1
|
Hucteau E, Mallard J, Barbi C, Venturelli M, Schott R, Trensz P, Pflumio C, Kalish-Weindling M, Pivot X, Favret F, Ducrocq GP, Dufour SP, Pagano AF, Hureau TJ. Impact of Eccentric versus Concentric Cycling Exercise on Neuromuscular Fatigue and Muscle Damage in Breast Cancer Patients. Med Sci Sports Exerc 2024; 56:2103-2116. [PMID: 38935539 DOI: 10.1249/mss.0000000000003506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
INTRODUCTION This study investigated the magnitude and etiology of neuromuscular fatigue and muscle damage induced by eccentric cycling compared with conventional concentric cycling in patients with breast cancer. METHODS After a gradual familiarization protocol for eccentric cycling, nine patients with early-stage breast cancer performed three cycling sessions in eccentric or concentric mode. The eccentric cycling session (ECC) was compared with concentric cycling sessions matched for power output (CON power ; 80% of concentric peak power output, 95 ± 23 W) or oxygen uptake ( ; 10 ± 2 mL·min·kg -1 ). Preexercise to postexercise changes (30-s through 10-min recovery) in knee extensor maximal voluntary contraction force (MVC), voluntary activation, and quadriceps potentiated twitch force ( Qtw ) were quantified to determine global, central, and peripheral fatigue, respectively. Creatine kinase and lactate dehydrogenase activities were measured in the plasma before and 24 h after exercise as markers of muscle damage. RESULTS Compared with CON power (-11% ± 9%) and (-5% ± 5%), the ECC session resulted in a greater decrease in MVC (-25% ± 12%) postexercise ( P < 0.001). Voluntary activation decreased only in ECC (-9% ± 6% postexercise, P < 0.001). The decrease in Qtw was similar postexercise between ECC and CON power (-39% ± 21% and -40% ± 16%, P > 0.99) but lower in ( P < 0.001). The CON power session resulted in twofold greater compared with the ECC and sessions ( P < 0.001). No change in creatine kinase or lactate dehydrogenase activity was reported from preexercise to 24 h postexercise. CONCLUSIONS The ECC session induced greater neuromuscular fatigue compared with the concentric cycling sessions without generating severe muscle damage. ECC is a promising exercise modality for counteracting neuromuscular maladaptation in patients with breast cancer.
Collapse
Affiliation(s)
| | | | | | - Massimo Venturelli
- Department of Neurosciences, Biomedicine, and Movement, University of Verona, Verona, ITALY
| | - Roland Schott
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, FRANCE
| | - Philippe Trensz
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, FRANCE
| | - Carole Pflumio
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, FRANCE
| | | | - Xavier Pivot
- Institute of Cancerology Strasbourg Europe (ICANS), Strasbourg, FRANCE
| | | | | | | | | | | |
Collapse
|
2
|
Debold EP, Westerblad H. New insights into the cellular and molecular mechanisms of skeletal muscle fatigue: the Marion J. Siegman Award Lectureships. Am J Physiol Cell Physiol 2024; 327:C946-C958. [PMID: 39069825 DOI: 10.1152/ajpcell.00213.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Skeletal muscle fibers need to have mechanisms to decrease energy consumption during intense physical exercise to avoid devastatingly low ATP levels, with the formation of rigor cross bridges and defective ion pumping. These protective mechanisms inevitably lead to declining contractile function in response to intense exercise, characterizing fatigue. Through our work, we have gained insights into cellular and molecular mechanisms underlying the decline in contractile function during acute fatigue. Key mechanistic insights have been gained from studies performed on intact and skinned single muscle fibers and more recently from studies performed and single myosin molecules. Studies on intact single fibers revealed several mechanisms of impaired sarcoplasmic reticulum Ca2+ release and experiments on single myosin molecules provide direct evidence of how putative agents of fatigue impact myosin's ability to generate force and motion. We conclude that changes in metabolites due to an increased dependency on anaerobic metabolism (e.g., accumulation of inorganic phosphate ions and H+) act to directly and indirectly (via decreased Ca2+ activation) inhibit myosin's force and motion-generating capacity. These insights into the acute mechanisms of fatigue may help improve endurance training strategies and reveal potential targets for therapies to attenuate fatigue in chronic diseases.
