1
|
Satoh K, Ohno Y, Nagase H, Kashimata M, Adachi K. Age-related alteration of the involvement of CD36 for salivary secretion from the parotid gland in mice. J Physiol Sci 2024; 74:38. [PMID: 39075341 PMCID: PMC11285320 DOI: 10.1186/s12576-024-00931-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024]
Abstract
This in vivo mouse model study was conducted to investigate the temporal alteration of the function of CD36 in salivary secretion. CD36 was highly expressed in the parotid gland of BALB/c mice. No significant variations were shown in the CD36 levels in the 8-, 48-, and 72-week-old animals. However, pilocarpine-induced salivary secretion was reduced in an age-dependent manner, showing a significantly low level at the age of 72 weeks. Pilocarpine-induced salivary secretion was significantly reduced by pretreatment with a CD36 inhibitor at 8 and 48 weeks, but not at 72 weeks. In senescence-accelerated mice (SAM), the pilocarpine-induced salivary secretion was significantly reduced at the age of 56 weeks, and a significantly lower amount of CD36 was demonstrated in the parotid gland, compared with the control. These results suggest that the involvement of parotid CD36 in mouse salivary secretion is altered with age.
Collapse
Affiliation(s)
- Keitaro Satoh
- Division of Pharmacology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan.
- Division of Pharmacology, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan.
| | - Yuta Ohno
- Division of Pharmacology, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Haruna Nagase
- Division of Pharmacology, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Masanori Kashimata
- Division of Pharmacology, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Kazunori Adachi
- Division of Pharmacology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama, 350-0283, Japan
| |
Collapse
|
2
|
Ohshima H, Mishima K. Oral biosciences: The annual review 2023. J Oral Biosci 2024; 66:1-4. [PMID: 38309695 DOI: 10.1016/j.job.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND The Journal of Oral Biosciences is dedicated to advancing and disseminating fundamental knowledge with regard to every aspect of oral biosciences. This review features review articles in the fields of "bone regeneration," "periodontitis," "periodontal diseases," "salivary glands," "sleep bruxism," and "Sjögren's syndrome." HIGHLIGHT This review focuses on human demineralized dentin and cementum matrices for bone regeneration, oxidized low-density lipoprotein in periodontal disease and systemic conditions, the relationship between inflammatory mediators in migraine and periodontitis, phosphoinositide signaling molecules in the salivary glands, and the pathophysiologies of sleep bruxism and Sjögren's syndrome. CONCLUSION The review articles featured in the Journal of Oral Biosciences have broadened the knowledge of readers regarding various aspects of oral biosciences. The current editorial review discusses the findings and significance of these review articles.
Collapse
Affiliation(s)
- Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan.
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| |
Collapse
|
3
|
Zou Y, Xiao W, Liu D, Li X, Li L, Peng L, Xiong Y, Gan H, Ren X. Human umbilical cord mesenchymal stem cells improve disease characterization of Sjogren's syndrome in NOD mice through regulation of gut microbiota and Treg/Th17 cellular immunity. Immun Inflamm Dis 2024; 12:e1139. [PMID: 38270310 PMCID: PMC10777879 DOI: 10.1002/iid3.1139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/28/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND For the unclear pathogenesis of Sjogren's syndrome (SS), further exploration is necessary. Mesenchymal stem cells (MSCs) and derived exosomes (MSCs-exo) have exhibited promising results in treating SS. OBJECT This study aimed to investigate the effect and mechanism of human umbilical cord MSCs (UC-MSCs) on SS. METHODS Nonobese Diabetic (NOD) mouse splenic T cells were co-cultured with UC-MSCs and UC-MSCs-exo, and interferon-gamma (IFN-γ), interleukin (IL)-6, IL-10, prostaglandin E2 (PGE2), and transforming growth factor-β1 (TGF-β1) levels in the supernatant were assessed by quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Co-cultured T cells were injected into NOD mice via the tail vein. The inflammatory cell infiltration in the intestine and the submandibular gland was characterized by hematoxylin-eosin staining. Treg/Th17 homeostasis within the spleen was determined by flow cytometry. Gut microbiota was detected by 16S rRNA sequencing, and the relationship between differential microbiota and Treg/Th17 cytokines was analyzed by the Pearson correlation coefficient. RESULTS UC-MSCs, UC-MSCs-exo, and NOD mouse splenic T cells were successfully cultured and identified. After T cells were co-cultured with UC-MSCs and UC-MSCs-exo, both IFN-γ and IL-6 were decreased while IL-10, PGE2, and TGF-β1 were increased in transcriptional and translational levels. UC-MSCs and UC-MSCs-exo partially restored salivary secretion function, reduced Ro/SSA antibody and α-Fodrin immunoglobulin A levels, reduced inflammatory cell infiltration in the intestine and submandibular gland, raised proportion of Treg cells, decreased IFN-γ, IL-6, IL-2, IL-17, lipopolysaccharide, and tumor necrosis factor-alpha levels, and raised IL-10, Foxp3, and TGF-β1 levels by affecting co-cultured T cells. The intervention of UC-MSCs and UC-MSCs-exo improved intestinal homeostasis in NOD mice by increasing microbiota diversity and richness. Additionally, differential microbiota was significantly associated with Treg/Th17 cytokine levels. CONCLUSION Human UC-MSCs and UC-MSCs-exo improved disease characterization of SS in NOD mice through regulation of gut microbiota and Treg/Th17 cellular immunity.
