1
|
Blum K, Schepsky P, Derleder P, Schätzle P, Nasri F, Fischer P, Engel J, Kurt S. Noise-induced cochlear synaptopathy in C57BL/6 N mice as a function of trauma strength: ribbons are more vulnerable than postsynapses. Front Cell Neurosci 2024; 18:1465216. [PMID: 39411002 PMCID: PMC11473312 DOI: 10.3389/fncel.2024.1465216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Noise-induced cochlear synaptopathy is characterized by irreversible loss of synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) despite normal hearing thresholds. We analyzed hearing performance and cochlear structure in C57BL/6 N mice exposed to 100, 106, or 112 dB SPL broadband noise (8-16 kHz) for 2 h. Auditory brainstem responses (ABRs) were assessed before, directly after, and up to 28 days post-trauma. Finally, the number, size, and pairing of IHC presynaptic (CtBP2-positive) ribbons and postsynaptic AMPA receptor scaffold (Homer1-positive) clusters were analyzed along the cochlea. Four weeks after the 100 dB SPL trauma, a permanent threshold shift (PTS) was observed at 45 kHz, which after the higher traumata extended toward middle to low frequencies. Loss in ABR wave I amplitudes scaled with trauma strength indicating loss of functional IHC synaptic connections. Latencies of wave I mostly increased with trauma strength. No trauma-related OHC loss was found. The number of synaptic pairs was reduced in the midbasal and basal cochlear region in all trauma conditions, with ribbon loss amounting up to 46% of control. Ribbons surviving the trauma were paired, whereas 4-6 unpaired postsynapses/IHC were found in the medial, midbasal, and basal regions irrespective of trauma strength, contrasting findings in CBA/CaJ mice. Our data confirm the susceptibility of ribbon synapses and ABR wave I amplitudes to a noise trauma of 100 dB SPL or larger. Notably, peripheral dendrites bearing IHC postsynapses were less vulnerable than presynaptic ribbons in C57BL/6 N mice.
Collapse
Affiliation(s)
- Kerstin Blum
- Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Department of Biophysics, Saarland University, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), School of Medicine, Saarland University, Homburg, Germany
| | - Pauline Schepsky
- Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Department of Biophysics, Saarland University, Homburg, Germany
| | - Philip Derleder
- Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Department of Biophysics, Saarland University, Homburg, Germany
| | - Philipp Schätzle
- Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Department of Biophysics, Saarland University, Homburg, Germany
| | - Fahmi Nasri
- Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Department of Biophysics, Saarland University, Homburg, Germany
| | - Philipp Fischer
- Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Department of Biophysics, Saarland University, Homburg, Germany
| | - Jutta Engel
- Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Department of Biophysics, Saarland University, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), School of Medicine, Saarland University, Homburg, Germany
| | - Simone Kurt
- Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Department of Biophysics, Saarland University, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), School of Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
2
|
Ikäheimo K, Leinonen S, Lankinen T, Lindahl M, Saarma M, Pirvola U. Stereocilia fusion pathology in the cochlear outer hair cells at the nanoscale level. J Physiol 2024; 602:3995-4025. [PMID: 39037943 DOI: 10.1113/jp286318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024] Open
Abstract
The hair bundle of cochlear hair cells comprises specialized microvilli, the stereocilia, which fulfil the role of mechanotransduction. Genetic defects and environmental noise challenge the maintenance of hair bundle structure, critically contributing to age-related hearing loss. Stereocilia fusion is a major component of the hair bundle pathology in mature hair cells, but its role in hearing loss and its molecular basis are poorly understood. Here, we utilized super-resolution expansion microscopy to examine the molecular anatomy of outer hair cell stereocilia fusion in mouse models of age-related hearing loss, heightened endoplasmic reticulum stress and prolonged noise exposure. Prominent stereocilia fusion in our model of heightened endoplasmic reticulum stress, Manf (Mesencephalic astrocyte-derived neurotrophic factor)-inactivated mice in a background with Cadherin 23 missense mutation, impaired mechanotransduction and calcium balance in stereocilia. This was indicated by reduced FM1-43 dye uptake through the mechanotransduction channels, reduced neuroplastin/PMCA2 expression and increased expression of the calcium buffer oncomodulin inside stereocilia. Sparse BAIAP2L2 and myosin 7a expression was retained in the fused stereocilia but mislocalized away from their functional sites at the tips. These hair bundle abnormalities preceded cell soma degeneration, suggesting a sequela from stereociliary molecular perturbations to cell death signalling. In the age-related hearing loss and noise-exposure models, stereocilia fusion was more restricted within the bundles, yet both models exhibited oncomodulin upregulation at the fusion sites, implying perturbed calcium homeostasis. We conclude that stereocilia fusion is linked with the failure to maintain cellular proteostasis and with disturbances in stereociliary calcium balance. KEY POINTS: Stereocilia fusion is a hair cell pathology causing hearing loss. Inactivation of Manf, a component of the endoplasmic reticulum proteostasis machinery, has a cell-intrinsic mode of action in triggering outer hair cell stereocilia fusion and the death of these cells. The genetic background with Cadherin 23 missense mutation contributes to the high susceptibility of outer hair cells to stereocilia fusion, evidenced in Manf-inactivated mice and in the mouse models of early-onset hearing loss and noise exposure. Endoplasmic reticulum stress feeds to outer hair cell stereocilia bundle pathology and impairs the molecular anatomy of calcium regulation. The maintenance of the outer hair cell stereocilia bundle cohesion is challenged by intrinsic and extrinsic stressors, and understanding the underlying mechanisms will probably benefit the development of interventions to promote hearing health.
Collapse
Affiliation(s)
- Kuu Ikäheimo
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Saija Leinonen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Tuuli Lankinen
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Maria Lindahl
- Institute of Biotechnology, HILIFE Unit, University of Helsinki, Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, HILIFE Unit, University of Helsinki, Helsinki, Finland
| | - Ulla Pirvola
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Dörje NM, Shvachiy L, Kück F, Outeiro TF, Strenzke N, Beutner D, Setz C. Age-related alterations in efferent medial olivocochlear-outer hair cell and primary auditory ribbon synapses in CBA/J mice. Front Cell Neurosci 2024; 18:1412450. [PMID: 38988659 PMCID: PMC11234844 DOI: 10.3389/fncel.2024.1412450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/23/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Hearing decline stands as the most prevalent single sensory deficit associated with the aging process. Giving compelling evidence suggesting a protective effect associated with the efferent auditory system, the goal of our study was to characterize the age-related changes in the number of efferent medial olivocochlear (MOC) synapses regulating outer hair cell (OHC) activity compared with the number of afferent inner hair cell ribbon synapses in CBA/J mice over their lifespan. Methods Organs of Corti of 3-month-old CBA/J mice were compared with mice aged between 10 and 20 months, grouped at 2-month intervals. For each animal, one ear was used to characterize the synapses between the efferent MOC fibers and the outer hair cells (OHCs), while the contralateral ear was used to analyze the ribbon synapses between inner hair cells (IHCs) and type I afferent nerve fibers of spiral ganglion neurons (SGNs). Each cochlea was separated in apical, middle, and basal turns, respectively. Results The first significant age-related decline in afferent IHC-SGN ribbon synapses was observed in the basal cochlear turn at 14 months, the middle turn at 16 months, and the apical turn at 18 months of age. In contrast, efferent MOC-OHC synapses in CBA/J mice exhibited a less pronounced loss due to aging which only became significant in the basal and middle turns of the cochlea by 20 months of age. Discussion This study illustrates an age-related reduction on efferent MOC innervation of OHCs in CBA/J mice starting at 20 months of age. Our findings indicate that the morphological decline of efferent MOC-OHC synapses due to aging occurs notably later than the decline observed in afferent IHC-SGN ribbon synapses.
