1
|
Kaur S, Lynch N, Sela Y, Lima JD, Thomas RC, Bandaru SS, Saper CB. Lateral parabrachial FoxP2 neurons regulate respiratory responses to hypercapnia. Nat Commun 2024; 15:4475. [PMID: 38796568 PMCID: PMC11128025 DOI: 10.1038/s41467-024-48773-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/10/2024] [Indexed: 05/28/2024] Open
Abstract
About half of the neurons in the parabrachial nucleus (PB) that are activated by CO2 are located in the external lateral (el) subnucleus, express calcitonin gene-related peptide (CGRP), and cause forebrain arousal. We report here, in male mice, that most of the remaining CO2-responsive neurons in the adjacent central lateral (PBcl) and Kölliker-Fuse (KF) PB subnuclei express the transcription factor FoxP2 and many of these neurons project to respiratory sites in the medulla. PBclFoxP2 neurons show increased intracellular calcium during wakefulness and REM sleep and in response to elevated CO2 during NREM sleep. Photo-activation of the PBclFoxP2 neurons increases respiration, whereas either photo-inhibition of PBclFoxP2 or genetic deletion of PB/KFFoxP2 neurons reduces the respiratory response to CO2 stimulation without preventing awakening. Thus, augmenting the PBcl/KFFoxP2 response to CO2 in patients with sleep apnea in combination with inhibition of the PBelCGRP neurons may avoid hypoventilation and minimize EEG arousals.
Collapse
Affiliation(s)
- Satvinder Kaur
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nicole Lynch
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yaniv Sela
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Janayna D Lima
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Renner C Thomas
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sathyajit S Bandaru
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Clifford B Saper
- Department of Neurology, Division of Sleep Medicine, and Program in Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Souza GMPR, Abbott SBG. Loss-of-function of chemoreceptor neurons in the retrotrapezoid nucleus: What have we learned from it? Respir Physiol Neurobiol 2024; 322:104217. [PMID: 38237884 PMCID: PMC10922619 DOI: 10.1016/j.resp.2024.104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Central respiratory chemoreceptors are cells in the brain that regulate breathing in relation to arterial pH and PCO2. Neurons located at the retrotrapezoid nucleus (RTN) have been hypothesized to be central chemoreceptors and/or to be part of the neural network that drives the central respiratory chemoreflex. The inhibition or ablation of RTN chemoreceptor neurons has offered important insights into the role of these cells on central respiratory chemoreception and the neural control of breathing over almost 60 years since the original identification of acid-sensitive properties of this ventral medullary site. Here, we discuss the current definition of chemoreceptor neurons in the RTN and describe how this definition has evolved over time. We then summarize the results of studies that use loss-of-function approaches to evaluate the effects of disrupting the function of RTN neurons on respiration. These studies offer evidence that RTN neurons are indispensable for the central respiratory chemoreflex in mammals and exert a tonic drive to breathe at rest. Moreover, RTN has an interdependent relationship with oxygen sensing mechanisms for the maintenance of the neural drive to breathe and blood gas homeostasis. Collectively, RTN neurons are a genetically-defined group of putative central respiratory chemoreceptors that generate CO2-dependent drive that supports eupneic breathing and stimulates the hypercapnic ventilatory reflex.
Collapse
|
3
|
El Youssef N, Marchi A, Bartolomei F, Bonini F, Lambert I. Sleep and epilepsy: A clinical and pathophysiological overview. Rev Neurol (Paris) 2023; 179:687-702. [PMID: 37598088 DOI: 10.1016/j.neurol.2023.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/21/2023]
Abstract
The interaction between sleep and epilepsy is complex. A better understanding of the mechanisms linking sleep and epilepsy appears increasingly important as it may improve diagnosis and therapeutic strategies in patients with epilepsy. In this narrative review, we aim to (i) provide an overview of the physiological and pathophysiological processes linking sleep and epilepsy; (ii) present common sleep disorders in patients with epilepsy; (iii) discuss how sleep and sleep disorders should be considered in new therapeutic approaches to epilepsy such as neurostimulation; and (iv) present the overall nocturnal manifestations and differential diagnosis between epileptic seizures and parasomnia.