Collapse
Affiliation(s)
- Yao Zou
- Jinan UniversityGuangzhouGuangdongChina
- Department of Rheumatology and Immunology, Changde Hospital, Xiangya School of MedicineCentral South UniversityChangdeHunanChina
| | - Wei Xiao
- Department of Rheumatology and Immunology, Changde Hospital, Xiangya School of MedicineCentral South UniversityChangdeHunanChina
| | - Dongzhou Liu
- Department of Rheumatology and ImmunologyShenzhen People's HospitalShenzhenGuangdongChina
| | - Xianyao Li
- Department of Rheumatology and Immunology, Changde Hospital, Xiangya School of MedicineCentral South UniversityChangdeHunanChina
| | - Lihua Li
- Department of Rheumatology and Immunology, Changde Hospital, Xiangya School of MedicineCentral South UniversityChangdeHunanChina
| | - Lijuan Peng
- Department of Rheumatology and Immunology, Changde Hospital, Xiangya School of MedicineCentral South UniversityChangdeHunanChina
| | - Ying Xiong
- Department of Rheumatology and Immunology, Changde Hospital, Xiangya School of MedicineCentral South UniversityChangdeHunanChina
| | - Haina Gan
- Department of Rheumatology and Immunology, Changde Hospital, Xiangya School of MedicineCentral South UniversityChangdeHunanChina
| | - Xiang Ren
- Department of Rheumatology and Immunology, Changde Hospital, Xiangya School of MedicineCentral South UniversityChangdeHunanChina
| |
Collapse
|
4
|
Nagase H, Shitara A, Ohno Y, Satoh K, Kashimata M. Loss of Cdc42 in Exocrine Acini Decreases Saliva Secretion but Increases Tear Secretion-A Potential Model of Exocrine Gland Senescence. Int J Mol Sci 2023; 24:17220. [PMID: 38139048 PMCID: PMC10743476 DOI: 10.3390/ijms242417220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Cdc42 is a small GTPase essential for the cell cycle, morphogenesis, and cell adhesion, and it is involved in the polarity of epithelial cells. However, the functional roles of Cdc42 in exocrine glands, such as the maintenance of acini and water secretion, are not yet well understood. In this study, we generated acinar-cell-specific Cdc42 conditional knockout (Cdc42cKO) mice to assess their maintenance of acinar cells and physiological functions in the salivary glands (SGs) and lacrimal glands (LGs). Our data revealed that the loss of Cdc42 altered the luminal structures to bulging structures and induced acinar cell apoptosis in both the parotid glands (PGs) and LGs of Cdc42cKO mice. Interestingly, saliva secretion in response to pilocarpine stimulation was decreased in the Cdc42cKO group, whereas tear secretion was increased. Consistent with the water secretion results, protein expression of the water channel AQP5 in acinar cells was also decreased in the PGs but conversely increased in the LGs. Moreover, the changes that increased AQP5 expression in LGs occurred in the acinar cells rather than the duct cells. The present study demonstrates that Cdc42 is involved in the structural and survival maintenance of acinar cells in SGs and LGs. On the other hand, depletion of Cdc42 caused the opposite physiological phenomena between PGs and LGs.
