1
|
Urbin MA, Liu F, Moon CH. Preserved force control by the digits via minimal sparing of cortico-spinal connectivity after stroke. Exp Physiol 2024. [PMID: 39673738 DOI: 10.1113/ep092134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/15/2024] [Indexed: 12/16/2024]
Abstract
The ability to regulate finger forces is critical for manipulating objects during everyday tasks but is impaired after damage to white matter tracts that transmit motor commands into the spinal cord. This study examines cortico-spinal connectivity required for force control by the digits after neurological injury. We report on a unique case of a stroke survivor who retained the ability to control finger forces at a level comparable to neurologically intact adults despite extensive loss of white matter volume and severely compromised transmission from cortical motor areas onto the final common pathway. Using a combination of imaging methods and noninvasive stimulation techniques, we illustrate the structure and function of a slow-conducting, cortico-spinal pathway minimally spared by stroke that underlies this stroke survivor's ability to transition and stabilize finger forces of the paretic hand during precision grip. We interpret findings in the context of physiological mechanisms underlying distal limb control and current thinking on neural adaptation after brain injury due to stroke.
Collapse
Affiliation(s)
- Michael A Urbin
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| | - Fang Liu
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chan Hong Moon
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Bjørndal JR, Beck MM, Jespersen L, Christiansen L, Lundbye-Jensen J. Hebbian priming of human motor learning. Nat Commun 2024; 15:5126. [PMID: 38879614 PMCID: PMC11180091 DOI: 10.1038/s41467-024-49478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/03/2024] [Indexed: 06/19/2024] Open
Abstract
Motor learning relies on experience-dependent plasticity in relevant neural circuits. In four experiments, we provide initial evidence and a double-blinded, sham-controlled replication (Experiment I-II) demonstrating that motor learning involving ballistic index finger movements is improved by preceding paired corticospinal-motoneuronal stimulation (PCMS), a human model for exogenous induction of spike-timing-dependent plasticity. Behavioral effects of PCMS targeting corticomotoneuronal (CM) synapses are order- and timing-specific and partially bidirectional (Experiment III). PCMS with a 2 ms inter-arrival interval at CM-synapses enhances learning and increases corticospinal excitability compared to control protocols. Unpaired stimulations did not increase corticospinal excitability (Experiment IV). Our findings demonstrate that non-invasively induced plasticity interacts positively with experience-dependent plasticity to promote motor learning. The effects of PCMS on motor learning approximate Hebbian learning rules, while the effects on corticospinal excitability demonstrate timing-specificity but not bidirectionality. These findings offer a mechanistic rationale to enhance motor practice effects by priming sensorimotor training with individualized PCMS.
Collapse
Affiliation(s)
- Jonas Rud Bjørndal
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Nørre Allé 51, Copenhagen N, Denmark.
| | - Mikkel Malling Beck
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Nørre Allé 51, Copenhagen N, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Kettegård Allé 30, Hvidovre, Denmark
| | - Lasse Jespersen
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Nørre Allé 51, Copenhagen N, Denmark
| | - Lasse Christiansen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Kettegård Allé 30, Hvidovre, Denmark
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N, Denmark
| | - Jesper Lundbye-Jensen
- Movement & Neuroscience, Department of Nutrition, Exercise and Sports (NEXS), University of Copenhagen, Nørre Allé 51, Copenhagen N, Denmark.
| |
Collapse
|
3
|
Urbin MA. Adaptation in the spinal cord after stroke: Implications for restoring cortical control over the final common pathway. J Physiol 2024. [PMID: 38787922 DOI: 10.1113/jp285563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Control of voluntary movement is predicated on integration between circuits in the brain and spinal cord. Although damage is often restricted to supraspinal or spinal circuits in cases of neurological injury, both spinal motor neurons and axons linking these cells to the cortical origins of descending motor commands begin showing changes soon after the brain is injured by stroke. The concept of 'transneuronal degeneration' is not new and has been documented in histological, imaging and electrophysiological studies dating back over a century. Taken together, evidence from these studies agrees more with a system attempting to survive rather than one passively surrendering to degeneration. There tends to be at least some preservation of fibres at the brainstem origin and along the spinal course of the descending white matter tracts, even in severe cases. Myelin-associated proteins are observed in the spinal cord years after stroke onset. Spinal motor neurons remain morphometrically unaltered. Skeletal muscle fibres once innervated by neurons that lose their source of trophic input receive collaterals from adjacent neurons, causing spinal motor units to consolidate and increase in size. Although some level of excitability within the distributed brain network mediating voluntary movement is needed to facilitate recovery, minimal structural connectivity between cortical and spinal motor neurons can support meaningful distal limb function. Restoring access to the final common pathway via the descending input that remains in the spinal cord therefore represents a viable target for directed plasticity, particularly in light of recent advances in rehabilitation medicine.