Collapse
Affiliation(s)
- N El Youssef
- AP-HM, Timone hospital, Sleep Unit, Epileptology and Cerebral Rhythmology, Marseille, France
| | - A Marchi
- AP-HM, Timone hospital, Sleep Unit, Epileptology and Cerebral Rhythmology, Marseille, France
| | - F Bartolomei
- AP-HM, Timone hospital, Sleep Unit, Epileptology and Cerebral Rhythmology, Marseille, France; Aix-Marseille University, Inserm, Inst Neurosci Syst (INS), Marseille, France
| | - F Bonini
- AP-HM, Timone hospital, Sleep Unit, Epileptology and Cerebral Rhythmology, Marseille, France; Aix-Marseille University, Inserm, Inst Neurosci Syst (INS), Marseille, France
| | - I Lambert
- AP-HM, Timone hospital, Sleep Unit, Epileptology and Cerebral Rhythmology, Marseille, France; Aix-Marseille University, Inserm, Inst Neurosci Syst (INS), Marseille, France.
| |
Collapse
|
4
|
Souza GMPR, Stornetta DS, Shi Y, Lim E, Berry FE, Bayliss DA, Abbott SBG. Neuromedin B-Expressing Neurons in the Retrotrapezoid Nucleus Regulate Respiratory Homeostasis and Promote Stable Breathing in Adult Mice. J Neurosci 2023; 43:5501-5520. [PMID: 37290937 PMCID: PMC10376939 DOI: 10.1523/jneurosci.0386-23.2023] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023] Open
Abstract
Respiratory chemoreceptor activity encoding arterial Pco2 and Po2 is a critical determinant of ventilation. Currently, the relative importance of several putative chemoreceptor mechanisms for maintaining eupneic breathing and respiratory homeostasis is debated. Transcriptomic and anatomic evidence suggests that bombesin-related peptide Neuromedin-B (Nmb) expression identifies chemoreceptor neurons in the retrotrapezoid nucleus (RTN) that mediate the hypercapnic ventilatory response, but functional support is missing. In this study, we generated a transgenic Nmb-Cre mouse and used Cre-dependent cell ablation and optogenetics to test the hypothesis that RTN Nmb neurons are necessary for the CO2-dependent drive to breathe in adult male and female mice. Selective ablation of ∼95% of RTN Nmb neurons causes compensated respiratory acidosis because of alveolar hypoventilation, as well as profound breathing instability and respiratory-related sleep disruption. Following RTN Nmb lesion, mice were hypoxemic at rest and were prone to severe apneas during hyperoxia, suggesting that oxygen-sensitive mechanisms, presumably the peripheral chemoreceptors, compensate for the loss of RTN Nmb neurons. Interestingly, ventilation following RTN Nmb -lesion was unresponsive to hypercapnia, but behavioral responses to CO2 (freezing and avoidance) and the hypoxia ventilatory response were preserved. Neuroanatomical mapping shows that RTN Nmb neurons are highly collateralized and innervate the respiratory-related centers in the pons and medulla with a strong ipsilateral preference. Together, this evidence suggests that RTN Nmb neurons are dedicated to the respiratory effects of arterial Pco2/pH and maintain respiratory homeostasis in intact conditions and suggest that malfunction of these neurons could underlie the etiology of certain forms of sleep-disordered breathing in humans.SIGNIFICANCE STATEMENT Respiratory chemoreceptors stimulate neural respiratory motor output to regulate arterial Pco2 and Po2, thereby maintaining optimal gas exchange. Neurons in the retrotrapezoid nucleus (RTN) that express the bombesin-related peptide Neuromedin-B are proposed to be important in this process, but functional evidence has not been established. Here, we developed a transgenic mouse model and demonstrated that RTN neurons are fundamental for respiratory homeostasis and mediate the stimulatory effects of CO2 on breathing. Our functional and anatomic data indicate that Nmb-expressing RTN neurons are an integral component of the neural mechanisms that mediate CO2-dependent drive to breathe and maintain alveolar ventilation. This work highlights the importance of the interdependent and dynamic integration of CO2- and O2-sensing mechanisms in respiratory homeostasis of mammals.