Collapse
Affiliation(s)
- Haruna Nagase
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Akiko Shitara
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Yuta Ohno
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| | - Keitaro Satoh
- Department of Pharmacology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan
| | - Masanori Kashimata
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan
| |
Collapse
|
5
|
Sun M, Wei Y, Zhang C, Nian H, Du B, Wei R. Integrated DNA Methylation and Transcriptomics Analyses of Lacrimal Glands Identify the Potential Genes Implicated in the Development of Sjögren's Syndrome-Related Dry Eye. J Inflamm Res 2023; 16:5697-5714. [PMID: 38050559 PMCID: PMC10693829 DOI: 10.2147/jir.s440263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023] Open
Abstract
Purpose Sjögren's syndrome-related dry eye (SS-related dry eye) is an intractable autoimmune disease characterized by chronic inflammation of lacrimal glands (LGs), where epigenetic factors are proven to play a crucial role in the pathogenesis of this disease. However, the alteration of DNA methylation in LGs and its role in the pathogenesis of SS-related dry eye is still unknown. Here, we performed an integrated analysis of DNA methylation and RNA-Seq data in LGs to identify novel DNA methylation-regulated differentially expressed genes (MeDEGs) in the pathogenesis of SS-related dry eye. Methods The DNA methylation and transcription profiles of LGs in NOD mice at different stages of SS-related dry eye (4-, 8-, 12- and 16 weeks old) were generated by reduced representation bisulfite sequencing (RRBS) and RNA-Seq. The differentially methylated genes (DMGs) and differentially expressed genes (DEGs) were analyzed by MethylKit R package and edgeR. Correlation analysis between methylation level and mRNA expression was conducted with R software. The functional correlation of DMGs and DEGs was analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, LG tissues from another litter of NOD mice were collected for methylation-specific polymerase chain reaction (MSP) and quantitative real-time PCR (qRT-PCR) to validate the methylation and expression levels of key genes. CD4+ cell infiltration of LGs was detected by immunofluorescence staining. Results Hypermethylation of LGs was identified in NOD mice with the progression of SS-related dry eye and the DMGs were mainly enriched in the GTPases activation and Ras signaling pathway. RNA-seq analysis revealed 1321, 2549, and 3712 DEGs in the 8-, 12- and 16-week-old NOD mice compared with 4-week-old normal control mice. For GO analysis, the DEGs were mainly enriched in T cell immune responses. Further, a total of 140 MeDEGs were obtained by integrated analysis of methylome and transcriptome, which were primarily enriched in T cell activation, proliferation and differentiation. Based on the main GO terms and KEGG pathways of MeDEGs, 8 genes were screened out. The expression levels of these key genes, especially Itgal, Vav1, Irf4 and Icosl, were verified to elevate after the onset of SS-related dry eye in NOD mice and positively correlated with the extent of inflammatory cell infiltration in LGs. Immunofluorescence assay revealed that CD4+ cell infiltration dramatically increased in LGs of SS-related dry eye mice compared with the control mice. And the expression levels of four genes showed significantly positive correlation with the extent of CD4+ cell infiltration in LGs. MSP showed the hypomethylation of the Irf4 and Itgal promoters in NOD mice with SS-related dry eye compared to control group. Conclusion Our study revealed the critical role of epigenetic regulation of T cell immunity-related genes in the progression of SS-related dry eye and reminded us that DNA methylation-regulated genes such as Itgal, Vav1, Irf4 and Icosl may be used as new targets for SS-related dry eye therapy.
Collapse
Affiliation(s)
- Mei Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People’s Republic of China
| | - Yankai Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People’s Republic of China
| | - Chengyuan Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People’s Republic of China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People’s Republic of China
| | - Bei Du
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People’s Republic of China
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
6
|
Ohno Y, Satoh K, Kashimata M. Review of genes potentially related to hyposecretion in male non-obese diabetic (NOD) mice, a Sjögren's syndrome model. J Oral Biosci 2023; 65:211-217. [PMID: 37209839 DOI: 10.1016/j.job.2023.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Sjögren's syndrome (SS) is known to cause dry eyes and mouth due to inflammation of the lacrimal and salivary glands. However, some reports imply that other factors trigger dry eyes and mouth. We previously investigated various factors using RNA-sequencing analysis of lacrimal glands from male non-obese diabetic (NOD) mice, an SS model. In this review, we described (1) the exocrine features of male and female NOD mice, (2) the up- and down-regulated genes in the lacrimal glands of male NOD mice as revealed by our RNA-sequencing data, and (3) comparisons between these genes and data in the Salivary Gland Gene Expression Atlas. HIGHLIGHTS Male NOD mice exhibit a steady worsening of lacrimal hyposecretion and dacryoadenitis, whereas females exhibit a complex pathophysiological condition that includes diabetic disease, salivary hyposecretion, and sialadenitis. Ctss, an up-regulated gene, is a potential inducer of lacrimal hyposecretion and is also expressed in salivary glands. Two other up-regulated genes, Ccl5 and Cxcl13, may worsen the inflammation of SS in both the lacrimal and salivary glands. The genes Esp23, Obp1a, and Spc25 were detected as down-regulated, but judging the relationship between these genes and hyposecretion is difficult as only limited information is available. Another down-regulated gene, Arg1, is involved in lacrimal hyposecretion, and it also has the potential to cause salivary hyposecretion in NOD mice. CONCLUSION In NOD mice, males may be better than females at evaluating the pathophysiology of SS. Some regulated genes revealed by our RNA-sequencing data might be potential therapeutic targets for SS.
