The simulation results show that although the cardiovascular function is not significantly altered, the respiratory function and cerebral blood flow rates are altered remarkably.
Collapse
Affiliation(s)
- Surhan Bozkurt
- Department of Electrical and Electronics EngineeringDogus UniversityEsenkent Dudullu OSB m. NATO Yolu c.UmraniyeIstanbul34775Turkey
| | - Selim Bozkurt
- School of EngineeringUlster University2–24 York StreetBelfastBT15 1APUK
| |
Collapse
|
5
|
Vlisides PE, Mentz G, Kheterpal S, Mashour GA. Carbon Dioxide, Blood Pressure, and Stroke: Reply. Anesthesiology 2023; 139:229-232. [PMID: 37010993 DOI: 10.1097/aln.0000000000004545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
6
|
Yang M, Wu Y, Yang XB, Liu T, Zhang Y, Zhuo Y, Luo Y, Zhang N. Establishing a prediction model of severe acute mountain sickness using machine learning of support vector machine recursive feature elimination. Sci Rep 2023; 13:4633. [PMID: 36944699 PMCID: PMC10030784 DOI: 10.1038/s41598-023-31797-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
Severe acute mountain sickness (sAMS) can be life-threatening, but little is known about its genetic basis. The study was aimed to explore the genetic susceptibility of sAMS for the purpose of prediction, using microarray data from 112 peripheral blood mononuclear cell (PBMC) samples of 21 subjects, who were exposed to very high altitude (5260 m), low barometric pressure (406 mmHg), and hypobaric hypoxia (VLH) at various timepoints. We found that exposure to VLH activated gene expression in leukocytes, resulting in an inverted CD4/CD8 ratio that interacted with other phenotypic risk factors at the genetic level. A total of 2286 underlying risk genes were input into the support vector machine recursive feature elimination (SVM-RFE) system for machine learning, and a model with satisfactory predictive accuracy and clinical applicability was established for sAMS screening using ten featured genes with significant predictive power. Five featured genes (EPHB3, DIP2B, RHEBL1, GALNT13, and SLC8A2) were identified upstream of hypoxia- and/or inflammation-related pathways mediated by microRNAs as potential biomarkers for sAMS. The established prediction model of sAMS holds promise for clinical application as a genetic screening tool for sAMS.
Collapse
Affiliation(s)
- Min Yang
- Department of Traditional Chinese Medicine, Rheumatology Center of Integrated Medicine, The General Hospital of Western Theater Command, PLA, Chengdu, 610083, China.
| | - Yang Wu
- Department of Traditional Chinese Medicine, Rheumatology Center of Integrated Medicine, The General Hospital of Western Theater Command, PLA, Chengdu, 610083, China
| | - Xing-Biao Yang
- Department of Traditional Chinese Medicine, Rheumatology Center of Integrated Medicine, The General Hospital of Western Theater Command, PLA, Chengdu, 610083, China
| | - Tao Liu
- Department of Traditional Chinese Medicine, Rheumatology Center of Integrated Medicine, The General Hospital of Western Theater Command, PLA, Chengdu, 610083, China
| | - Ya Zhang
- Department of Traditional Chinese Medicine, Rheumatology Center of Integrated Medicine, The General Hospital of Western Theater Command, PLA, Chengdu, 610083, China
| | - Yue Zhuo
- Department of Traditional Chinese Medicine, Rheumatology Center of Integrated Medicine, The General Hospital of Western Theater Command, PLA, Chengdu, 610083, China
| | - Yong Luo
- Department of Traditional Chinese Medicine, Rheumatology Center of Integrated Medicine, The General Hospital of Western Theater Command, PLA, Chengdu, 610083, China
| | - Nan Zhang
- Department of Hematology, The General Hospital of Western Theater Command, PLA, Chengdu, 610083, China
| |
Collapse
|
7
|
A novel computational model for cerebral blood flow rate control mechanisms to evaluate physiological cases. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Mann J, Samieegohar M, Chaturbedi A, Zirkle J, Han X, Ahmadi SF, Eshleman A, Janowsky A, Wolfrum K, Swanson T, Bloom S, Dahan A, Olofsen E, Florian J, Strauss DG, Li Z. Development of a Translational Model to Assess the Impact of Opioid Overdose and Naloxone Dosing on Respiratory Depression and Cardiac Arrest. Clin Pharmacol Ther 2022; 112:1020-1032. [PMID: 35766413 DOI: 10.1002/cpt.2696] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/12/2022] [Indexed: 11/07/2022]
Abstract