Collapse
Affiliation(s)
- Nele Marie Dörje
- University Medical Center Göttingen, Department of Otolaryngology-Head and Neck Surgery, InnerEarLab, Göttingen, Germany
- University Medical Center Göttingen, Institute for Auditory Neuroscience, Göttingen, Germany
| | - Liana Shvachiy
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
- Cardiovascular Centre, University of Lisbon, Lisbon, Portugal
| | - Fabian Kück
- University Medical Center Göttingen, Department of Medical Statistics, Core Facility Medical Biometry and Statistical Bioinformatics, Göttingen, Germany
| | - Tiago F Outeiro
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nicola Strenzke
- University Medical Center Göttingen, Institute for Auditory Neuroscience, Göttingen, Germany
| | - Dirk Beutner
- University Medical Center Göttingen, Department of Otolaryngology-Head and Neck Surgery, InnerEarLab, Göttingen, Germany
| | - Cristian Setz
- University Medical Center Göttingen, Department of Otolaryngology-Head and Neck Surgery, InnerEarLab, Göttingen, Germany
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| |
Collapse
|
4
|
Steenken F, Pektaş A, Köppl C. Age-related changes in olivocochlear efferent innervation in gerbils. Front Synaptic Neurosci 2024; 16:1422330. [PMID: 38887655 PMCID: PMC11180762 DOI: 10.3389/fnsyn.2024.1422330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction Age-related hearing difficulties have a complex etiology that includes degenerative processes in the sensory cochlea. The cochlea comprises the start of the afferent, ascending auditory pathway, but also receives efferent feedback innervation by two separate populations of brainstem neurons: the medial olivocochlear and lateral olivocochlear pathways, innervating the outer hair cells and auditory-nerve fibers synapsing on inner hair cells, respectively. Efferents are believed to improve hearing under difficult conditions, such as high background noise. Here, we compare olivocochlear efferent innervation density along the tonotopic axis in young-adult and aged gerbils (at ~50% of their maximum lifespan potential), a classic animal model for age-related hearing loss. Methods Efferent synaptic terminals and sensory hair cells were labeled immunohistochemically with anti-synaptotagmin and anti-myosin VIIa, respectively. Numbers of hair cells, numbers of efferent terminals, and the efferent innervation area were quantified at seven tonotopic locations along the organ of Corti. Results The tonotopic distribution of olivocochlear innervation in the gerbil was similar to that previously shown for other species, with a slight apical cochlear bias in presumed lateral olivocochlear innervation (inner-hair-cell region), and a broad mid-cochlear peak for presumed medial olivocochlear innervation (outer-hair-cell region). We found significant, age-related declines in overall efferent innervation to both the inner-hair-cell and the outer-hair-cell region. However, when accounting for the age-related losses in efferent target structures, the innervation density of surviving elements proved unchanged in the inner-hair-cell region. For outer hair cells, a pronounced increase of orphaned outer hair cells, i.e., lacking efferent innervation, was observed. Surviving outer hair cells that were still efferently innervated retained a nearly normal innervation. Discussion A comparison across species suggests a basic aging scenario where outer hair cells, type-I afferents, and the efferents associated with them, steadily die away with advancing age, but leave the surviving cochlear circuitry largely intact until an advanced age, beyond 50% of a species' maximum lifespan potential. In the outer-hair-cell region, MOC degeneration may precede outer-hair-cell death, leaving a putatively transient population of orphaned outer hair cells that are no longer under efferent control.
Collapse
Affiliation(s)
- Friederike Steenken
- Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Cluster of Excellence “Hearing4all”, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Asli Pektaş
- Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Christine Köppl
- Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Cluster of Excellence “Hearing4all”, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Research Centre Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
5
|
Newton S, Aguilar C, Bunton-Stasyshyn RK, Flook M, Stewart M, Marcotti W, Brown S, Bowl MR. Absence of Embigin accelerates hearing loss and causes sub-viability, brain and heart defects in C57BL/6N mice due to interaction with Cdh23ahl. iScience 2023; 26:108056. [PMID: 37854703 PMCID: PMC10579432 DOI: 10.1016/j.isci.2023.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Mouse studies continue to help elaborate upon the genetic landscape of mammalian disease and the underlying molecular mechanisms. Here, we have investigated an Embigintm1b allele maintained on a standard C57BL/6N background and on a co-isogenic C57BL/6N background in which the Cdh23ahl allele has been "repaired." The hypomorphic Cdh23ahl allele is present in several commonly used inbred mouse strains, predisposing them to progressive hearing loss, starting in high-frequency regions. Absence of the neural cell adhesion molecule Embigin on the standard C57BL/6N background leads to accelerated hearing loss and causes sub-viability, brain and cardiac defects. Contrastingly, Embigintm1b/tm1b mice maintained on the co-isogenic "repaired" C57BL/6N background exhibit normal hearing and viability. Thus Embigin genetically interacts with Cdh23. Importantly, our study is the first to demonstrate an effect of the common Cdh23ahl allele outside of the auditory system, which has important ramifications for genetic studies involving inbred strains carrying this allele.
Collapse
Affiliation(s)
- Sherylanne Newton
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Oxford, Oxfordshire OX11 0RD, UK
- UCL Ear Institute, University College London, 332 Gray’s Inn Road, London WC1X 8EE, UK
| | - Carlos Aguilar
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Oxford, Oxfordshire OX11 0RD, UK
- UCL Ear Institute, University College London, 332 Gray’s Inn Road, London WC1X 8EE, UK
| | | | - Marisa Flook
- UCL Ear Institute, University College London, 332 Gray’s Inn Road, London WC1X 8EE, UK
| | - Michelle Stewart
- The Mary Lyon Centre, Medical Research Council Harwell Institute, Oxford, Oxfordshire OX11 0RD, UK
| | - Walter Marcotti
- School of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
- Sheffield Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Steve Brown
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Oxford, Oxfordshire OX11 0RD, UK
| | - Michael R. Bowl
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Oxford, Oxfordshire OX11 0RD, UK
- UCL Ear Institute, University College London, 332 Gray’s Inn Road, London WC1X 8EE, UK
| |
Collapse
|
6
|
Hool SA, Jeng J, Jagger DJ, Marcotti W, Ceriani F. Age-related changes in P2Y receptor signalling in mouse cochlear supporting cells. J Physiol 2023; 601:4375-4395. [PMID: 37715703 PMCID: PMC10952729 DOI: 10.1113/jp284980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/16/2023] [Indexed: 09/18/2023] Open
Abstract
Our sense of hearing depends on the function of a specialised class of sensory cells, the hair cells, which are found in the organ of Corti of the mammalian cochlea. The unique physiological environment in which these cells operate is maintained by a syncitium of non-sensory supporting cells, which are crucial for regulating cochlear physiology and metabolic homeostasis. Despite their importance for cochlear function, the role of these supporting cells in age-related hearing loss, the most common sensory deficit in the elderly, is poorly understood. Here, we investigated the age-related changes in the expression and function of metabotropic purinergic receptors (P2Y1 , P2Y2 and P2Y4 ) in the supporting cells of the cochlear apical coil. Purinergic signalling in supporting cells is crucial during the development of the organ of Corti and purinergic receptors are known to undergo changes in expression during ageing in several tissues. Immunolabelling and Ca2+ imaging experiments revealed a downregulation of P2Y receptor expression and a decrease of purinergic-mediated calcium responses after early postnatal stages in the supporting cells. An upregulation of P2Y receptor expression was observed in the aged cochlea when compared to 1 month-old adults. The aged mice also had significantly larger calcium responses and displayed calcium oscillations during prolonged agonist applications. We conclude that supporting cells in the aged cochlea upregulate P2Y2 and P2Y4 receptors and display purinergic-induced Ca2+ responses that mimic those observed during pre-hearing stages of development, possibly aimed at limiting or preventing further damage to the sensory epithelium. KEY POINTS: Age-related hearing loss is associated with lower hearing sensitivity and decreased ability to understand speech. We investigated age-related changes in the expression and function of metabotropic purinergic (P2Y) receptors in cochlear non-sensory supporting cells of mice displaying early-onset (C57BL/6N) and late-onset (C3H/HeJ) hearing loss. The expression of P2Y1 , P2Y2 and P2Y4 receptors in the supporting cells decreased during cochlear maturation, but that of P2Y2 and P2Y4 was upregulated in the aged cochlea. P2Y2 and P2Y4 receptors were primarily responsible for the ATP-induced Ca2+ responses in the supporting cells. The degree of purinergic expression upregulation in aged supporting cells mirrored hearing loss progression in the different mouse strains. We propose that the upregulation of purinergic-mediated signalling in the aged cochlea is subsequent to age-related changes in the hair cells and may act as a protective mechanism to limit or to avoid further damage to the sensory epithelium.