Collapse
Affiliation(s)
- Michael A Urbin
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Allen JR, Karri SR, Yang C, Stoykov ME. Spinal Cord Stimulation for Poststroke Hemiparesis: A Scoping Review. Am J Occup Ther 2024; 78:7802180220. [PMID: 38477681 PMCID: PMC11017736 DOI: 10.5014/ajot.2024.050533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024] Open
Abstract
IMPORTANCE Spinal cord stimulation (SCS) is a neuromodulation technique that can improve paresis in individuals with spinal cord injury. SCS is emerging as a technique that can address upper and lower limb hemiparesis. Little is understood about its effectiveness with the poststroke population. OBJECTIVE To summarize the evidence for SCS after stroke and any changes in upper extremity and lower extremity motor function. DATA SOURCES PubMed, Web of Science, Embase, and CINAHL. The reviewers used hand searches and reference searches of retrieved articles. There were no limitations regarding publication year. STUDY SELECTION AND DATA COLLECTION This review followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) checklist. The inclusion and exclusion criteria included a broad range of study characteristics. Studies were excluded if the intervention did not meet the definition of SCS intervention, used only animals or healthy participants, did not address upper or lower limb motor function, or examined neurological conditions other than stroke. FINDINGS Fourteen articles met the criteria for this review. Seven studies found a significant improvement in motor function in groups receiving SCS. CONCLUSIONS AND RELEVANCE Results indicate that SCS may provide an alternative means to improve motor function in the poststroke population. Plain-Language Summary: The results of this study show that spinal cord stimulation may provide an alternative way to improve motor function after stroke. Previous neuromodulation methods have targeted the impaired supraspinal circuitry after stroke. Although downregulated, spinal cord circuitry is largely intact and offers new possibilities for motor recovery.
Collapse
Affiliation(s)
- Jonathan R Allen
- Jonathan R. Allen, OTD, OTR/L, is Occupational Therapist, Corewell Health, Grand Rapids, MI. At the time of the study, Allen was Doctoral Student, Department of Occupational Therapy, College of Health Sciences, University of Michigan-Flint;
| | - Swathi R Karri
- Swathi R. Karri, is Osteopathic Medical Student II, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL
| | - Chen Yang
- Chen Yang, PhD, is Postdoctoral Fellow, Max Näder Lab for Rehabilitation Technologies and Outcomes Research, Shirley Ryan AbilityLab, Chicago, IL, and Postdoctoral Fellow, Physical Medicine & Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Mary Ellen Stoykov
- Mary Ellen Stoykov, PhD, OTR/L, is Research Scientist, Arms + Hands Lab, Shirley Ryan AbilityLab, Chicago, IL, and Research Associate Professor, Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
5
|
Urbin MA, Lafe CW, Bautista ME, Wittenberg GF, Simpson TW. Effects of noninvasive neuromodulation targeting the spinal cord on early learning of force control by the digits. CNS Neurosci Ther 2024; 30:e14561. [PMID: 38421127 PMCID: PMC10851178 DOI: 10.1111/cns.14561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 03/02/2024] Open
Abstract
AIMS Control of finger forces underlies our capacity for skilled hand movements acquired during development and reacquired after neurological injury. Learning force control by the digits, therefore, predicates our functional independence. Noninvasive neuromodulation targeting synapses that link corticospinal neurons onto the final common pathway via spike-timing-dependent mechanisms can alter distal limb motor output on a transient basis, yet these effects appear subject to individual differences. Here, we investigated how this form of noninvasive neuromodulation interacts with task repetition to influence early learning of force control during precision grip. METHODS The unique effects of neuromodulation, task repetition, and neuromodulation coinciding with task repetition were tested in three separate conditions using a within-subject, cross-over design (n = 23). RESULTS We found that synchronizing depolarization events within milliseconds of stabilizing precision grip accelerated learning but only after accounting for individual differences through inclusion of subjects who showed upregulated corticospinal excitability at 2 of 3 time points following conditioning stimulation (n = 19). CONCLUSIONS Our findings provide insights into how the state of the corticospinal system can be leveraged to drive early motor skill learning, further emphasizing individual differences in the response to noninvasive neuromodulation. We interpret these findings in the context of biological mechanisms underlying the observed effects and implications for emerging therapeutic applications.