In response to a surge of deaths from synthetic opioid overdoses, there have been increased efforts to distribute naloxone products in community settings. Prior research has assessed the effectiveness of naloxone in the hospital setting; however, it is challenging to assess naloxone dosing regimens in the community/first-responder setting, including reversal of respiratory depression effects of fentanyl and its derivatives (fentanyls). Here, we describe the development and validation of a mechanistic model that combines opioid mu receptor binding kinetics, opioid agonist and antagonist pharmacokinetics, and human respiratory and circulatory physiology, to evaluate naloxone dosing to reverse respiratory depression. Validation supports our model, which can quantitatively predict displacement of opioids by naloxone from opioid mu receptors in vitro, hypoxia-induced cardiac arrest in vivo, and opioid-induced respiratory depression in humans from different fentanyls. After validation, overdose simulations were performed with fentanyl and carfentanil followed by administration of different intramuscular naloxone products. Carfentanil induced more cardiac arrest events and was more difficult to reverse than fentanyl. Opioid receptor binding data indicated that carfentanil has substantially slower dissociation kinetics from the opioid receptor compared to 9 other fentanyls tested, which likely contributes to the difficulty in reversing carfentanil. Administration of the same dose of naloxone intramuscularly from 2 different naloxone products with different formulations resulted in differences in the number of virtual patients experiencing cardiac arrest. This work provides a robust framework to evaluate dosing regimens of opioid receptor antagonists to reverse opioid-induced respiratory depression, including those caused by newly emerging synthetic opioids.
Collapse
Affiliation(s)
- John Mann
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Mohammadreza Samieegohar
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Anik Chaturbedi
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Joel Zirkle
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Xiaomei Han
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - S Farzad Ahmadi
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Amy Eshleman
- Department of Veteran's Affairs, Portland Health Care System, Portland, Oregon, USA
| | - Aaron Janowsky
- Department of Veteran's Affairs, Portland Health Care System, Portland, Oregon, USA
| | - Katherine Wolfrum
- Department of Veteran's Affairs, Portland Health Care System, Portland, Oregon, USA
| | - Tracy Swanson
- Department of Veteran's Affairs, Portland Health Care System, Portland, Oregon, USA
| | - Shelley Bloom
- Department of Veteran's Affairs, Portland Health Care System, Portland, Oregon, USA
| | - Albert Dahan
- Leiden University Medical Center, Leiden, The Netherlands
| | - Erik Olofsen
- Leiden University Medical Center, Leiden, The Netherlands
| | - Jeffry Florian
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - David G Strauss
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Zhihua Li
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
9
|
Duffin J, Bright MG, Blockley NP. Editorial: Imaging Cerebrovascular Reactivity: Physiology, Physics and Therapy. Front Physiol 2021; 12:740792. [PMID: 34483975 PMCID: PMC8414884 DOI: 10.3389/fphys.2021.740792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 01/02/2023] Open
Affiliation(s)
- James Duffin
- Department of Anaesthesia and Pain Management, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Thornhill Research Inc., Toronto, ON, Canada
| | - Molly G Bright
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| | - Nicholas P Blockley
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
10
|
Perioperative Care of Patients at High Risk for Stroke During or After Non-cardiac, Non-neurological Surgery: 2020 Guidelines From the Society for Neuroscience in Anesthesiology and Critical Care. J Neurosurg Anesthesiol 2021; 32:210-226. [PMID: 32433102 DOI: 10.1097/ana.0000000000000686] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Perioperative stroke is associated with considerable morbidity and mortality. Stroke recognition and diagnosis are challenging perioperatively, and surgical patients receive therapeutic interventions less frequently compared with stroke patients in the outpatient setting. These updated guidelines from the Society for Neuroscience in Anesthesiology and Critical Care provide evidence-based recommendations regarding perioperative care of patients at high risk for stroke. Recommended areas for future investigation are also proposed.