Collapse
Affiliation(s)
- Sarah A. Hool
- School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Jing‐Yi Jeng
- School of BiosciencesUniversity of SheffieldSheffieldUK
| | | | - Walter Marcotti
- School of BiosciencesUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | | |
Collapse
|
7
|
Zhang Y, Lin G, Xue N, Wang Y, Du T, Liu H, Xiong W, Shang W, Wu H, Song L. Differential outcomes of high-fat diet on age-related rescaling of cochlear frequency place coding. FASEB J 2023; 37:e23167. [PMID: 37651093 DOI: 10.1096/fj.202300457rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Auditory frequency coding is place-specific, which depends on the mechanical coupling of the basilar membrane-outer hair cell (OHC)-tectorial membrane network. Prestin-based OHC electromotility improves cochlear frequency selectivity and sensitivity. Cochlear amplification determines the frequency coding wherein discrete sound frequencies find a 'best' place along the cochlear length. Loss of OHC is the leading cause of age-related hearing loss (ARHL) and is the most common cause of sensorineural hearing loss and compromised speech perception. Lipid interaction with Prestin impacts OHC function. It has been established that high-fat diet (HFD) is associated with ARHL. To determine whether genetic background and metabolism preserve cochlear frequency place coding, we examined the effect of HFD in C57BL/6J (B6) and CBA/CaJ (CBA) on ARHL.We found a significant rescuing effect on ARHL in aged B6 HFD cohort. Prestin levels and cell sizes were better maintained in the experimental B6-HFD group. We also found that distortion product otoacoustic emission (DPOAE) group delay measurement was preserved, which suggested stable frequency place coding. In contrast, the response to HFD in the CBA cohort was modest with no appreciable benefit to hearing threshold. Notably, group delay was shortened with age along with the control. In addition, the frequency dependent OHC nonlinear capacitance gradient was most pronounced at young age but decreased with age. Cochlear RNA-seq analysis revealed differential TRPV1 expression and lipid homeostasis. Activation of TRPV1 and downregulation of arachidonic acid led to downregulation of inflammatory response in B6 HFD, which protects the cochlea from ARHL. The genetic background and metabolic state-derived changes in OHC morphology and function collectively contribute to a redefined cochlear frequency place coding and improved age-related pitch perception.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Guotong Lin
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Na Xue
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yi Wang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Tingting Du
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Huihui Liu
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Wei Xiong
- Chinese Institute for Brain Research, Beijing, China
| | - Wei Shang
- Navy Clinical Medical School, Anhui Medical University, Hefei, China
- In Vitro Fertility (IVF) Center Department of Obstetrics and Gynecology, the Sixth Medical Center of PLA General Hospital, Beijing, China
- Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing, China
| | - Hao Wu
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Lei Song
- Department of Otolaryngology, Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
8
|
Tan WJT, Song L. Role of mitochondrial dysfunction and oxidative stress in sensorineural hearing loss. Hear Res 2023; 434:108783. [PMID: 37167889 DOI: 10.1016/j.heares.2023.108783] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Sensorineural hearing loss (SNHL) can either be genetically inherited or acquired as a result of aging, noise exposure, or ototoxic drugs. Although the precise pathophysiological mechanisms underlying SNHL remain unclear, an overwhelming body of evidence implicates mitochondrial dysfunction and oxidative stress playing a central etiological role. With its high metabolic demands, the cochlea, particularly the sensory hair cells, stria vascularis, and spiral ganglion neurons, is vulnerable to the damaging effects of mitochondrial reactive oxygen species (ROS). Mitochondrial dysfunction and consequent oxidative stress in cochlear cells can be caused by inherited mitochondrial DNA (mtDNA) mutations (hereditary hearing loss and aminoglycoside-induced ototoxicity), accumulation of acquired mtDNA mutations with age (age-related hearing loss), mitochondrial overdrive and calcium dysregulation (noise-induced hearing loss and cisplatin-induced ototoxicity), or accumulation of ototoxic drugs within hair cell mitochondria (drug-induced hearing loss). In this review, we provide an overview of our current knowledge on the role of mitochondrial dysfunction and oxidative stress in the development of SNHL caused by genetic mutations, aging, exposure to excessive noise, and ototoxic drugs. We also explore the advancements in antioxidant therapies for the different forms of acquired SNHL that are being evaluated in preclinical and clinical studies.
Collapse
Affiliation(s)
- Winston J T Tan
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, 1023, New Zealand.
| | - Lei Song
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, 06510, USA; Department of Otolaryngology - Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
| |
Collapse
|
9
|
Mauriac SA, Peineau T, Zuberi A, Lutz C, Géléoc GSG. Loss of Pex1 in Inner Ear Hair Cells Contributes to Cochlear Synaptopathy and Hearing Loss. Cells 2022; 11:cells11243982. [PMID: 36552747 PMCID: PMC9777190 DOI: 10.3390/cells11243982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Peroxisome Biogenesis Disorders (PBD) and Zellweger syndrome spectrum disorders (ZSD) are rare genetic multisystem disorders that include hearing impairment and are associated with defects in peroxisome assembly, function, or both. Mutations in 13 peroxin (PEX) genes have been found to cause PBD-ZSD with ~70% of patients harboring mutations in PEX1. Limited research has focused on the impact of peroxisomal disorders on auditory function. As sensory hair cells are particularly vulnerable to metabolic changes, we hypothesize that mutations in PEX1 lead to oxidative stress affecting hair cells of the inner ear, subsequently resulting in hair cell degeneration and hearing loss. Global deletion of the Pex1 gene is neonatal lethal in mice, impairing any postnatal studies. To overcome this limitation, we created conditional knockout mice (cKO) using Gfi1Creor VGlut3Cre expressing mice crossed to floxed Pex1 mice to allow for selective deletion of Pex1 in the hair cells of the inner ear. We find that Pex1 excision in inner hair cells (IHCs) leads to progressive hearing loss associated with significant decrease in auditory brainstem responses (ABR), specifically ABR wave I amplitude, indicative of synaptic defects. Analysis of IHC synapses in cKO mice reveals a decrease in ribbon synapse volume and functional alterations in exocytosis. Concomitantly, we observe a decrease in peroxisomal number, indicative of oxidative stress imbalance. Taken together, these results suggest a critical function of Pex1 in development and maturation of IHC-spiral ganglion synapses and auditory function.
