1
|
Grgic J. Effects of post-exercise cold-water immersion on resistance training-induced gains in muscular strength: a meta-analysis. Eur J Sport Sci 2023; 23:372-380. [PMID: 35068365 DOI: 10.1080/17461391.2022.2033851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The aim of this review was to perform a meta-analysis examining the effects of cold-water immersion (CWI) coupled with resistance training on gains in muscular strength. Four databases were searched to find relevant studies. Their methodological quality and risk of bias were evaluated using the PEDro checklist. The effects of CWI vs. control on muscular strength were examined in a random-effects meta-analysis. Ten studies (n = 170; 92% males), with 11 comparisons across 22 groups, were included in the analysis. Studies were classified as of good or fair methodological quality. The main meta-analysis found that CWI attenuated muscular strength gains (effect size [ES]: -0.23; 95% confidence interval [CI]: -0.45, -0.01; p = 0.041). In the analysis of data from studies applying CWI only to the trained limbs, CWI attenuated muscular strength gains (ES: -0.31; 95% CI: -0.61, -0.01; p = 0.041). In the analysis of data from studies using whole-body CWI, there was no significant difference in muscular strength gains between CWI and control (ES: -0.08; 95% CI: -0.53, 0.38; p = 0.743). In summary, this meta-analysis found that the use of CWI following resistance exercise sessions attenuates muscular strength gains in males. However, when CWI was applied to the whole body, there was no significant difference between CWI and control for muscular strength. Due to the attenuated gains in muscular strength found with single limb CWI, the use and/or timing of CWI in resistance training should be carefully considered and individualized.
Collapse
Affiliation(s)
- Jozo Grgic
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| |
Collapse
|
2
|
Ihsan M, Abbiss CR, Allan R. Adaptations to Post-exercise Cold Water Immersion: Friend, Foe, or Futile? Front Sports Act Living 2021; 3:714148. [PMID: 34337408 PMCID: PMC8322530 DOI: 10.3389/fspor.2021.714148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/22/2021] [Indexed: 11/16/2022] Open
Abstract
In the last decade, cold water immersion (CWI) has emerged as one of the most popular post-exercise recovery strategies utilized amongst athletes during training and competition. Following earlier research on the effects of CWI on the recovery of exercise performance and associated mechanisms, the recent focus has been on how CWI might influence adaptations to exercise. This line of enquiry stems from classical work demonstrating improved endurance and mitochondrial development in rodents exposed to repeated cold exposures. Moreover, there was strong rationale that CWI might enhance adaptations to exercise, given the discovery, and central role of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) in both cold- and exercise-induced oxidative adaptations. Research on adaptations to post-exercise CWI have generally indicated a mode-dependant effect, where resistance training adaptations were diminished, whilst aerobic exercise performance seems unaffected but demonstrates premise for enhancement. However, the general suitability of CWI as a recovery modality has been the focus of considerable debate, primarily given the dampening effect on hypertrophy gains. In this mini-review, we highlight the key mechanisms surrounding CWI and endurance exercise adaptations, reiterating the potential for CWI to enhance endurance performance, with support from classical and contemporary works. This review also discusses the implications and insights (with regards to endurance and strength adaptations) gathered from recent studies examining the longer-term effects of CWI on training performance and recovery. Lastly, a periodized approach to recovery is proposed, where the use of CWI may be incorporated during competition or intensified training, whilst strategically avoiding periods following training focused on improving muscle strength or hypertrophy.
Collapse
Affiliation(s)
- Mohammed Ihsan
- Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Research and Scientific Support, Aspetar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| | - Chris R Abbiss
- Centre for Exercise and Sports Science Research, School of Medical and Health Sciences, Edith Cowan University, Perth, WA, Australia
| | - Robert Allan
- School of Sport and Health Sciences, University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|
3
|
Takagi R, Tabuchi A, Asamura T, Hirayama S, Ikegami R, Tanaka Y, Hoshino D, Poole DC, Kano Y. In vivo Ca 2+ dynamics during cooling after eccentric contractions in rat skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2021; 320:R129-R137. [PMID: 33206560 DOI: 10.1152/ajpregu.00253.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effect of cooling on in vivo intracellular calcium ion concentration [Ca2+]i after eccentric contractions (ECs) remains to be determined. We tested the hypothesis that cryotherapy following ECs promotes an increased [Ca2+]i and induces greater muscle damage in two muscles with substantial IIb and IIx fiber populations. The thin spinotrapezius (SPINO) muscles of Wistar rats were used for in vivo [Ca2+]i imaging, and tibialis anterior (TA) muscles provided greater fidelity and repeatability of contractile function measurements. SPINO [Ca2+]i was estimated using fura 2-AM and the magnitude, location, and temporal profile of [Ca2+]i determined as the temperature near the muscle surface post-ECs was decreased from 30°C (control) to 20°C or 10°C. Subsequently, in the TA, the effect of post-ECs cooling to 10°C on muscle contractile performance was determined at 1 and 2 days after ECs. TA muscle samples were examined by hematoxylin and eosin staining to assess damage. In SPINO, reducing the muscle temperature from 30°C to 10°C post-ECs resulted in a 3.7-fold increase in the spread of high [Ca2+]i sites generated by ECs (P < 0.05). These high [Ca2+]i sites demonstrated partial reversibility when rewarmed to 30°C. Dantrolene, a ryanodine receptor Ca2+ release inhibitor, reduced the presence of high [Ca2+] sites at 10°C. In the TA, cooling exacerbated ECs-induced muscle strength deficits via enhanced muscle fiber damage (P < 0.05). By demonstrating that cooling post-ECs potentiates [Ca2+]i derangements, this in vivo approach supports a putative mechanistic basis for how postexercise cryotherapy might augment muscle fiber damage and decrease subsequent exercise performance.
