1
|
Windoloski KA, Janum S, Berg RMG, Olufsen MS. Characterization of differences in immune responses during bolus and continuous infusion endotoxin challenges using mathematical modelling. Exp Physiol 2024; 109:689-710. [PMID: 38466166 PMCID: PMC11061636 DOI: 10.1113/ep091552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
Endotoxin administration is commonly used to study the inflammatory response, and though traditionally given as a bolus injection, it can be administered as a continuous infusion over multiple hours. Several studies hypothesize that the latter better represents the prolonged and pronounced inflammation observed in conditions like sepsis. Yet very few experimental studies have administered endotoxin using both strategies, leaving significant gaps in determining the underlying mechanisms responsible for their differing immune responses. We used mathematical modelling to analyse cytokine data from two studies administering a 2 ng kg-1 dose of endotoxin, one as a bolus and the other as a continuous infusion over 4 h. Using our model, we simulated the dynamics of mean and subject-specific cytokine responses as well as the response to long-term endotoxin administration. Cytokine measurements revealed that the bolus injection led to significantly higher peaks for interleukin (IL)-8, while IL-10 reaches higher peaks during continuous administration. Moreover, the peak timing of all measured cytokines occurred later with continuous infusion. We identified three model parameters that significantly differed between the two administration methods. Monocyte activation of IL-10 was greater during the continuous infusion, while tumour necrosis factor α $ {\alpha} $ and IL-8 recovery rates were faster for the bolus injection. This suggests that a continuous infusion elicits a stronger, longer-lasting systemic reaction through increased stimulation of monocyte anti-inflammatory mediator production and decreased recovery of pro-inflammatory catalysts. Furthermore, the continuous infusion model exhibited prolonged inflammation with recurrent peaks resolving within 2 days during long-term (20-32 h) endotoxin administration.
Collapse
Affiliation(s)
| | - Susanne Janum
- Frederiksberg and Bispebjerg HospitalsFrederiksbergDenmark
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Ronan M. G. Berg
- Department of Biomedical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical Physiology and Nuclear Medicine and, Centre for Physical Activity ResearchCopenhagen University HospitalCopenhagenDenmark
- Neurovascular Research LaboratoryUniversity of South WalesPontypriddUK
| | - Mette S. Olufsen
- Department of MathematicsNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
2
|
Duh M, Skok K, Perc M, Markota A, Gosak M. Computational modeling of targeted temperature management in post-cardiac arrest patients. Biomech Model Mechanobiol 2022; 21:1407-1424. [PMID: 35763192 DOI: 10.1007/s10237-022-01598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
Our core body temperature is held around [Formula: see text]C by an effective internal thermoregulatory system. However, various clinical scenarios have a more favorable outcome under external temperature regulation. Therapeutic hypothermia, for example, was found beneficial for the outcome of resuscitated cardiac arrest patients due to its protection against cerebral ischemia. Nonetheless, practice shows that outcomes of targeted temperature management vary considerably in dependence on individual tissue damage levels and differences in therapeutic strategies and protocols. Here, we address these differences in detail by means of computational modeling. We develop a multi-segment and multi-node thermoregulatory model that takes into account details related to specific post-cardiac arrest-related conditions, such as thermal imbalances due to sedation and anesthesia, increased metabolic rates induced by inflammatory processes, and various external cooling techniques. In our simulations, we track the evolution of the body temperature in patients subjected to post-resuscitation care, with particular emphasis on temperature regulation via an esophageal heat transfer device, on the examination of the alternative gastric cooling with ice slurry, and on how anesthesia and the level of inflammatory response influence thermal behavior. Our research provides a better understanding of the heat transfer processes and therapies used in post-cardiac arrest patients.
Collapse
Affiliation(s)
- Maja Duh
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
| | - Kristijan Skok
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.,Department of Pathology, General Hospital Graz II, Location West, Göstinger Straße 22, 8020, Graz, Austria
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404332, Taiwan.,Alma Mater Europaea, Slovenska ulica 17, 2000, Maribor, Slovenia.,Complexity Science Hub Vienna, Josefstädterstraße 39, 1080, Vienna, Austria
| | - Andrej Markota
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.,Medical Intensive Care Unit, University Medical Centre Maribor, Ljubljanska 5, 2000, Maribor, Slovenia
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia. .,Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000, Maribor, Slovenia.