Collapse
Affiliation(s)
- Stephanie A. Mauriac
- Department of Otolaryngology, Boston Children’s Hospital, Boston, MA 02115, USA
- Kirby Neurobiology Center, Harvard Medical School, Boston, MA 02115, USA
| | - Thibault Peineau
- Department of Otolaryngology, Boston Children’s Hospital, Boston, MA 02115, USA
- Kirby Neurobiology Center, Harvard Medical School, Boston, MA 02115, USA
| | - Aamir Zuberi
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Technology Evaluation and Development Research Laboratory, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Cathleen Lutz
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Gwénaëlle S. G. Géléoc
- Department of Otolaryngology, Boston Children’s Hospital, Boston, MA 02115, USA
- Kirby Neurobiology Center, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: ; Tel.: +1-617-919-4061
| |
Collapse
|
10
|
Parker A, Parham K, Skoe E. Age-related declines to serum prestin levels in humans. Hear Res 2022; 426:108640. [DOI: 10.1016/j.heares.2022.108640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/04/2022]
|
11
|
Wang C, Qiu J, Li G, Wang J, Liu D, Chen L, Song X, Cui L, Sun Y. Application and prospect of quasi-targeted metabolomics in age-related hearing loss. Hear Res 2022; 424:108604. [PMID: 36116178 DOI: 10.1016/j.heares.2022.108604] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/28/2022] [Accepted: 09/03/2022] [Indexed: 11/04/2022]
Abstract
Age-related hearing loss (ARHL) is a common sensory deficit in the elderly, which seriously affects physical and mental health. Therefore, understanding its underlying molecular mechanisms and taking interventions to treat ARHL are urgently needed. In our study, cochlea of 4-week-old C57BL/6 mice as the Youth group (n = 6) and 48-week-old cochlea as the Old group (n = 6) were subjected to quasi-targeted metabolomics analysis by Ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). In total, 208 differential metabolites were identified in 12 cochlea samples, which highlighted the following discriminant compounds: tryptophan, piperidine, methionine, L-arginine, histamine, serotonin, acetylcholine, and 4-aminobutyric acid. Differentially expressed metabolites were identified which were involved in KEGG pathways related to the digestion and absorption of oxidative stress associated amino acids, Synaptic vesicle cycle of serotonin, Pantothenate and CoA Biosynthesis. These findings are a first step toward elucidating the pathophysiological pathways involved in the etiology of ARHL and provide the possibility to further explore the mechanisms of ARHL using metabolomic analysis.
Collapse
Affiliation(s)
- Chen Wang
- School of Clinical Medicine, Weifang Medical University, Baotong West Street 7166, Weifang, China; Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Jingjing Qiu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Guangjin Li
- School of Clinical Medicine, Weifang Medical University, Baotong West Street 7166, Weifang, China; Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Junxin Wang
- School of Clinical Medicine, Weifang Medical University, Baotong West Street 7166, Weifang, China; Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Dawei Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Liang Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China
| | - Limei Cui
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China.
| | - Yan Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, 20 East Yuhuangding Road, Yantai, Shandong 264000, China; Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, 20 East Yuhuangding Road, Yantai, Shandong 264000, China.
| |
Collapse
|
12
|
Oncomodulin (OCM) uniquely regulates calcium signaling in neonatal cochlear outer hair cells. Cell Calcium 2022; 105:102613. [PMID: 35797824 PMCID: PMC9297295 DOI: 10.1016/j.ceca.2022.102613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/23/2022]
|
13
|
Zhang L, Li Y, Bian L, Luo Q, Zhang X, Zhao B. Analysis of Factors Affecting Cranial Nerve Function of Patients With Vascular Mild Cognitive Impairment Through Functional Magnetic Resonance Imaging Under Artificial Intelligence Environment. Front Public Health 2022; 9:803659. [PMID: 35399347 PMCID: PMC8989955 DOI: 10.3389/fpubh.2021.803659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022] Open
Abstract
The study aimed to explore the risk factors of effects of patients with vascular mild cognitive impairment (VaMCI) through functional magnetic resonance imaging (fMRI). In this study, 62 patients were selected from the department of neurology, admitted to Changzhi People's Hospital from October 1, 2018 to February 1, 2020. Patients with VaMCI were defined as the VaMCI group according to Clinical Dementia Rating (CDR), and subjects with normal cognitive function were defined as the normal control (NC) group. All patients underwent fMRI to identify the amplitude low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) values, and to analyze their association with VaMCI. The results showed that the VaMCI group had lower scores for Mini-mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and their subitems (visual space and execution, recall, attention and computation, and language ability) than NC group, with statistical differences (P < 0.05). In VaMCI group, the brain regions with increased ALFF values were the left temporal lobe, left parietal lobe, right temporal lobe, right parietal lobe, and posterior cingulate gyrus. Of them, the left parietal lobe and right temporal lobe were negatively correlated with the recall score on MMSE scale (r = -0.216, r = -0.132, P < 0.01). In VaMCI group, the brain regions with decreased ReHo values were the left temporal lobe, occipital lobe, and left middle temporal gyrus. Of them, the left temporal lobe and occipital lobe were positively correlated with MoCA score (r = 0.473, r = 0.848, P < 0.01). In conclusion, VaMCI patients have cognitive impairment and abnormally increased spontaneous brain activity, especially in the left parietal lobe and the right temporal lobe. At rest, VaMCI patients show decreased whole-brain ReHo in the left medial temporal lobe and occipital lobe. Hypertension is a high-risk factor for cognitive impairment in VaMCI patients. The study can provide a theoretical basis for early diagnosis of VaMCI.
Collapse
Affiliation(s)
- Lifang Zhang
- Department of Neurology, Changzhi People's Hospital, Changzhi Medical College, Changzhi, China
- Department of Mental Health, Changzhi Medical College, Changzhi, China
| | - Yanran Li
- Department of Radiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Lin Bian
- Department of Neurology, Changzhi People's Hospital, Changzhi Medical College, Changzhi, China
| | - Qingrong Luo
- Department of Neurology, Changzhi People's Hospital, Changzhi Medical College, Changzhi, China
| | - Xiaoxi Zhang
- Department of Mental Health, Changzhi Medical College, Changzhi, China
| | - Bing Zhao
- Department of Neurology, Changzhi People's Hospital, Changzhi Medical College, Changzhi, China
| |
Collapse
|
14
|
Sun Y, Zhang Y, Zhang D, Wang G, Song L, Liu Z. In vivo CRISPR-Cas9-mediated DNA chop identifies a cochlear outer hair cell-specific enhancer. FASEB J 2022; 36:e22233. [PMID: 35225354 DOI: 10.1096/fj.202100421rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 01/18/2023]
Abstract
Cochlear outer hair cells (OHCs) are essential for hearing. A short, OHC-specific enhancer is necessary but not yet available for gene therapeutic applications in OHC damage. Such damage is a major cause of deafness. Prestin is a motor protein exclusively expressed in OHCs. We hypothesized that the cis-regulatory DNA fragment deletion of Slc26a5 would affect its expression. We tested this hypothesis by conducting CRISPR/Cas9-mediated large DNA fragment deletion of mouse Slc26a5 intron regions. First, starting from a ~13 kbp fragment, step-by-step, we narrowed down the sequence to a 1.4 kbp segment. By deleting either a 13 kbp or 1.4 kbp fragment, we observed delayed Prestin expression. Second, we showed that 1.4 kbp was an OHC-specific enhancer because enhanced green fluorescent protein (EGFP) was highly and specifically expressed in OHCs in a transgenic mouse where EGFP was driven by the 1.4 kbp segment. More importantly, specific EGFP was also driven by its homologous 398 bp fragment in human Slc26a5. This suggests that the enhancer is likely to be evolutionarily conserved across different species.
