1
|
Chokr SM, Bui-Tran A, Cramer KS. Loss of C1q alters the auditory brainstem response. Front Cell Neurosci 2024; 18:1464670. [PMID: 39416682 PMCID: PMC11480778 DOI: 10.3389/fncel.2024.1464670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Neural circuits in the auditory brainstem compute interaural time and intensity differences used to determine the locations of sound sources. These circuits display features that are specialized for these functions. The projection from the ventral cochlear nucleus (VCN) to the medial nucleus of the trapezoid (MNTB) body travels along highly myelinated fibers and terminates in the calyx of Held. This monoinnervating synapse emerges during development as multiple inputs are eliminated. We previously demonstrated that elimination of microglia with a colony stimulating factor-1 inhibitor results in impaired synaptic pruning so that multiple calyceal terminals reside on principal cells of MNTB. This inhibitor also resulted in impaired auditory brainstem responses (ABRs), with elevated thresholds and increased peak latencies. Loss of the microglial fractalkine receptor, CX3CR1, decreased peak latencies in the ABR. The mechanisms underlying these effects are not known. One prominent microglial signaling pathway involved in synaptic pruning and plasticity during development and aging is the C1q-initiated compliment cascade. Here we investigated the classical complement pathway initiator, C1q, in auditory brainstem maturation. We found that C1q expression is detected in the MNTB by the first postnatal week. C1q levels increased with age and were detected within microglia and surrounding the soma of MNTB principal neurons. Loss of C1q did not affect microglia-dependent calyceal pruning. Excitatory and inhibitory synaptic markers in the MNTB and LSO were not altered with C1q deletion. ABRs showed that C1q KO mice had normal hearing thresholds but shortened peak latencies. Altogether this study uncovers the developmental time frame of C1q expression in the sound localization pathway and shows a subtle functional consequence of C1q knockdown.
Collapse
Affiliation(s)
| | | | - Karina S. Cramer
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, United States
| |
Collapse
|
2
|
Keine C, Radulovic T, Al-Yaari M, Young SM. Confocal Imaging and 3D Reconstruction to Determine How Genetic Perturbations Impact Presynaptic Morphology at the Mouse Calyx of Held. Bio Protoc 2023; 13:e4799. [PMID: 37849785 PMCID: PMC10577601 DOI: 10.21769/bioprotoc.4799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 10/19/2023] Open
Abstract
Neurons communicate via synapses-specialized structures that consist of a presynaptic terminal of one neuron and a postsynaptic terminal of another. As knowledge is emerging that mutations in molecules that regulate synaptic function underpin many neurological disorders, it is crucial to elucidate the molecular mechanisms regulating synaptic function to understand synaptic strength, plasticity, modulation, and pathology, which ultimately impact neuronal circuit output and behavior. The presynaptic calyx of Held is a large glutamatergic presynaptic terminal in the auditory brainstem, which due to its accessibility and the possibility to selectively perform molecular perturbations on it, is an ideal model to study the role of presynaptic proteins in regulating synaptic function. In this protocol, we describe the use of confocal imaging and three-dimensional reconstruction of the calyx of Held to assess alterations in gross morphology following molecular perturbation. Using viral-vector delivery to perform molecular perturbations at distinct developmental time points, we provide a fast and cost-effective method to investigate how presynaptic proteins regulate gross morphology such as surface area and synapse volume throughout the lifetime of a neuronal circuit. Key features Confocal imaging and 3D reconstruction of presynaptic terminals. Used with a virus-mediated expression of mEGFP to achieve efficient, cell-type specific labeling of the presynaptic compartment. Protocol was developed with the calyx of Held but is suitable for pre- and postsynaptic compartments of various neurons across multiple mammalian and invertebrate species.