Collapse
Affiliation(s)
- George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Daniel S Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Eunu Lim
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Faye E Berry
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
5
|
Kaur S, Nicole L, Sela Y, Lima J, Thomas R, Bandaru S, Saper C. Lateral parabrachial FoxP2 neurons regulate respiratory responses to hypercapnia. RESEARCH SQUARE 2023:rs.3.rs-2865756. [PMID: 37205337 PMCID: PMC10187408 DOI: 10.21203/rs.3.rs-2865756/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Although CGRP neurons in the external lateral parabrachial nucleus (PBelCGRP neurons) are critical for cortical arousal in response to hypercapnia, activating them has little effect on respiration. However, deletion of all Vglut2 expressing neurons in the PBel region suppresses both the respiratory and arousal response to high CO2. We identified a second population of non-CGRP neurons adjacent to the PBelCGRP group in the central lateral, lateral crescent and Kölliker-Fuse parabrachial subnuclei that are also activated by CO2 and project to the motor and premotor neurons that innvervate respiratory sites in the medulla and spinal cord. We hypothesize that these neurons may in part mediate the respiratory response to CO2 and that they may express the transcription factor, Fork head Box protein 2 (FoxP2), which has recently been found in this region. To test this, we examined the role of the PBFoxP2 neurons in respiration and arousal response to CO2, and found that they show cFos expression in response to CO2 exposure as well as increased intracellular calcium activity during spontaneous sleep-wake and exposure to CO2. We also found that optogenetically photo-activating PBFoxP2 neurons increases respiration and that photo-inhibition using archaerhodopsin T (ArchT) reduced the respiratory response to CO2 stimulation without preventing awakening. Our results indicate that PBFoxP2 neurons play an important role in the respiratory response to CO2 exposure during NREM sleep, and indicate that other pathways that also contribute to the response cannot compensate for the loss of the PBFoxP2 neurons. Our findings suggest that augmentation of the PBFoxP2 response to CO2 in patients with sleep apnea in combination with inhibition of the PBelCGRP neurons may avoid hypoventilation and minimize EEG arousals.
Collapse
Affiliation(s)
| | | | | | | | | | - Sathyajit Bandaru
- Beth Israel Department of Neurology, Program in Neuroscience and Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Ma-02215
| | | |
Collapse
|
6
|
Krohn F, Novello M, van der Giessen RS, De Zeeuw CI, Pel JJM, Bosman LWJ. The integrated brain network that controls respiration. eLife 2023; 12:83654. [PMID: 36884287 PMCID: PMC9995121 DOI: 10.7554/elife.83654] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/29/2023] [Indexed: 03/09/2023] Open
Abstract
Respiration is a brain function on which our lives essentially depend. Control of respiration ensures that the frequency and depth of breathing adapt continuously to metabolic needs. In addition, the respiratory control network of the brain has to organize muscular synergies that integrate ventilation with posture and body movement. Finally, respiration is coupled to cardiovascular function and emotion. Here, we argue that the brain can handle this all by integrating a brainstem central pattern generator circuit in a larger network that also comprises the cerebellum. Although currently not generally recognized as a respiratory control center, the cerebellum is well known for its coordinating and modulating role in motor behavior, as well as for its role in the autonomic nervous system. In this review, we discuss the role of brain regions involved in the control of respiration, and their anatomical and functional interactions. We discuss how sensory feedback can result in adaptation of respiration, and how these mechanisms can be compromised by various neurological and psychological disorders. Finally, we demonstrate how the respiratory pattern generators are part of a larger and integrated network of respiratory brain regions.
Collapse
Affiliation(s)
- Friedrich Krohn
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Johan J M Pel
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
7
|
Sleep and Epilepsy. Neurol Clin 2022; 40:769-783. [DOI: 10.1016/j.ncl.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|