Collapse
Affiliation(s)
- Yuwei Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yu Zhang
- Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guangqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lei Song
- Department of Otolaryngology-Head and Neck Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| |
Collapse
|
15
|
Newton S, Kong F, Carlton AJ, Aguilar C, Parker A, Codner GF, Teboul L, Wells S, Brown SDM, Marcotti W, Bowl MR. Neuroplastin genetically interacts with Cadherin 23 and the encoded isoform Np55 is sufficient for cochlear hair cell function and hearing. PLoS Genet 2022; 18:e1009937. [PMID: 35100259 PMCID: PMC8830789 DOI: 10.1371/journal.pgen.1009937] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/10/2022] [Accepted: 01/13/2022] [Indexed: 11/25/2022] Open
Abstract
Mammalian hearing involves the mechanoelectrical transduction (MET) of sound-induced fluid waves in the cochlea. Essential to this process are the specialised sensory cochlear cells, the inner (IHCs) and outer hair cells (OHCs). While genetic hearing loss is highly heterogeneous, understanding the requirement of each gene will lead to a better understanding of the molecular basis of hearing and also to therapeutic opportunities for deafness. The Neuroplastin (Nptn) gene, which encodes two protein isoforms Np55 and Np65, is required for hearing, and homozygous loss-of-function mutations that affect both isoforms lead to profound deafness in mice. Here we have utilised several distinct mouse models to elaborate upon the spatial, temporal, and functional requirement of Nptn for hearing. While we demonstrate that both Np55 and Np65 are present in cochlear cells, characterisation of a Np65-specific mouse knockout shows normal hearing thresholds indicating that Np65 is functionally redundant for hearing. In contrast, we find that Nptn-knockout mice have significantly reduced maximal MET currents and MET channel open probabilities in mature OHCs, with both OHCs and IHCs also failing to develop fully mature basolateral currents. Furthermore, comparing the hearing thresholds and IHC synapse structure of Nptn-knockout mice with those of mice that lack Nptn only in IHCs and OHCs shows that the majority of the auditory deficit is explained by hair cell dysfunction, with abnormal afferent synapses contributing only a small proportion of the hearing loss. Finally, we show that continued expression of Neuroplastin in OHCs of adult mice is required for membrane localisation of Plasma Membrane Ca2+ ATPase 2 (PMCA2), which is essential for hearing function. Moreover, Nptn haploinsufficiency phenocopies Atp2b2 (encodes PMCA2) mutations, with heterozygous Nptn-knockout mice exhibiting hearing loss through genetic interaction with the Cdh23ahl allele. Together, our findings provide further insight to the functional requirement of Neuroplastin for mammalian hearing.
Collapse
Affiliation(s)
- Sherylanne Newton
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Oxford, United Kingdom
| | - Fanbo Kong
- School of Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Adam J. Carlton
- School of Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Carlos Aguilar
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Oxford, United Kingdom
| | - Andrew Parker
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Oxford, United Kingdom
| | - Gemma F. Codner
- Mary Lyon Centre, MRC Harwell Institute, Harwell Oxford, United Kingdom
| | - Lydia Teboul
- Mary Lyon Centre, MRC Harwell Institute, Harwell Oxford, United Kingdom
| | - Sara Wells
- Mary Lyon Centre, MRC Harwell Institute, Harwell Oxford, United Kingdom
| | - Steve D. M. Brown
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Oxford, United Kingdom
| | - Walter Marcotti
- School of Sciences, University of Sheffield, Sheffield, United Kingdom
- Sheffield Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Michael R. Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Oxford, United Kingdom
- UCL Ear Institute, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Climer LK, Hornak AJ, Murtha K, Yang Y, Cox AM, Simpson PL, Le A, Simmons DD. Deletion of Oncomodulin Gives Rise to Early Progressive Cochlear Dysfunction in C57 and CBA Mice. Front Aging Neurosci 2021; 13:749729. [PMID: 34867279 PMCID: PMC8634891 DOI: 10.3389/fnagi.2021.749729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Ca2+ signaling is a major contributor to sensory hair cell function in the cochlea. Oncomodulin (OCM) is a Ca2+ binding protein (CaBP) preferentially expressed in outer hair cells (OHCs) of the cochlea and few other specialized cell types. Here, we expand on our previous reports and show that OCM delays hearing loss in mice of two different genetic backgrounds: CBA/CaJ and C57Bl/6J. In both backgrounds, genetic disruption of Ocm leads to early progressive hearing loss as measured by auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE). In both strains, loss of Ocm reduced hearing across lifetime (hearing span) by more than 50% relative to wild type (WT). Even though the two WT strains have very different hearing spans, OCM plays a considerable and similar role within their genetic environment to regulate hearing function. The accelerated age-related hearing loss (ARHL) of the Ocm KO illustrates the importance of Ca2+ signaling in maintaining hearing health. Manipulation of OCM and Ca2+ signaling may reveal important clues to the systems of function/dysfunction that lead to ARHL.
Collapse
Affiliation(s)
- Leslie K Climer
- Department of Biology, Baylor University, Waco, TX, United States
| | - Aubrey J Hornak
- Department of Biology, Baylor University, Waco, TX, United States
| | - Kaitlin Murtha
- Department of Biology, Baylor University, Waco, TX, United States
| | - Yang Yang
- Department of Biology, Baylor University, Waco, TX, United States
| | - Andrew M Cox
- Department of Biology, Baylor University, Waco, TX, United States
| | | | - Andy Le
- Department of Biology, Baylor University, Waco, TX, United States
| | - Dwayne D Simmons
- Department of Biology, Baylor University, Waco, TX, United States.,Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| |
Collapse
|
17
|
Prestin derived OHC surface area reduction underlies age-related rescaling of frequency place coding. Hear Res 2021; 423:108406. [PMID: 34933788 DOI: 10.1016/j.heares.2021.108406] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 12/29/2022]
Abstract
Outer hair cells (OHC) are key to the mammalian cochlear amplifier, powered by the lateral membrane protein Prestin. In this study, we explored age-related OHC changes and how the changes affected hearing in mouse. OHC nonlinear membrane capacitance measurements revealed that, starting upon completion of postnatal auditory development, a continuous reduction of total Prestin in OHCs accompanied by a significant reduction in their cell surface area. Prestin's density is unaffected by Prestin level drop over the whole age range tested, suggesting that the OHC size reduction is Prestin-dependent. Stereocilia length in aged OHCs remained unchanged but the first row stereocilia on the aged inner hair cells (IHCs) were elongated. Distortion product otoacoustic emission (DPOAE) group delays became longer with aging, suggesting an apical shift in vibration on basilar membrane. Acoustic lesion experiments revealed an apical shift in damage place in old cochleae accompanied by a shallower progression in synaptic damage over a wider frequency range that was indicative of a broader frequency filter. Overall, these findings suggest that in aging cochlea, a shift in frequency place coding could occur due to the changes in cochlear active and passive mechanics. This article is part of the Special Issue Outer hair cell Edited by Joseph Santos-Sacchi and Kumar Navaratnam.
Collapse
|
18
|
Vicencio-Jimenez S, Weinberg MM, Bucci-Mansilla G, Lauer AM. Olivocochlear Changes Associated With Aging Predominantly Affect the Medial Olivocochlear System. Front Neurosci 2021; 15:704805. [PMID: 34539335 PMCID: PMC8446540 DOI: 10.3389/fnins.2021.704805] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Age-related hearing loss (ARHL) is a public health problem that has been associated with negative health outcomes ranging from increased frailty to an elevated risk of developing dementia. Significant gaps remain in our knowledge of the underlying central neural mechanisms, especially those related to the efferent auditory pathways. Thus, the aim of this study was to quantify and compare age-related alterations in the cholinergic olivocochlear efferent auditory neurons. We assessed, in young-adult and aged CBA mice, the number of cholinergic olivocochlear neurons, auditory brainstem response (ABR) thresholds in silence and in presence of background noise, and the expression of excitatory and inhibitory proteins in the ventral nucleus of the trapezoid body (VNTB) and in the lateral superior olive (LSO). In association with aging, we found a significant decrease in the number of medial olivocochlear (MOC) cholinergic neurons together with changes in the ratio of excitatory and inhibitory proteins in the VNTB. Furthermore, in old mice we identified a correlation between the number of MOC neurons and ABR thresholds in the presence of background noise. In contrast, the alterations observed in the lateral olivocochlear (LOC) system were less significant. The decrease in the number of LOC cells associated with aging was 2.7-fold lower than in MOC and in the absence of changes in the expression of excitatory and inhibitory proteins in the LSO. These differences suggest that aging alters the medial and lateral olivocochlear efferent pathways in a differential manner and that the changes observed may account for some of the symptoms seen in ARHL.