Collapse
Affiliation(s)
- Edward P Debold
- Muscle Biophysics Lab, Department of Kinesiology, University of Massachusetts, Amherst, Massachusetts, United States
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Curovic I, Rhodes D, Alexander J, Harper DJ. Vertical Strength Transfer Phenomenon Between Upper Body and Lower Body Exercise: Systematic Scoping Review. Sports Med 2024; 54:2109-2139. [PMID: 38743172 PMCID: PMC11329601 DOI: 10.1007/s40279-024-02039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND There are a myriad of exercise variations in which upper body (UB) and lower body (LB) exercises have been intermittently used. However, it is still unclear how training of one body region (e.g. LB) affects adaptations in distant body areas (e.g. UB), and how different UB and LB exercise configurations could help facilitate physiological adaptations of either region; both referred to in this review as vertical strength transfer. OBJECTIVE We aimed to investigate the existence of the vertical strength transfer phenomenon as a response to various UB and LB exercise configurations and to identify potential mechanisms underpinning its occurrence. METHODS A systematic search using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) for Scoping Reviews protocol was conducted in February 2024 using four databases (Web of Science, MEDLINE, Scopus and CINAHL) to identify peer-reviewed articles that investigated the vertical strength transfer phenomenon. RESULTS Of the 5242 identified articles, 24 studies met the inclusion criteria. Findings suggest that the addition of UB strength training to LB endurance exercise may help preserve power-generating capacity for the leg muscle fibres. Furthermore, systemic endocrine responses to high-volume resistance exercise may beneficially modulate adaptations in precedingly or subsequently trained muscles from a different body region, augmenting their strength gains. Last, strength training for LB could result in improved strength of untrained UB, likely due to the increased central neural drive. CONCLUSIONS Vertical strength transfer existence is enabled by neurophysiological mechanisms. Future research should involve athletic populations, examining the potential of vertical strength transfer to facilitate athletic performance and preserve strength in injured extremities.
Collapse
Affiliation(s)
- Ivan Curovic
- Institute of Coaching and Performance, School of Health, Social Work and Sport, University of Central Lancashire, Preston, UK.
- , Jurija Gagarina 102/7, 11070, Belgrade, Serbia.
| | - David Rhodes
- Human Performance Department, Burnley Football Club, Burnley, UK
| | - Jill Alexander
- Institute of Coaching and Performance, School of Health, Social Work and Sport, University of Central Lancashire, Preston, UK
| | - Damian J Harper
- Institute of Coaching and Performance, School of Health, Social Work and Sport, University of Central Lancashire, Preston, UK
| |
Collapse
|
4
|
Boda MR, Otieno LA, Smith AE, Goldsworthy MR, Sidhu SK. Metaplastic neuromodulation via transcranial direct current stimulation has no effect on corticospinal excitability and neuromuscular fatigue. Exp Brain Res 2024; 242:1999-2012. [PMID: 38940961 PMCID: PMC11252223 DOI: 10.1007/s00221-024-06874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation tool with potential for managing neuromuscular fatigue, possibly due to alterations in corticospinal excitability. However, inconsistencies in intra- and inter- individual variability responsiveness to tDCS limit its clinical use. Emerging evidence suggests harnessing homeostatic metaplasticity induced via tDCS may reduce variability and boost its outcomes, yet little is known regarding its influence on neuromuscular fatigue in healthy adults. We explored whether cathodal tDCS (ctDCS) prior to exercise combined with anodal tDCS (atDCS) could augment corticospinal excitability and attenuate neuromuscular fatigue. 15 young healthy adults (6 males, 22 ± 4 years) participated in four pseudo-randomised neuromodulation sessions: sham stimulation prior and during exercise, sham stimulation prior and atDCS during exercise, ctDCS prior and atDCS during exercise, ctDCS prior and sham stimulation during exercise. The exercise constituted an intermittent maximal voluntary contraction (MVC) of the right first dorsal interosseous (FDI) for 10 min. Neuromuscular fatigue was quantified as an attenuation in MVC force, while motor evoked potential (MEP) amplitude provided an assessment of corticospinal excitability. MEP amplitude increased during the fatiguing exercise, whilst across time, force decreased. There were no differences in MEP amplitudes or force between neuromodulation sessions. These outcomes highlight the ambiguity of harnessing metaplasticity to ameliorate neuromuscular fatigue in young healthy individuals.