Collapse
|
11
|
Kung WM, Yuan SP, Lin MS, Wu CC, Islam MM, Atique S, Touray M, Huang CY, Wang YC. Anemia and the Risk of Cognitive Impairment: An Updated Systematic Review and Meta-Analysis. Brain Sci 2021; 11:brainsci11060777. [PMID: 34208355 PMCID: PMC8231247 DOI: 10.3390/brainsci11060777] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/29/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cognitive impairment is one of the most common, burdensome, and costly disorders in the elderly worldwide. The magnitude of the association between anemia and overall cognitive impairment (OCI) has not been established. OBJECTIVE We aimed to update and expand previous evidence of the association between anemia and the risk of OCI. METHODS We conducted an updated systematic review and meta-analysis. We searched electronic databases, including EMBASE, PubMed, and Web of Science for published observational studies and clinical trials between 1 January 1990 and 1 June 2020. We excluded articles that were in the form of a review, letter to editors, short reports, and studies with less than 50 participants. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were followed. We estimated summary risk ratios (RRs) with random effects. RESULTS A total of 20 studies, involving 6558 OCI patients were included. Anemia was significantly associated with an increased risk of OCI (adjusted RR (aRR) 1.39 (95% CI, 1.25-1.55; p < 0.001)). In subgroup analysis, anemia was also associated with an increased risk of all-cause dementia (adjusted RR (aRR), 1.39 (95% CI, 1.23-1.56; p < 0.001)), Alzheimer's disease [aRR, 1.59 (95% CI, 1.18-2.13; p = 0.002)], and mild cognitive impairment (aRR, 1.36 (95% CI, 1.04-1.78; p = 0.02)). CONCLUSION This updated meta-analysis shows that patients with anemia appear to have a nearly 1.39-fold risk of developing OCI than those without anemia. The magnitude of this risk underscores the importance of improving anemia patients' health outcomes, particularly in elderly patients.
Collapse
Affiliation(s)
- Woon-Man Kung
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 11114, Taiwan; (W.-M.K.); (C.-C.W.)
| | - Sheng-Po Yuan
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (S.-P.Y.); (M.M.I.)
- Department of Otorhinolaryngology, Wan Fang Hospital, Taipei Medical University, Taipei 11600, Taiwan
- Department of Otorhinolaryngology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Muh-Shi Lin
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan;
- Division of Neurosurgery, Department of Surgery, Kuang Tien General Hospital, Taichung 43303, Taiwan
- Department of Biotechnology, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
- Department of Health Business Administration, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
| | - Chieh-Chen Wu
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 11114, Taiwan; (W.-M.K.); (C.-C.W.)
| | - Md. Mohaimenul Islam
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (S.-P.Y.); (M.M.I.)
| | - Suleman Atique
- Department of Health Informatics, College of Public Health and Health Informatics, University of Ha’il, Ha’il 55211, Saudi Arabia;
| | - Musa Touray
- Department of Public Health, University of The Gambia, Serrekunda 3530, The Gambia;
| | - Chu-Ya Huang
- Taiwan College of Healthcare Executives, Taipei 106607, Taiwan;
| | - Yao-Chin Wang
- Department of Emergency, Min-Sheng General Hospital, Taoyuan 33044, Taiwan
- Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-3-317-9599 (ext. 8134)
| |
Collapse
|
12
|
Differential regional cerebral blood flow reactivity to alterations in end-tidal gases in healthy volunteers. Can J Anaesth 2021; 68:1497-1506. [PMID: 34105067 DOI: 10.1007/s12630-021-02042-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Anesthesia is associated with alterations in end-tidal (ET) respiratory gases from the awake state. These alterations result in marked vasoactive changes in regional cerebral blood flow (rCBF). Altered regional cerebrovascular reactivity (rCVR) is linked to neurologic dysfunction. We examined these differences in reactivity from prior work by focusing on the ratio of vasoconstriction with hyperoxia/hypocapnia (HO/hc):vasodilation with hypercapnia (HC) using magnetic resonance imaging pseudo-continuous arterial spin labelling (pCASL) to measure rCBF and compare rCVR The distribution and magnitude of these ratios could provide insights into rCBF during clinical anesthesia and inform future research into the origins of postoperative delirium (POD). METHODS Ten healthy subjects underwent cerebral blood flow (CBF) studies using pCASL with computer-controlled delivery of ET gases to assess flow effects of hyperoxia, hypercapnia, and hyperoxia/hypocapnia as part of a larger study into cerebrovascular reactivity. The vasoconstrictor stimulus was compared with the vasodilator stimulus by the ratio HO/hc:HC. RESULTS Hyperoxia minimally decreased whole brain CBF by - 0.6%/100 mm Hg increase in ETO2. Hypercapnia increased CBF by +4.6%/mm Hg carbon dioxide (CO2) and with HO/hc CBF decreased by - 5.1%/mm Hg CO2. The brain exhibited markedly different rCVR-regional HO/hc:HC ratios varied from 7.2:1 (greater response to vasoconstriction) to 0.49:1 (greater response to vasodilation). Many of the ratios greater than 1, where vasoconstriction predominated, were seen in regions associated with memory, cognition, and executive function, including the entorhinal cortex, hippocampus, parahippocampus, and dorsolateral prefrontal cortex. CONCLUSIONS In awake humans, marked rCBF changes occurred with alterations in ET respiratory gases common under anesthesia. Such heterogeneous reactivity may be relevant to future studies to identify those at risk of POD.