Collapse
Affiliation(s)
- Sergio Vicencio-Jimenez
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Madison M Weinberg
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Giuliana Bucci-Mansilla
- Laboratorio de Neurosistemas, Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Amanda M Lauer
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
19
|
Abstract
OBJECTIVE As humans age, compressive nonlinearity-a hallmark of healthy cochlear function-changes. The nonlinear distortion-component of the distortion product otoacoustic emission (DPOAE) provides a noninvasive gauge of cochlear nonlinearity. Earlier published work has suggested that weakened nonlinearity begins in middle age; the current work extends this investigation into the eight decade of life using advanced DPOAE data collection and analysis methods as well as multiple metrics of nonlinearity, including a test of loudness scaling. DESIGN The 2f1-f2 DPOAE was recorded in 20 young adults, 25 middle-aged adults and 32 older adults from f2 = 0.78 to 9.4 kHz with primary tones (f2/f1 = 1.22) swept upward at a rate of 0.5 octave/sec. Only frequencies with audiometric thresholds ≤20 dB HL were included in the analysis and to the extent possible, ears were audiometrically matched to eliminate hearing threshold as a contributing factor to the observed age effects. Input/output functions were generated for the separated distortion-component of the DPOAE to probe compressive nonlinearity of the cochlea, and ipsilateral suppression of the DPOAE was conducted to probe two-tone suppression. To investigate the perceptual effects of weakening nonlinearity on loudness perception, the same subjects performed categorical loudness scaling. Age effects on both DPOAE and loudness scaling variables were assessed, and correlations were conducted between key OAE and perceptual metrics. RESULTS Age × Frequency ANOVAs revealed that the compression knee of the DPOAE I/O function occurred at higher stimulus levels in both groups of older adults compared to young adults, suggesting an expanded linear range with aging; also, the compressive slope (growth beyond the knee point) was steeper in older-adults compared to young adults. These results were most notable at high frequencies. ANOVAs including age and auditory threshold as factors confirmed that the age effect observed was independent of threshold. Additionally, in smaller subsets of subjects with audiometrically matched data, these same trends persisted, further ruling out hearing threshold as an influential factor. The growth of DPOAE ipsilateral suppression was shallower near 4 kHz in middle-aged and older adults compared to young adults and elevated suppression thresholds were observed. Results of categorical loudness scaling showed steeper growth of loudness for older adults and, at fixed sensation levels (dB SL), the older-adult group rated tones as louder than did their young-adult counterparts, suggesting abnormal loudness growth and perception. Several correlations between the compression knee of the DPOAE I/O function and key metrics of loudness scaling were significant and accounted for up to one-third of the variance. CONCLUSIONS Results indicate that the aging cochlea begins to show weakened nonlinearity in middle age and it progressively weakens further into senescence. The perceptual impact of weakened nonlinearity during aging is manifested as abnormal loudness judgments; that is, in older-adult ears, a tone considered comfortable or medium in young-adult ears can be considered loud. The biophysical origin of this weakened nonlinearity is not known. It is hypothesized to reflect aging-related damage to, or loss of, outer hair cells and their stereocilia. More work is warranted to better define the perceptual impact of a linearized cochlear response in older adults and to consider how this deficit might impact the fitting of hearing aids and other intervention strategies.
Collapse
|
20
|
Mohri H, Ninoyu Y, Sakaguchi H, Hirano S, Saito N, Ueyama T. Nox3-Derived Superoxide in Cochleae Induces Sensorineural Hearing Loss. J Neurosci 2021; 41:4716-4731. [PMID: 33849947 PMCID: PMC8260246 DOI: 10.1523/jneurosci.2672-20.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 01/02/2023] Open
Abstract
Reactive oxygen species (ROS) produced by NADPH oxidases (Nox) contribute to the development of different types of sensorineural hearing loss (SNHL), a common impairment in humans with no established treatment. Although the essential role of Nox3 in otoconia biosynthesis and its possible involvement in hearing have been reported in rodents, immunohistological methods targeted at detecting Nox3 expression in inner ear cells reveal ambiguous results. Therefore, the mechanism underlying Nox3-dependent SNHL remains unclear and warrants further investigation. We generated Nox3-Cre knock-in mice, in which Nox3 was replaced with Cre recombinase (Cre). Using Nox3-Cre;tdTomato mice of either sex, in which tdTomato is expressed under the control of the Nox3 promoter, we determined Nox3-expressing regions and cell types in the inner ear. Nox3-expressing cells in the cochlea included various types of supporting cells, outer hair cells, inner hair cells, and spiral ganglion neurons. Nox3 expression increased with cisplatin, age, and noise insults. Moreover, increased Nox3 expression in supporting cells and outer hair cells, especially at the basal turn of the cochlea, played essential roles in ROS-related SNHL. The extent of Nox3 involvement in SNHL follows the following order: cisplatin-induced hearing loss > age-related hearing loss > noise-induced hearing loss. Here, on the basis of Nox3-Cre;tdTomato, which can be used as a reporter system (Nox3-Cre+/-;tdTomato+/+ and Nox3-Cre+/+;tdTomato+/+), and Nox3-KO (Nox3-Cre+/+;tdTomato+/+) mice, we demonstrate that Nox3 inhibition in the cochlea is a promising strategy for ROS-related SNHL, such as cisplatin-induced HL, age-related HL, and noise-induced HL.SIGNIFICANCE STATEMENT We found Nox3-expressing regions and cell types in the inner ear, especially in the cochlea, using Nox3-Cre;tdTomato mice, a reporter system generated in this study. Nox3 expression increased with cisplatin, age, and noise insults in specific cell types in the cochlea and resulted in the loss (apoptosis) of outer hair cells. Thus, Nox3 might serve as a molecular target for the development of therapeutics for sensorineural hearing loss, particularly cisplatin-induced, age-related, and noise-induced hearing loss.
Collapse
Affiliation(s)
- Hiroaki Mohri
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yuzuru Ninoyu
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
| | - Hirofumi Sakaguchi
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Shigeru Hirano
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Naoaki Saito
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
| |
Collapse
|
21
|
Jeng JY, Harasztosi C, Carlton A, Corns L, Marchetta P, Johnson SL, Goodyear RJ, Legan KP, Rüttiger L, Richardson GP, Marcotti W. MET currents and otoacoustic emissions from mice with a detached tectorial membrane indicate the extracellular matrix regulates Ca 2+ near stereocilia. J Physiol 2021; 599:2015-2036. [PMID: 33559882 PMCID: PMC7612128 DOI: 10.1113/jp280905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/03/2021] [Indexed: 10/11/2023] Open
Abstract
KEY POINTS The aim was to determine whether detachment of the tectorial membrane (TM) from the organ of Corti in Tecta/Tectb-/- mice affects the biophysical properties of cochlear outer hair cells (OHCs). Tecta/Tectb-/- mice have highly elevated hearing thresholds, but OHCs mature normally. Mechanoelectrical transducer (MET) channel resting open probability (Po ) in mature OHC is ∼50% in endolymphatic [Ca2+ ], resulting in a large standing depolarizing MET current that would allow OHCs to act optimally as electromotile cochlear amplifiers. MET channel resting Po in vivo is also high in Tecta/Tectb-/- mice, indicating that the TM is unlikely to statically bias the hair bundles of OHCs. Distortion product otoacoustic emissions (DPOAEs), a readout of active, MET-dependent, non-linear cochlear amplification in OHCs, fail to exhibit long-lasting adaptation to repetitive stimulation in Tecta/Tectb-/- mice. We conclude that during prolonged, sound-induced stimulation of the cochlea the TM may determine the extracellular Ca2+ concentration near the OHC's MET channels. ABSTRACT The tectorial membrane (TM) is an acellular structure of the cochlea that is attached to the stereociliary bundles of the outer hair cells (OHCs), electromotile cells that amplify motion of the cochlear partition and sharpen its frequency selectivity. Although the TM is essential for hearing, its role is still not fully understood. In Tecta/Tectb-/- double knockout mice, in which the TM is not coupled to the OHC stereocilia, hearing sensitivity is considerably reduced compared with that of wild-type animals. In vivo, the OHC receptor potentials, assessed using cochlear microphonics, are symmetrical in both wild-type and Tecta/Tectb-/- mice, indicating that the TM does not bias the hair bundle resting position. The functional maturation of hair cells is also unaffected in Tecta/Tectb-/- mice, and the resting open probability of the mechanoelectrical transducer (MET) channel reaches values of ∼50% when the hair bundles of mature OHCs are bathed in an endolymphatic-like Ca2+ concentration (40 μM) in vitro. The resultant large MET current depolarizes OHCs to near -40 mV, a value that would allow optimal activation of the motor protein prestin and normal cochlear amplification. Although the set point of the OHC receptor potential transfer function in vivo may therefore be determined primarily by endolymphatic Ca2+ concentration, repetitive acoustic stimulation fails to produce adaptation of MET-dependent otoacoustic emissions in vivo in the Tecta/Tectb-/- mice. Therefore, the TM is likely to contribute to the regulation of Ca2+ levels around the stereocilia, and thus adaptation of the OHC MET channel during prolonged sound stimulation.