Collapse
Affiliation(s)
- Michael A. Urbin
- Human Engineering Research Laboratories, VA RR&D Center of ExcellenceVA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - Charley W. Lafe
- Human Engineering Research Laboratories, VA RR&D Center of ExcellenceVA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - Manuel E. Bautista
- Human Engineering Research Laboratories, VA RR&D Center of ExcellenceVA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - George F. Wittenberg
- Human Engineering Research Laboratories, VA RR&D Center of ExcellenceVA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Rehabilitation Neural Engineering Laboratories, Department of Physical Medicine & RehabilitationUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Tyler W. Simpson
- Rehabilitation Neural Engineering Laboratories, Department of Physical Medicine & RehabilitationUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
6
|
Campos B, Choi H, DeMarco AT, Seydell-Greenwald A, Hussain SJ, Joy MT, Turkeltaub PE, Zeiger W. Rethinking Remapping: Circuit Mechanisms of Recovery after Stroke. J Neurosci 2023; 43:7489-7500. [PMID: 37940595 PMCID: PMC10634578 DOI: 10.1523/jneurosci.1425-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 11/10/2023] Open
Abstract
Stroke is one of the most common causes of disability, and there are few treatments that can improve recovery after stroke. Therapeutic development has been hindered because of a lack of understanding of precisely how neural circuits are affected by stroke, and how these circuits change to mediate recovery. Indeed, some of the hypotheses for how the CNS changes to mediate recovery, including remapping, redundancy, and diaschisis, date to more than a century ago. Recent technological advances have enabled the interrogation of neural circuits with ever greater temporal and spatial resolution. These techniques are increasingly being applied across animal models of stroke and to human stroke survivors, and are shedding light on the molecular, structural, and functional changes that neural circuits undergo after stroke. Here we review these studies and highlight important mechanisms that underlie impairment and recovery after stroke. We begin by summarizing knowledge about changes in neural activity that occur in the peri-infarct cortex, specifically considering evidence for the functional remapping hypothesis of recovery. Next, we describe the importance of neural population dynamics, disruptions in these dynamics after stroke, and how allocation of neurons into spared circuits can restore functionality. On a more global scale, we then discuss how effects on long-range pathways, including interhemispheric interactions and corticospinal tract transmission, contribute to post-stroke impairments. Finally, we look forward and consider how a deeper understanding of neural circuit mechanisms of recovery may lead to novel treatments to reduce disability and improve recovery after stroke.