Collapse
|
13
|
Yamashiro SM, Kato T. Modeling cerebral blood flow and ventilation instability due to CO 2. J Appl Physiol (1985) 2021; 130:1427-1435. [PMID: 33764171 DOI: 10.1152/japplphysiol.00949.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A minimal model of cerebral blood flow and respiratory control was developed to describe hypocapnic and hypercapnic responses. Important nonlinear properties such as cerebral blood flow changes with arterial partial pressure of carbon dioxide ([Formula: see text]) and associated time-dependent circulatory time delays were included. It was also necessary to vary cerebral metabolic rate as a function of [Formula: see text]. The cerebral blood flow model was added to a previously developed respiratory control model to simulate central and peripheral controller dynamics for humans. Model validation was based on previously collected data. The variable time delay due to brain blood flow changes in hypercapnia was an important determinant of predicted instability due to nonlinear interaction in addition to linear loop gain considerations. Peripheral chemoreceptor gains above a critical level, but within normal limits, were necessary to produce instability. Instability was observed in recovery from hypercapnia and hypocapnia. The 20-s breath-hold test appears to be a simple test of brain blood flow-mediated instability in hypercapnia. Brain blood flow was predicted to play an important role with nonlinear properties. There is an important interaction predicted by the current model between central and peripheral control mechanisms related to instability in hypercapnia recovery. Posthyperventilation breathing pattern can also reveal instability tied to brain blood flow. Previous data collected in patients with chronic obstructive lung disease were closely fitted with the current model and instability predicted. Brain vascular volume was proposed as a potential cause of instability despite cerebral autoregulation promoting constant brain flow.NEW & NOTEWORTHY Prior models of brain blood flow and respiratory control have not focused on instability. Time varying time delay resulting from brain blood flow changes due to carbon dioxide (CO2) and peripheral chemoreceptor gain were predicted to be important determinants of instability due to nonlinear interaction in addition to linear control loop gain. Time delay was assumed to be set by the ratio of brain arterial vascular volume and blood flow. This vascular volume was predicted to also significantly change with CO2.
Collapse
Affiliation(s)
- Stanley M Yamashiro
- Biomedical Engineering Department, University of Southern California, Los Angeles, California
| | - Takahide Kato
- Department of General Education, National Institute of Technology, Toyota College, Toyota, Japan
| |
Collapse
|
14
|
Turner REF, Gatterer H, Falla M, Lawley JS. High-altitude cerebral edema: its own entity or end-stage acute mountain sickness? J Appl Physiol (1985) 2021; 131:313-325. [PMID: 33856254 DOI: 10.1152/japplphysiol.00861.2019] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
High-altitude cerebral edema (HACE) and acute mountain sickness (AMS) are neuropathologies associated with rapid exposure to hypoxia. However, speculation remains regarding the exact etiology of both HACE and AMS and whether they share a common mechanistic pathology. This review outlines the basic principles of HACE development, highlighting how edema could develop from 1) a progression from cytotoxic swelling to ionic edema or 2) permeation of the blood brain barrier (BBB) with or without ionic edema. Thereafter, discussion turns to the available neuroimaging literature in the context of cytotoxic, ionic, or vasogenic edema in both HACE and AMS. Although HACE is clearly caused by an increase in brain water of ionic and/or vasogenic origin, there is very little evidence that this type of edema is present when AMS develops. However, cerebral vasodilation, increased intracranial blood volume, and concomitant intracranial fluid shifts from the extracellular to the intracellular space, as interpreted from changes in diffusion indices within white matter, are observed consistently in persons acutely exposed to hypoxia and with AMS. Therefore, herein we explore the idea that intracellular swelling occurs alongside AMS, and is a critical precursor to extracellular ionic edema formation. We propose that this process produces a subtle modulation of the BBB, which either together with or independent of vasogenic edema provides a transvascular segue from the end-stage of AMS to HACE. Ultimately, this review seeks to shed light on the possible processes underlying HACE pathophysiology, and thus highlights potential avenues for future prevention and treatment.