Collapse
Affiliation(s)
- Jing-Yi Jeng
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Csaba Harasztosi
- Department of Otolaryngology Head & Neck Surgery, THRC, University of Tübingen, 72076 Tübingen, Germany
| | - Adam Carlton
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Laura Corns
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Philine Marchetta
- Department of Otolaryngology Head & Neck Surgery, THRC, University of Tübingen, 72076 Tübingen, Germany
| | - Stuart L. Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | | | - Kevin P. Legan
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Lukas Rüttiger
- Department of Otolaryngology Head & Neck Surgery, THRC, University of Tübingen, 72076 Tübingen, Germany
| | - Guy P. Richardson
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
22
|
Lauer AM, Jimenez SV, Delano PH. Olivocochlear efferent effects on perception and behavior. Hear Res 2021; 419:108207. [PMID: 33674070 DOI: 10.1016/j.heares.2021.108207] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/18/2021] [Accepted: 02/12/2021] [Indexed: 01/13/2023]
Abstract
The role of the mammalian auditory olivocochlear efferent system in hearing has long been the subject of debate. Its ability to protect against damaging noise exposure is clear, but whether or not this is the primary function of a system that evolved in the absence of industrial noise remains controversial. Here we review the behavioral consequences of olivocochlear activation and diminished olivocochlear function. Attempts to demonstrate a role for hearing in noise have yielded conflicting results in both animal and human studies. A role in selective attention to sounds in the presence of distractors, or attention to visual stimuli in the presence of competing auditory stimuli, has been established in animal models, but again behavioral studies in humans remain equivocal. Auditory processing deficits occur in models of congenital olivocochlear dysfunction, but these deficits likely reflect abnormal central auditory development rather than direct effects of olivocochlear feedback. Additional proposed roles in age-related hearing loss, tinnitus, hyperacusis, and binaural or spatial hearing, are intriguing, but require additional study. These behavioral studies almost exclusively focus on medial olivocochlear effects, and many relied on lesioning techniques that can have unspecific effects. The consequences of lateral olivocochlear and of corticofugal pathway activation for perception remain unknown. As new tools for targeted manipulation of olivocochlear neurons emerge, there is potential for a transformation of our understanding of the role of the olivocochlear system in behavior across species.
Collapse
Affiliation(s)
- Amanda M Lauer
- David M. Rubenstein Center for Hearing Research and Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, 515 Traylor Building, 720 Rutland Ave, Baltimore, MD 21205, United States; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, United States.
| | - Sergio Vicencio Jimenez
- David M. Rubenstein Center for Hearing Research and Department of Otolaryngology-HNS, Johns Hopkins University School of Medicine, 515 Traylor Building, 720 Rutland Ave, Baltimore, MD 21205, United States; Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paul H Delano
- Departments of Otolaryngology and Neuroscience, Faculty of Medicine, University of Chile, Santiago, Chile; Biomedical Neuroscience Institute, BNI, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Advanced Center for Electrical and Electronic Engineer, AC3E, Universidad Técnica Federico Santa María, Valparaíso, Chile
| |
Collapse
|
23
|
Carlton AJ, Halford J, Underhill A, Jeng J, Avenarius MR, Gilbert ML, Ceriani F, Ebisine K, Brown SDM, Bowl MR, Barr‐Gillespie PG, Marcotti W. Loss of Baiap2l2 destabilizes the transducing stereocilia of cochlear hair cells and leads to deafness. J Physiol 2021; 599:1173-1198. [PMID: 33151556 PMCID: PMC7898316 DOI: 10.1113/jp280670] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Mechanoelectrical transduction at auditory hair cells requires highly specialized stereociliary bundles that project from their apical surface, forming a characteristic graded 'staircase' structure. The morphogenesis and maintenance of these stereociliary bundles is a tightly regulated process requiring the involvement of several actin-binding proteins, many of which are still unidentified. We identify a new stereociliary protein, the I-BAR protein BAIAP2L2, which localizes to the tips of the shorter transducing stereocilia in both inner and outer hair cells (IHCs and OHCs). We find that Baiap2l2 deficient mice lose their second and third rows of stereocilia, their mechanoelectrical transducer current, and develop progressive hearing loss, becoming deaf by 8 months of age. We demonstrate that BAIAP2L2 localization to stereocilia tips is dependent on the motor protein MYO15A and its cargo EPS8. We propose that BAIAP2L2 is a new key protein required for the maintenance of the transducing stereocilia in mature cochlear hair cells. ABSTRACT The transduction of sound waves into electrical signals depends upon mechanosensitive stereociliary bundles that project from the apical surface of hair cells within the cochlea. The height and width of these actin-based stereocilia is tightly regulated throughout life to establish and maintain their characteristic staircase-like structure, which is essential for normal mechanoelectrical transduction. Here, we show that BAIAP2L2, a member of the I-BAR protein family, is a newly identified hair bundle protein that is localized to the tips of the shorter rows of transducing stereocilia in mouse cochlear hair cells. BAIAP2L2 was detected by immunohistochemistry from postnatal day 2.5 (P2.5) throughout adulthood. In Baiap2l2 deficient mice, outer hair cells (OHCs), but not inner hair cells (IHCs), began to lose their third row of stereocilia and showed a reduction in the size of the mechanoelectrical transducer current from just after P9. Over the following post-hearing weeks, the ordered staircase structure of the bundle progressively deteriorates, such that, by 8 months of age, both OHCs and IHCs of Baiap2l2 deficient mice have lost most of the second and third rows of stereocilia and become deaf. We also found that BAIAP2L2 interacts with other key stereociliary proteins involved in normal hair bundle morphogenesis, such as CDC42, RAC1, EPS8 and ESPNL. Furthermore, we show that BAIAP2L2 localization to the stereocilia tips depends on the motor protein MYO15A and its cargo EPS8. We propose that BAIAP2L2 is key to maintenance of the normal actin structure of the transducing stereocilia in mature mouse cochlear hair cells.