| |
Collapse
|
3
|
Autonomic Disbalance During Systemic Inflammation is Associated with Oxidative Stress Changes in Sepsis Survivor Rats. Inflammation 2022; 45:1239-1253. [PMID: 34981315 DOI: 10.1007/s10753-021-01617-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/16/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022]
Abstract
Sepsis affects 31.5 million people worldwide. It is characterized by an intense drop in blood pressure driving to cardiovascular morbidity and mortality. Modern supportive care has increased survival in patients; however, after experiencing sepsis, several complications are observed, which may be potentiated by new inflammatory events. Nevertheless, the interplay between sepsis survivors and a new immune challenge in cardiovascular regulation has not been previously defined. We hypothesized that cecal ligation and puncture (CLP) cause persistent cardiovascular dysfunctions in rats as well as changes in autonomic-induced cardiovascular responses to lipopolysaccharide (LPS). Male Wistar rats had mean arterial pressure (MAP) and heart rate (HR) recorded before and after LPS or saline administration to control or CLP survivor rats. CLP survivor rats had similar baseline MAP and HR when compared to control. LPS caused a drop in MAP accompanied by tachycardia in control, while CLP survivor rats had a noteworthy enhanced MAP and a blunted tachycardia. LPS-induced hemodynamic changes were related to an autonomic disbalance to the heart and resistance vessels that were expressed as an increased low- and high-frequency power of pulse interval in CLP survivors after saline and enhancement in the low-frequency power of systolic arterial pressure in control rats after LPS. LPS-induced plasma interferon γ, but not interleukin-10 surges, was blunted in CLP survivor rats. To further access whether or not LPS-induced autonomic disbalance in CLP survivor rats was associated with oxidative stress dysregulation, superoxide dismutase (SOD) activity and thiobarbituric acid reactive substances (TBARS) plasma levels changes were measured. LPS-induced oxidative stress was higher in CLP survivor rats. These findings indicate that key changes in hemodynamic regulation of CLP survivors rats take place in response to LPS that are associated with oxidative stress changes, i.e., reduced SOD activity and increased TBARS levels.
Collapse
|
4
|
Diebner HH, Reinke S, Rösen-Wolff A, Winkler S. A Kinetic Response Model for Standardized Regression Analyses of Inflammation-Triggered Hypothermic Body Temperature-Time Courses in Mice. Front Physiol 2021; 12:634510. [PMID: 34504434 PMCID: PMC8421519 DOI: 10.3389/fphys.2021.634510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
LPS is frequently used to induce experimental endotoxic shock, representing a standard model of acute inflammation in mice. The resulting inflammatory response leads to hypothermia of the experimental animals, which in turn can be used as surrogate for the severity of systemic inflammation. Although increasingly applied as a humane endpoint in murine studies, differences between obtained temperature-time curves are typically evaluated at a single time point with t-tests or ANOVA analyses. We hypothesized that analyses of the entire temperature-time curves using a kinetic response model could fit the data, which show a temperature decrease followed by a tendency to return to normal temperature, and could increase the statistical power. Using temperature-time curves obtained from LPS stimulated mice, we derived a biologically motivated kinetic response model based on a differential equation. The kinetic model includes four parameters: (i) normal body temperature (T n ), (ii) a coefficient related to the force of temperature autoregulation (r), (iii) damage strength (p 0), and (iv) clearance rate (k). Kinetic modeling of temperature-time curves obtained from LPS stimulated mice is feasible and leads to a high goodness-of-fit. Here, modifying key enzymes of inflammatory cascades induced a dominant impact of genotypes on the damage strength and a weak impact on the clearance rate. Using a likelihood-ratio test to compare modeled curves of different experimental groups yields strongly enhanced statistical power compared to pairwise t-tests of single temperature time points. Taken together, the kinetic model presented in this study has several advantages compared to simple analysis of individual time points and therefore may be used as a standard method for assessing inflammation-triggered hypothermic response curves in mice.
Collapse
Affiliation(s)
- Hans H Diebner
- Department of Medical Informatics, Biometry and Epidemiology, Ruhr-Universität Bochum, Bochum, Germany
| | - Sören Reinke
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Angela Rösen-Wolff
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stefan Winkler
- Department of Pediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
5
|
Sutanto H, Lyon A. Predicting the neuro-cardio-haemodynamic outcomes of sepsis and its pharmacological interventions: Get to the future through numerical equations. J Physiol 2021; 599:2797-2799. [PMID: 33873248 PMCID: PMC9291562 DOI: 10.1113/jp281661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Henry Sutanto
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Aurore Lyon
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.,Division of Heart and Lungs, Department of Medical Physiology, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|