Collapse
Affiliation(s)
- Christian Keine
- Department of Anatomy and Cell Biology, University of
Iowa, Iowa City, IA, USA
- Department of Human Medicine, University of
Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, Oldenburg,
Germany
| | - Tamara Radulovic
- Department of Anatomy and Cell Biology, University of
Iowa, Iowa City, IA, USA
- Department of Human Medicine, University of
Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, Oldenburg,
Germany
| | - Mohammed Al-Yaari
- Department of Anatomy and Cell Biology, University of
Iowa, Iowa City, IA, USA
| | - Samuel M. Young
- Department of Anatomy and Cell Biology, University of
Iowa, Iowa City, IA, USA
- Department of Otolaryngology, Iowa Neuroscience
Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
3
|
Chequer Charan D, Hua Y, Wang H, Huang W, Wang F, Elgoyhen AB, Boergens KM, Di Guilmi MN. Volume electron microscopy reveals age-related circuit remodeling in the auditory brainstem. Front Cell Neurosci 2022; 16:1070438. [PMID: 36589288 PMCID: PMC9799098 DOI: 10.3389/fncel.2022.1070438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
The medial nucleus of the trapezoid body (MNTB) is an integral component of the auditory brainstem circuitry involved in sound localization. The giant presynaptic nerve terminal with multiple active zones, the calyx of Held (CH), is a hallmark of this nucleus, which mediates fast and synchronized glutamatergic synaptic transmission. To delineate how these synaptic structures adapt to reduced auditory afferents due to aging, we acquired and reconstructed circuitry-level volumes of mouse MNTB at different ages (3 weeks, 6, 18, and 24 months) using serial block-face electron microscopy. We used C57BL/6J, the most widely inbred mouse strain used for transgenic lines, which displays a type of age-related hearing loss. We found that MNTB neurons reduce in density with age. Surprisingly we observed an average of approximately 10% of poly-innervated MNTB neurons along the mouse lifespan, with prevalence in the low frequency region. Moreover, a tonotopy-dependent heterogeneity in CH morphology was observed in young but not in older mice. In conclusion, our data support the notion that age-related hearing impairments can be in part a direct consequence of several structural alterations and circuit remodeling in the brainstem.
Collapse
Affiliation(s)
- Daniela Chequer Charan
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, INGEBI-CONICET, Buenos Aires, Argentina
| | - Yunfeng Hua
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Wang
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqing Huang
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangfang Wang
- Shanghai Institute of Precision Medicine, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, INGEBI-CONICET, Buenos Aires, Argentina
| | - Kevin M. Boergens
- Department of Physics, The University of Illinois at Chicago, Chicago, IL, United States,*Correspondence: Kevin M. Boergens Mariano N. Di Guilmi
| | - Mariano N. Di Guilmi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, INGEBI-CONICET, Buenos Aires, Argentina,*Correspondence: Kevin M. Boergens Mariano N. Di Guilmi
| |
Collapse
|
4
|
Chokr SM, Milinkeviciute G, Jimenez GA, Abubakr H, Cramer KS. Long-term microglia depletion impairs synapse elimination and auditory brainstem function. Sci Rep 2022; 12:18521. [PMID: 36323869 PMCID: PMC9630367 DOI: 10.1038/s41598-022-23250-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Specialized sound localization circuit development requires synapse strengthening, refinement, and pruning. Many of these functions are carried out by microglia, immune cells that aid in regulating neurogenesis, synaptogenesis, apoptosis, and synaptic removal. We previously showed that postnatal treatment with BLZ945 (BLZ), an inhibitor of colony stimulating factor 1 receptor (CSF1R), eliminates microglia in the brainstem and disables calyceal pruning and maturation of astrocytes in the medial nucleus of the trapezoid body (MNTB). BLZ treatment results in elevated hearing thresholds and delayed signal propagation as measured by auditory brainstem responses (ABR). However, when microglia repopulate the brain following the cessation of BLZ, most of the deficits are repaired. It is unknown whether this recovery is achievable without the return of microglia. Here, we induced sustained microglial elimination with a two-drug approach using BLZ and PLX5622 (PLX). We found that BLZ/PLX treated mice had impaired calyceal pruning, diminished astrocytic GFAP in the lateral, low frequency, region of MNTB, and elevated glycine transporter 2 (GLYT2) levels. BLZ/PLX treated mice had elevated hearing thresholds, diminished peak amplitudes, and altered latencies and inter-peak latencies. These findings suggest that microglia are required to repopulate the brain in order to rectify deficits from their ablation.