Collapse
Affiliation(s)
- Madison R Boda
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Lavender A Otieno
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Ashleigh E Smith
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia
| | - Mitchell R Goldsworthy
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- Behaviour-Brain-Body Research Centre, Justice and Society, University of South Australia, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Simranjit K Sidhu
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| |
Collapse
|
5
|
Yang Y, Feng Z, Luo YH, Chen JM, Zhang Y, Liao YJ, Jiang H, Long Y, Wei B. Exercise-Induced Central Fatigue: Biomarkers, and Non-Medicinal Interventions. Aging Dis 2024:AD.2024.0567. [PMID: 39012671 DOI: 10.14336/ad.2024.0567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Fatigue, commonly experienced in daily life, is a feeling of extreme tiredness, shortage or lack of energy, exhaustion, and difficulty in performing voluntary tasks. Central fatigue, defined as a progressive failure to voluntarily activate the muscle, is typically linked to moderate- or light-intensity exercise. However, in some instances, high-intensity exercise can also trigger the onset of central fatigue. Exercise-induced central fatigue often precedes the decline in physical performance in well-trained athletes. This leads to a reduction in nerve impulses, decreased neuronal excitability, and an imbalance in brain homeostasis, all of which can adversely impact an athlete's performance and the longevity of their sports career. Therefore, implementing strategies to delay the onset of exercise-induced central fatigue is vital for enhancing athletic performance and safeguarding athletes from the debilitating effects of fatigue. In this review, we discuss the structural basis, measurement methods, and biomarkers of exercise-induced central fatigue. Furthermore, we propose non-pharmacological interventions to mitigate its effects, which can potentially foster improvements in athletes' performances in a healthful and sustainable manner.
Collapse
Affiliation(s)
- Ying Yang
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Zhi Feng
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Yu-Hang Luo
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Jue-Miao Chen
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Yu Zhang
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Yi-Jun Liao
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Hui Jiang
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Yinxi Long
- Department of Neurology, Affiliated Hengyang Hospital of Hunan Normal University &;amp Hengyang Central Hospital, Hengyang, 421001, China
| | - Bo Wei
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| |
Collapse
|
6
|
Mavanji V, Pomonis BL, Shekels L, Kotz CM. Interactions between Lateral Hypothalamic Orexin and Dorsal Raphe Circuitry in Energy Balance. Brain Sci 2024; 14:464. [PMID: 38790443 PMCID: PMC11117928 DOI: 10.3390/brainsci14050464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Orexin/hypocretin terminals innervate the dorsal raphe nucleus (DRN), which projects to motor control areas important for spontaneous physical activity (SPA) and energy expenditure (EE). Orexin receptors are expressed in the DRN, and obesity-resistant (OR) rats show higher expression of these receptors in the DRN and elevated SPA/EE. We hypothesized that orexin-A in the DRN enhances SPA/EE and that DRN-GABA modulates the effect of orexin-A on SPA/EE. We manipulated orexin tone in the DRN either through direct injection of orexin-A or through the chemogenetic activation of lateral-hypothalamic (LH) orexin neurons. In the orexin neuron activation experiment, fifteen minutes prior to the chemogenetic activation of orexin neurons, the mice received either the GABA-agonist muscimol or antagonist bicuculline injected into the DRN, and SPA/EE was monitored for 24 h. In a separate experiment, orexin-A was injected into the DRN to study the direct effect of DRN orexin on SPA/EE. We found that the activation of orexin neurons elevates SPA/EE, and manipulation of GABA in the DRN does not alter the SPA response to orexin neuron activation. Similarly, intra-DRN orexin-A enhanced SPA and EE in the mice. These results suggest that orexin-A in the DRN facilitates negative energy balance by increasing physical activity-induced EE, and that modulation of DRN orexin-A is a potential strategy to promote SPA and EE.