Collapse
Affiliation(s)
- Yuta Ohno
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan.
| | - Keitaro Satoh
- Department of Pharmacology, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan.
| | - Masanori Kashimata
- Department of Pharmacology, Asahi University School of Dentistry, 1851-1 Hozumi, Mizuho, Gifu 501-0296, Japan.
| |
Collapse
|
7
|
OGAWA KENJIROU, URATA KARIN, MAEDA SAKI, OHNO YUTA, SATOH KEITARO, YAMADA YOSHIYUKI, SUZUKI YOSUKE, KOGA YASUKO, SUGAMOTO KAZUHIRO, KAWAGUCHI MAKIKO, KUNITAKE HISATO, NISHIYAMA KAZUO, GOTO YO, NAKAYAMA TAKAYUKI, YAMASAKI MASAO. Blueberry Leaf Extract Prevents Lacrimal Hyposecretion in Sjögren's Syndrome-like Model of Non-obese Diabetic Mice. In Vivo 2023; 37:149-162. [PMID: 36593026 PMCID: PMC9843763 DOI: 10.21873/invivo.13064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND/AIM This study evaluated the effect of blueberry leaf hot water extract (BLEx) on Sjögren's syndrome (SS)-like lacrimal hyposecretion in male non-obese diabetic (NOD) mice. MATERIALS AND METHODS NOD or BALB/c mice were fed 1% BLEx or control (AIN-93G) for 2 weeks from the age of 4 to 6 weeks. Pilocarpine-induced tear volume was measured using a phenol red-impregnated thread. The lacrimal glands were evaluated histologically by H&E staining. The IL-1β and TNF-α levels in the lacrimal gland tissue were measured by ELISA. The mRNA expression levels of secretion-related proteins were measured by real-time PCR. LC3 I/II and arginase 1 expression levels were measured by western blot. RESULTS After feeding with BLEx, pilocarpine-induced tear secretion in NOD mice was increased. In contrast, the mRNA expression levels of the cholinergic muscarinic M3 receptor, aquaporin 5, and ion channels related to lacrimal secretion were not changed by BLEx administration. In addition, the protein expression of arginase 1, which was recently reported to be involved in tear hyposecretion in NOD mice, was also not improved by BLEx administration. Although infiltration in the lacrimal gland of NOD mice was not decreased, the levels of TNF-α and the autophagy-related protein LC3 were significantly suppressed by BLEx treatment. CONCLUSION BLEx treatment may ameliorate lacrimal hyposecretion in NOD mice by delaying the progression of autoimmune disease by suppressing autophagy in lacrimal glands.