Collapse
Affiliation(s)
- Sima M Chokr
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697, USA
| | - Giedre Milinkeviciute
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697, USA
| | - Gisselle A Jimenez
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697, USA
| | - Hakeem Abubakr
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697, USA
| | - Karina S Cramer
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
5
|
Sierksma MC, Borst JGG. Using ephaptic coupling to estimate the synaptic cleft resistivity of the calyx of Held synapse. PLoS Comput Biol 2021; 17:e1009527. [PMID: 34699519 PMCID: PMC8570497 DOI: 10.1371/journal.pcbi.1009527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/05/2021] [Accepted: 10/05/2021] [Indexed: 11/19/2022] Open
Abstract
At synapses, the pre- and postsynaptic cells get so close that currents entering the cleft do not flow exclusively along its conductance, gcl. A prominent example is found in the calyx of Held synapse in the medial nucleus of the trapezoid body (MNTB), where the presynaptic action potential can be recorded in the postsynaptic cell in the form of a prespike. Here, we developed a theoretical framework for ephaptic coupling via the synaptic cleft, and we tested its predictions using the MNTB prespike recorded in voltage-clamp. The shape of the prespike is predicted to resemble either the first or the second derivative of the inverted presynaptic action potential if cleft currents dissipate either mostly capacitively or resistively, respectively. We found that the resistive dissipation scenario provided a better description of the prespike shape. Its size is predicted to scale with the fourth power of the radius of the synapse, explaining why intracellularly recorded prespikes are uncommon in the central nervous system. We show that presynaptic calcium currents also contribute to the prespike shape. This calcium prespike resembled the first derivative of the inverted calcium current, again as predicted by the resistive dissipation scenario. Using this calcium prespike, we obtained an estimate for gcl of ~1 μS. We demonstrate that, for a circular synapse geometry, such as in conventional boutons or the immature calyx of Held, gcl is scale-invariant and only defined by extracellular resistivity, which was ~75 Ωcm, and by cleft height. During development the calyx of Held develops fenestrations. We show that these fenestrations effectively minimize the cleft potentials generated by the adult action potential, which might otherwise interfere with calcium channel opening. We thus provide a quantitative account of the dissipation of currents by the synaptic cleft, which can be readily extrapolated to conventional, bouton-like synapses.
Collapse
Affiliation(s)
- Martijn C. Sierksma
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - J. Gerard G. Borst
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
6
|
Gurma M, Yang YM, Wang LY. Developmental plasticity of NMDA receptors at the calyx of Held synapse. Neuropharmacology 2021; 196:108697. [PMID: 34242682 DOI: 10.1016/j.neuropharm.2021.108697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 11/25/2022]
Abstract
Excitatory synaptic transmission is largely mediated by glutamate receptors in central synapses, such as the calyx of Held synapse in the auditory brainstem. This synapse is best known for undergoing extensive morphological and functional changes throughout early development and thereby has served as a prominent model system to study presynaptic mechanisms of neurotransmitter release. However, the pivotal roles of N-methyl-d-aspartate receptors (NMDARs) in gating acute forms of activity-dependent, persistent plasticity in vitro and chronic developmental remodeling in vivo are hardly noted. This article will provide a retrospective review of key experimental evidence to conceptualize the impact of a transient abundance of NMDARs during the early postnatal stage on the functionality of fast-spiking central synapses while raising a series of outstanding questions that are of general significance for understanding the developing brain in health and diseases. This article is part of the special Issue on "Glutamate Receptors - NMDA receptors".
Collapse
Affiliation(s)
- Maria Gurma
- Program in Neurosciences & Mental Health, SickKids Research Institute, 555 University Ave, Toronto, Ontario M5G 1X8, Canada; Department of Physiology, University of Toronto, 1 Kings Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota, Duluth MN, 55812, USA
| | - Lu-Yang Wang
- Program in Neurosciences & Mental Health, SickKids Research Institute, 555 University Ave, Toronto, Ontario M5G 1X8, Canada; Department of Physiology, University of Toronto, 1 Kings Circle, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
7
|
Distinct functional developments of surviving and eliminated presynaptic terminals. Proc Natl Acad Sci U S A 2021; 118:2022423118. [PMID: 33688051 DOI: 10.1073/pnas.2022423118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
For neuronal circuits in the brain to mature, necessary synapses must be maintained and redundant synapses eliminated through experience-dependent mechanisms. However, the functional differentiation of these synapse types during the refinement process remains elusive. Here, we addressed this issue by distinct labeling and direct recordings of presynaptic terminals fated for survival and for elimination in the somatosensory thalamus. At surviving terminals, the number of total releasable vesicles was first enlarged, and then calcium channels and fast-releasing synaptic vesicles were tightly coupled in an experience-dependent manner. By contrast, transmitter release mechanisms did not mature at terminals fated for elimination, irrespective of sensory experience. Nonetheless, terminals fated for survival and for elimination both exhibited developmental shortening of action potential waveforms that was experience independent. Thus, we dissected experience-dependent and -independent developmental maturation processes of surviving and eliminated presynaptic terminals during neuronal circuit refinement.
Collapse
|
8
|
Tawfik B, Wang L. Synaptic competition: ‘to be or not to be’ the calyx of Held? J Physiol 2020; 598:4425-4426. [DOI: 10.1113/jp280560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Bassam Tawfik
- Program in Neurosciences and Mental Health SickKids Research Institute Toronto Ontario M5G 1X8 Canada
- Department of Physiology University of Toronto Toronto Ontario M5S 1A8 Canada
| | - Lu‐Yang Wang
- Program in Neurosciences and Mental Health SickKids Research Institute Toronto Ontario M5G 1X8 Canada
- Department of Physiology University of Toronto Toronto Ontario M5S 1A8 Canada
| |
Collapse
|