Collapse
Affiliation(s)
- Adam J. Carlton
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Julia Halford
- Oregon Hearing Research Center & Vollum InstituteOregon Health & Science UniversityPortlandORUSA
| | - Anna Underhill
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Jing‐Yi Jeng
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Matthew R. Avenarius
- Oregon Hearing Research Center & Vollum InstituteOregon Health & Science UniversityPortlandORUSA
- Present address: Department of Pathology Wexner Medical CenterThe Ohio State UniversityColumbusOHUSA
| | - Merle L. Gilbert
- Oregon Hearing Research Center & Vollum InstituteOregon Health & Science UniversityPortlandORUSA
- Present address: US Army Medical Department Activity‐KoreaCamp HumphreysRepublic of Korea
| | - Federico Ceriani
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | | | - Steve D. M. Brown
- Mammalian Genetics UnitMRC Harwell InstituteHarwell CampusOxfordshireUK
| | - Michael R. Bowl
- Mammalian Genetics UnitMRC Harwell InstituteHarwell CampusOxfordshireUK
- Present address: UCL Ear InstituteUniversity College LondonLondonUK
| | - Peter G. Barr‐Gillespie
- Oregon Hearing Research Center & Vollum InstituteOregon Health & Science UniversityPortlandORUSA
- Oregon Hearing Research CenterOregon Health & Science UniversityPortlandORUSA
| | - Walter Marcotti
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| |
Collapse
|
24
|
Jeng JY, Carlton A, Johnson SL, Brown SDM, Holley MC, Bowl MR, Marcotti W. Biophysical and morphological changes in inner hair cells and their efferent innervation in the ageing mouse cochlea. J Physiol 2021; 599:269-287. [PMID: 33179774 PMCID: PMC7612127 DOI: 10.1113/jp280256] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/01/2020] [Indexed: 09/18/2023] Open
Abstract
KEY POINTS Age-related hearing loss is a progressive hearing loss involving environmental and genetic factors, leading to a decrease in hearing sensitivity, threshold and speech discrimination. We compared age-related changes in inner hair cells (IHCs) between four mouse strains with different levels of progressive hearing loss. The surface area of apical coil IHCs (9-12 kHz cochlear region) decreases by about 30-40% with age. The number of BK channels progressively decreases with age in the IHCs from most mouse strains, but the basolateral membrane current profile remains unchanged. The mechanoelectrical transducer current is smaller in mice harbouring the hypomorphic Cdh23 allele Cdh23ahl (C57BL/6J; C57BL/6NTac), but not in Cdh23-repaired mice (C57BL/6NTacCdh23+ ), indicating that it could contribute to the different progression of hearing loss among mouse strains. The degree of efferent rewiring onto aged IHCs, most likely coming from the lateral olivocochlea fibres, was correlated with hearing loss in the different mouse strains. ABSTRACT Inner hair cells (IHCs) are the primary sensory receptors of the mammalian cochlea, transducing acoustic information into electrical signals that are relayed to the afferent neurons. Functional changes in IHCs are a potential cause of age-related hearing loss. Here, we have investigated the functional characteristics of IHCs from early-onset hearing loss mice harbouring the allele Cdh23ahl (C57BL/6J and C57BL/6NTac), from late-onset hearing loss mice (C3H/HeJ), and from mice corrected for the Cdh23ahl mutation (C57BL/6NTacCdh23+ ) with an intermediate hearing phenotype. There was no significant loss of IHCs in the 9-12 kHz cochlear region up to at least 15 months of age, but their surface area decreased progressively by 30-40% starting from ∼6 months of age. Although the size of the BK current decreased with age, IHCs retained a normal KCNQ4 current and resting membrane potential. These basolateral membrane changes were most severe for C57BL/6J and C57BL/6NTac, less so for C57BL/6NTacCdh23+ and minimal or absent in C3H/HeJ mice. We also found that lateral olivocochlear (LOC) efferent fibres re-form functional axon-somatic connections with aged IHCs, but this was seen only sporadically in C3H/HeJ mice. The efferent post-synaptic SK2 channels appear prior to the establishment of the efferent contacts, suggesting that IHCs may play a direct role in re-establishing the LOC-IHC synapses. Finally, we showed that the size of the mechanoelectrical transducer (MET) current from IHCs decreased significantly with age in mice harbouring the Cdh23ahl allele but not in C57BL/6NTacCdh23+ mice, indicating that the MET apparatus directly contributes to the progression of age-related hearing loss.
Collapse
Affiliation(s)
- Jing-Yi Jeng
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Adam Carlton
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Stuart L. Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Steve D. M. Brown
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Matthew C. Holley
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Michael R. Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, OX11 0RD, UK
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
25
|
Age-related hearing loss pertaining to potassium ion channels in the cochlea and auditory pathway. Pflugers Arch 2020; 473:823-840. [PMID: 33336302 PMCID: PMC8076138 DOI: 10.1007/s00424-020-02496-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/27/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Age-related hearing loss (ARHL) is the most prevalent sensory deficit in the elderly and constitutes the third highest risk factor for dementia. Lifetime noise exposure, genetic predispositions for degeneration, and metabolic stress are assumed to be the major causes of ARHL. Both noise-induced and hereditary progressive hearing have been linked to decreased cell surface expression and impaired conductance of the potassium ion channel KV7.4 (KCNQ4) in outer hair cells, inspiring future therapies to maintain or prevent the decline of potassium ion channel surface expression to reduce ARHL. In concert with KV7.4 in outer hair cells, KV7.1 (KCNQ1) in the stria vascularis, calcium-activated potassium channels BK (KCNMA1) and SK2 (KCNN2) in hair cells and efferent fiber synapses, and KV3.1 (KCNC1) in the spiral ganglia and ascending auditory circuits share an upregulated expression or subcellular targeting during final differentiation at hearing onset. They also share a distinctive fragility for noise exposure and age-dependent shortfalls in energy supply required for sustained surface expression. Here, we review and discuss the possible contribution of select potassium ion channels in the cochlea and auditory pathway to ARHL. We postulate genes, proteins, or modulators that contribute to sustained ion currents or proper surface expressions of potassium channels under challenging conditions as key for future therapies of ARHL.
Collapse
|
26
|
Jeng JY, Ceriani F, Olt J, Brown SDM, Holley MC, Bowl MR, Johnson SL, Marcotti W. Pathophysiological changes in inner hair cell ribbon synapses in the ageing mammalian cochlea. J Physiol 2020; 598:4339-4355. [PMID: 32710572 DOI: 10.1113/jp280018] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Age-related hearing loss (ARHL) is associated with the loss of inner hair cell (IHC) ribbon synapses, lower hearing sensitivity and decreased ability to understand speech, especially in a noisy environment. Little is known about the age-related physiological and morphological changes that occur at ribbon synapses. We show that the differing degrees of ARHL in four selected mouse stains is correlated with the loss of ribbon synapses, being most severe for the strains C57BL/6NTac and C57BL/6J, less so for C57BL/6NTacCdh23+ -Repaired and lowest for C3H/HeJ. Despite the loss of ribbon synapses with age, the volume of the remaining ribbons increased and the size and kinetics of Ca2+ -dependent exocytosis in IHCs was unaffected, indicating the presence of a previously unknown degree of functional compensation at ribbon synapses. Although the age-related morphological changes at IHC ribbon synapses contribute to the different progression of ARHL, without the observed functional compensation hearing loss could be greater. ABSTRACT Mammalian cochlear inner hair cells (IHCs) are specialized sensory receptors able to provide dynamic coding of sound signals. This ability is largely conferred by their ribbon synapses, which tether a large number of vesicles at the IHC's presynaptic active zones, allowing high rates of sustained synaptic transmission onto the afferent fibres. How the physiological and morphological properties of ribbon synapses change with age remains largely unknown. Here, we have investigated the biophysical and morphological properties of IHC ribbon synapses in the ageing cochlea (9-12 kHz region) of four mouse strains commonly used in hearing research: early-onset progressive hearing loss (C57BL/6J and C57BL/6NTac) and 'good hearing' strains (C57BL/6NTacCdh23+ and C3H/HeJ). We found that with age, both modiolar and pillar sides of the IHC exhibited a loss of ribbons, but there was an increased volume of those that remained. These morphological changes, which only occurred after 6 months of age, were correlated with the level of hearing loss in the different mouse strains, being most severe for C57BL/6NTac and C57BL/6J, less so for C57BL/6NTacCdh23+ and absent for C3H/HeJ strains. Despite the age-related reduction in ribbon number in three of the four strains, the size and kinetics of Ca2+ -dependent exocytosis, as well as the replenishment of synaptic vesicles, in IHCs was not affected. The degree of vesicle release at the fewer, but larger, individual remaining ribbon synapses colocalized with the post-synaptic afferent terminals is likely to increase, indicating the presence of a previously unknown degree of functional compensation in the ageing mouse cochlea.
Collapse
Affiliation(s)
- Jing-Yi Jeng
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.,Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Federico Ceriani
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.,Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jennifer Olt
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Steve D M Brown
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, UK
| | - Matthew C Holley
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Michael R Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, UK
| | - Stuart L Johnson
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.,Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Walter Marcotti
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.,Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|