Collapse
Affiliation(s)
- Rachel E F Turner
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Marika Falla
- Center for Mind/Brain Sciences and Centre for Neurocognitive Rehabilitation, University of Trento, Rovereto, Italy
| | - Justin S Lawley
- Division of Performance Physiology & Prevention, Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
15
|
Fisher JA, Mikulis DJ. Cerebrovascular Reactivity: Purpose, Optimizing Methods, and Limitations to Interpretation - A Personal 20-Year Odyssey of (Re)searching. Front Physiol 2021; 12:629651. [PMID: 33868001 PMCID: PMC8047146 DOI: 10.3389/fphys.2021.629651] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/10/2021] [Indexed: 11/18/2022] Open
Abstract
The brain is a neurovascular organ. A stimulus-response approach is effective in interrogating the physiology of its vasculature. Ideally, the stimulus is standardized across patients, and in a single patient over time. We developed a standard stimulus and attempted to measure, classify, and interpret the many forms of responses. Over the past 20 years, our work has delivered nuanced insights into normal cerebral vascular physiology, as well as adaptive physiological responses in the presence of disease. The trajectory of our understanding did not follow a logical linear progression; rather, it emerged as a coalescence of new, old, and previously dismissed, ideas that had accumulated over time. In this essay, we review what we believe were our most valuable - and sometimes controversial insights during our two decades-long journey.
Collapse
Affiliation(s)
- Joseph A. Fisher
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada
| | - David J. Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
- The Joint Department of Medical Imaging, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
- Techna Institute & Koerner Scientist in MR Imaging, University Health Network, Toronto, ON, Canada
| |
Collapse
|
16
|
Duffin J, Mikulis DJ, Fisher JA. Control of Cerebral Blood Flow by Blood Gases. Front Physiol 2021; 12:640075. [PMID: 33679453 PMCID: PMC7930328 DOI: 10.3389/fphys.2021.640075] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Cerebrovascular reactivity can be measured as the cerebrovascular flow response to a hypercapnic challenge. The many faceted responses of cerebral blood flow to combinations of blood gas challenges are mediated by its vasculature's smooth muscle and can be comprehensively described by a simple mathematical model. The model accounts for the blood flow during hypoxia, anemia, hypocapnia, and hypercapnia. The main hypothetical basis of the model is that these various challenges, singly or in combination, act via a common regulatory pathway: the regulation of intracellular hydrogen ion concentration. This regulation is achieved by membrane transport of strongly dissociated ions to control their intracellular concentrations. The model assumes that smooth muscle vasoconstriction and vasodilation and hence cerebral blood flow, are proportional to the intracellular hydrogen ion concentration. Model predictions of the cerebral blood flow responses to hypoxia, anemia, hypocapnia, and hypercapnia match the form of observed responses, providing some confidence that the theories on which the model is based have some merit.
Collapse
Affiliation(s)
- James Duffin
- Department of Anesthesia and Pain Management, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Thornhill Research Inc., Toronto, ON, Canada
- University Health Network, Toronto, ON, Canada
| | - David J. Mikulis
- Division of Neuroradiology Imaging, Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada
| | - Joseph A. Fisher
- Department of Anesthesia and Pain Management, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Thornhill Research Inc., Toronto, ON, Canada
- University Health Network, Toronto, ON, Canada
- Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Duffin J. Fail‐safe aspects of oxygen supply. J Physiol 2020; 598:4859-4867. [DOI: 10.1113/jp280301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022] Open
Affiliation(s)
- James Duffin
- Department of Anesthesiology and Pain Medicine University of Toronto Toronto Ontario Canada
- Department of Physiology University of Toronto Toronto Ontario Canada
- Thornhill Medical Toronto Ontario Canada
| |
Collapse
|
18
|
Affiliation(s)
- Stephen J Payne
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| |
Collapse
|