Collapse
Affiliation(s)
- Ryo Takagi
- Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan.,Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Ayaka Tabuchi
- Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
| | - Tomoyo Asamura
- Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
| | - Seiya Hirayama
- Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
| | - Ryo Ikegami
- Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan.,Department of health science, Health Science University, Yamanashi, Japan
| | - Yoshinori Tanaka
- Center for Neuroscience and Biomedical Engineering, University of Electro-Communications, Tokyo, Japan
| | - Daisuke Hoshino
- Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan
| | - David C Poole
- Department of Anatomy and Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Yutaka Kano
- Graduate School of Informatics and Engineering, University of Electro-Communications, Tokyo, Japan.,Center for Neuroscience and Biomedical Engineering, University of Electro-Communications, Tokyo, Japan
| |
Collapse
|
4
|
Peake JM, Markworth JF, Cumming KT, Aas SN, Roberts LA, Raastad T, Cameron-Smith D, Figueiredo VC. The Effects of Cold Water Immersion and Active Recovery on Molecular Factors That Regulate Growth and Remodeling of Skeletal Muscle After Resistance Exercise. Front Physiol 2020; 11:737. [PMID: 32695024 PMCID: PMC7339943 DOI: 10.3389/fphys.2020.00737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/08/2020] [Indexed: 01/16/2023] Open
Abstract
Regular postexercise cooling attenuates muscle hypertrophy, yet its effects on the key molecular factors that regulate muscle growth and remodeling are not well characterized. In the present study, nine men completed two sessions of single-leg resistance exercise on separate days. On 1 day, they sat in cold water (10°C) up to their waist for 10 min after exercise. On the other day, they exercised at a low intensity for 10 min after exercise. Muscle biopsies were collected from the exercised leg before, 2, 24, and 48 h after exercise in both trials. These muscle samples were analyzed to evaluate changes in genes and proteins involved in muscle growth and remodeling. Muscle-specific RING finger 1 mRNA increased at 2 h after both trials (P < 0.05), while insulin-like growth factor (IGF)-1 Ec, IGF-1 receptor, growth arrest and DNA damage-inducible protein 45, collagen type I alpha chain A, collagen type III alpha chain 1, laminin and tissue inhibitor of metallopeptidase 1 mRNA increased 24−48 h after both trials (P < 0.05). By contrast, atrogin-1 mRNA decreased at all time points after both trials (P < 0.05). Protein expression of tenascin C increased 2 h after the active recovery trial (P < 0.05), whereas FoxO3a protein expression decreased after both trials (P < 0.05). Myostatin mRNA and ubiquitin protein expression did not change after either trial. These responses were not significantly different between the trials. The present findings suggest that regular cold water immersion attenuates muscle hypertrophy independently of changes in factors that regulate myogenesis, proteolysis and extracellular matrix remodeling in muscle after exercise.
Collapse
Affiliation(s)
- Jonathan M Peake
- Queensland University of Technology, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Brisbane, QLD, Australia.,Sport Performance Innovation and Knowledge Excellence, Queensland Academy of Sport, Brisbane, QLD, Australia
| | - James F Markworth
- Liggins Institute, The University of Auckland, Auckland, New Zealand.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | | | - Sigve N Aas
- Norwegian School of Sport Sciences, Oslo, Norway
| | - Llion A Roberts
- Sport Performance Innovation and Knowledge Excellence, Queensland Academy of Sport, Brisbane, QLD, Australia.,School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia.,School of Allied Health Sciences, Griffith University, Southport, QLD, Australia
| | | | - David Cameron-Smith
- Agency for Science, Technology and Research (A∗STAR), Brenner Centre for Molecular Medicine, Singapore, Singapore
| | - Vandre C Figueiredo
- Liggins Institute, The University of Auckland, Auckland, New Zealand.,Center for Muscle Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|