Collapse
Affiliation(s)
- KENJIROU OGAWA
- Institute for Tenure Track Promotion, University of Miyazaki, Miyazaki, Japan
| | - KARIN URATA
- Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - SAKI MAEDA
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - YUTA OHNO
- Department of Pharmacology, Asahi University School of Dentistry, Mizuho, Japan
| | - KEITARO SATOH
- Department of Pharmacology, Meikai University School of Dentistry, Sakado, Japan
| | - YOSHIYUKI YAMADA
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - YOSUKE SUZUKI
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - YASUKO KOGA
- Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - KAZUHIRO SUGAMOTO
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - MAKIKO KAWAGUCHI
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - HISATO KUNITAKE
- Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan,Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - KAZUO NISHIYAMA
- Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan,Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - YO GOTO
- Biolabo Co., Ltd., Kobe, Japan
| | | | - MASAO YAMASAKI
- Graduate School of Agriculture, University of Miyazaki, Miyazaki, Japan,Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
8
|
Horeth E, Oyelakin A, Song EAC, Che M, Bard J, Min S, Kiripolsky J, Kramer JM, Sinha S, Romano RA. Transcriptomic and Single-Cell Analysis Reveals Regulatory Networks and Cellular Heterogeneity in Mouse Primary Sjögren's Syndrome Salivary Glands. Front Immunol 2021; 12:729040. [PMID: 34912329 PMCID: PMC8666453 DOI: 10.3389/fimmu.2021.729040] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
Sjögren’s Syndrome (SS) is a chronic autoimmune disease of unknown etiology which primarily affects the salivary and lacrimal glands resulting in the loss of secretory function. Treatment options for SS have been hampered due to the lack of a better understanding of the underlying gene regulatory circuitry and the interplay between the myriad pathological cellular states that contribute to salivary gland dysfunction. To better elucidate the molecular nature of SS, we have performed RNA-sequencing analysis of the submandibular glands (SMG) of a well-established primary Sjögren’s Syndrome (pSS) mouse model. Our comprehensive examination of global gene expression and comparative analyses with additional SS mouse models and human datasets, have identified a number of important pathways and regulatory networks that are relevant in SS pathobiology. To complement these studies, we have performed single-cell RNA sequencing to examine and identify the molecular and cellular heterogeneity of the diseased cell populations of the mouse SMG. Interrogation of the single-cell transcriptomes has shed light on the diversity of immune cells that are dysregulated in SS and importantly, revealed an activated state of the salivary gland epithelial cells that contribute to the global immune mediated responses. Overall, our broad studies have not only revealed key pathways, mediators and new biomarkers, but have also uncovered the complex nature of the cellular populations in the SMG that are likely to drive the progression of SS. These newly discovered insights into the underlying molecular mechanisms and cellular states of SS will better inform targeted therapeutic discoveries.
Collapse
Affiliation(s)
- Erich Horeth
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Akinsola Oyelakin
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Eun-Ah Christine Song
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Monika Che
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Jonathan Bard
- Genomics and Bioinformatics Core, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Sangwon Min
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Jeremy Kiripolsky
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Jill M Kramer
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| | - Rose-Anne Romano
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, United States.,Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
9
|
Mori T, Kataoka H, Into T. Effect of Myd88 deficiency on gene expression profiling in salivary glands of female non-obese diabetic (NOD) mice. J Oral Biosci 2021; 63:192-198. [PMID: 33933610 DOI: 10.1016/j.job.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Sjögren's syndrome (SS) is a chronic autoimmune disease characterized by inflammatory lesions in the salivary and lacrimal glands, which are caused by distinct lymphocytic infiltrates. Female non-obese diabetic (NOD) mice spontaneously develop inflammatory lesions of the salivary glands with SS-like pathological features. Previous studies have shown that MyD88, a crucial adaptor protein that activates innate immune signaling, affects lymphocytic infiltration, but its detailed role remains unclear. In this study, we investigated the role of MyD88 through gene expression profiling in the early phase of pathogenesis in the salivary glands of female NOD mice. METHODS Submandibular glands collected from 10-week-old female wild-type and Myd88-deficient NOD mice were used for RNA preparation, followed by microarray analysis. The microarray dataset was analyzed to identify Myd88-dependent differentially expressed genes (DEGs). Data generated were used for GO enrichment, KEGG pathway, STRING database, and INTERFEROME database analyses. RESULTS Myd88 deficiency was found to affect 230 DEGs, including SS-associated genes, such as Cxcl9 and Bpifa2. Most of the DEGs were identified as being involved in immunological processes. KEGG pathway analysis indicated that the DEGs were putatively involved in autoimmune diseases, such as systemic lupus erythematosus and rheumatoid arthritis. Furthermore, the DEGs included 149 interferon (IFN)-regulated genes. CONCLUSIONS MyD88 is involved in the expression of specific genes associated with IFN-associated immunopathological processes in the salivary glands of NOD mice. Our findings are important for understanding the role of MyD88-dependent innate immune signaling in SS manifestation.
Collapse
Affiliation(s)
- Taiki Mori
- Department of Oral Microbiology, Division of Oral Infection Health Sciences, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Hideo Kataoka
- Department of Oral Microbiology, Division of Oral Infection Health Sciences, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan
| | - Takeshi Into
- Department of Oral Microbiology, Division of Oral Infection Health Sciences, Asahi University School of Dentistry, 1851 Hozumi, Mizuho, Gifu, 501-0296, Japan.
| |
Collapse
|