Collapse
Affiliation(s)
- Baruc Campos
- Department of Neurology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| | - Hoseok Choi
- Department of Neurology, Weill Institute for Neuroscience, University of California-San Francisco, San Francisco, California 94158
| | - Andrew T DeMarco
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC 20057
- Department of Rehabilitation Medicine, Georgetown University Medical Center, Georgetown University, Washington, DC 20057
| | - Anna Seydell-Greenwald
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC 20057
- MedStar National Rehabilitation Hospital, Washington, DC 20010
| | - Sara J Hussain
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas 78712
| | - Mary T Joy
- The Jackson Laboratory, Bar Harbor, Maine 04609
| | - Peter E Turkeltaub
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Georgetown University, Washington, DC 20057
- MedStar National Rehabilitation Hospital, Washington, DC 20010
| | - William Zeiger
- Department of Neurology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California 90095
| |
Collapse
|
7
|
Lafe CW, Liu F, Simpson TW, Moon CH, Collinger JL, Wittenberg GF, Urbin MA. Force oscillations underlying precision grip in humans with lesioned corticospinal tracts. Neuroimage Clin 2023; 38:103398. [PMID: 37086647 PMCID: PMC10173012 DOI: 10.1016/j.nicl.2023.103398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 04/24/2023]
Abstract
Stability of precision grip depends on the ability to regulate forces applied by the digits. Increased frequency composition and temporal irregularity of oscillations in the force signal are associated with enhanced force stability, which is thought to result from increased voluntary drive along the corticospinal tract (CST). There is limited knowledge of how these oscillations in force output are regulated in the context of dexterous hand movements like precision grip, which are often impaired by CST damage due to stroke. The extent of residual CST volume descending from primary motor cortex may help explain the ability to modulate force oscillations at higher frequencies. Here, stroke survivors with longstanding hand impairment (n = 17) and neurologically-intact controls (n = 14) performed a precision grip task requiring dynamic and isometric muscle contractions to scale and stabilize forces exerted on a sensor by the index finger and thumb. Diffusion spectrum imaging was used to quantify total white matter volume within the residual and intact CSTs of stroke survivors (n = 12) and CSTs of controls (n = 14). White matter volumes within the infarct region and an analogous portion of overlap with the CST, mirrored onto the intact side, were also quantified in stroke survivors. We found reduced ability to stabilize force and more restricted frequency ranges in force oscillations of stroke survivors relative to controls; though, more broadband, irregular output was strongly related to force-stabilizing ability in both groups. The frequency composition and temporal irregularity of force oscillations observed in stroke survivors did not correlate with maximal precision grip force, suggesting that it is not directly related to impaired force-generating capacity. The ratio of residual to intact CST volumes contained within infarct and mirrored compartments was associated with more broadband, irregular force oscillations in stroke survivors. Our findings provide insight into granular aspects of dexterity altered by corticospinal damage and supply preliminary evidence to support that the ability to modulate force oscillations at higher frequencies is explained, at least in part, by residual CST volume in stroke survivors.
Collapse
Affiliation(s)
- Charley W Lafe
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA
| | - Fang Liu
- Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tyler W Simpson
- Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Chan Hong Moon
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jennifer L Collinger
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA; Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - George F Wittenberg
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA; Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Michael A Urbin
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA 15206, USA; Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
8
|
Pirondini E, Carranza E, Balaguer JM, Sorensen E, Weber DJ, Krakauer JW, Capogrosso M. Poststroke arm and hand paresis: should we target the cervical spinal cord? Trends Neurosci 2022; 45:568-578. [PMID: 35659414 DOI: 10.1016/j.tins.2022.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/18/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
Despite advances in understanding of corticospinal motor control and stroke pathophysiology, current rehabilitation therapies for poststroke upper limb paresis have limited efficacy at the level of impairment. To address this problem, we make the conceptual case for a new treatment approach. We first summarize current understanding of motor control deficits in the arm and hand after stroke and their shared physiological mechanisms with spinal cord injury (SCI). We then review studies of spinal cord stimulation (SCS) for recovery of locomotion after SCI, which provide convincing evidence for enhancement of residual corticospinal function. By extrapolation, we argue for using cervical SCS to restore upper limb motor control after stroke.
Collapse
Affiliation(s)
- Elvira Pirondini
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Erick Carranza
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Josep-Maria Balaguer
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erynn Sorensen
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Douglas J Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - John W Krakauer
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA; The Santa Fe Institute, Santa Fe, CA, USA; Department of Physical Medicine and Rehabilitation, Johns Hopkins University, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
| | - Marco Capogrosso
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA; Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Johnstone A. Re-recruiting spinal motor neurons after stroke. J Physiol 2021; 599:4241-4242. [PMID: 34359095 DOI: 10.1113/jp281881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ainslie Johnstone
- Department of Clinical and Movement Neuroscience, Institute of Neurology, University College London, London, UK
| |
Collapse
|