Collapse
Affiliation(s)
- Vijayakumar Mavanji
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417, USA; (V.M.); (B.L.P.); (L.S.)
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brianna L. Pomonis
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417, USA; (V.M.); (B.L.P.); (L.S.)
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laurie Shekels
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417, USA; (V.M.); (B.L.P.); (L.S.)
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Catherine M. Kotz
- Research Service, Veterans Affairs Health Care System, Minneapolis, MN 55417, USA; (V.M.); (B.L.P.); (L.S.)
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA
- Geriatric Research, Education and Clinical Center, Minneapolis VA Health Care System, Minneapolis, MN 55417, USA
| |
Collapse
|
7
|
Ramos L, Ramos TAM, Almeida RFD, da Silva-Rocha JV, Zimerer C, Arêas FZ. Acute anodal transcranial direct current stimulation improves the performance of professional rowers. Front Sports Act Living 2024; 6:1310856. [PMID: 38699626 PMCID: PMC11063233 DOI: 10.3389/fspor.2024.1310856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/13/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction The aim of the present study was to evaluate the influence of acute transcranial direct current stimulation (tDCS) on physical and subjective responses in professional rowing during the 2,000-m time trial test. Methods Seven rowers (age 20.86 ± 4.49 years; weight 71.66 ± 7.97 kg) participated in this randomized triple-blind trial with a crossover experimental design. The protocol consists of 2 days with different conditions (anodal and sham). The tDCS anodic stimulation conducted was 2 mA for 20 min in the left temporal cortex (2.5 cm from the F7 zone and 2.5 cm from the T3 zone), targeting the left insular cortex. In the sham moment, the participants experienced 30 s of stimulation. Afterward, they performed a standardized progressive warm-up for 15 min, following the Brazilian Rowing Confederation's assessment protocols, and rested for 3 min before the test started. All procedures were made on an indoor rowing machine, which allowed the capture of performance variables such as time performed, power in watts (W), pace (m/min), and stroke rate (strokes/min). The ratings of perceived exertion [Borg scale (CR-20)] were recorded in each 2-min during the test. Results The results presented differences in power [Z: -2.371; p = 0.018; effect size (ES) = -0.896 (large)] and pace [Z: -2.371; p = 0.018; ES = -0.896 (large)] and time performance [Z: -1.612; p = 0.107; ES = -0.609 (large)] throughout the protocol for the anodal moment. Discussion However, no differences for the other variables were found. According to the results, the current tDCS with the present protocol improved the physical performance at the 2,000-m time trial Test providing ergogenic aid.
Collapse
Affiliation(s)
- Luciano Ramos
- Physiotherapy Course at the FAVI—Victorian Higher Education Association, Vitória, Brazil
- Neuromodulation Institute, Vitória, Brazil
| | - Tatiana Aparecida Magacho Ramos
- Physiotherapy Course at the FAVI—Victorian Higher Education Association, Vitória, Brazil
- Neuromodulation Institute, Vitória, Brazil
| | - Rodrigo Freire De Almeida
- Group of Study and Research in Neurorehabilitation and Neuromodulation, Federal University of Espirito Santo, Vitória, Brazil
- Postgraduate Program Physiological Sciences, Center of Health Science, Federal University of Espirito Santo, Vitória, Brazil
| | - Jader Vinicius da Silva-Rocha
- Group of Study and Research in Neurorehabilitation and Neuromodulation, Federal University of Espirito Santo, Vitória, Brazil
- Postgraduate Program Physiological Sciences, Center of Health Science, Federal University of Espirito Santo, Vitória, Brazil
| | - Carla Zimerer
- Postgraduate Program in Electrical Engineering, Federal University of Espírito Santo, Vitória, Brazil
- Telecommunications Laboratory, Federal University of Espírito Santo, Vitória, Brazil
| | - Fernando Zanela Arêas
- Group of Study and Research in Neurorehabilitation and Neuromodulation, Federal University of Espirito Santo, Vitória, Brazil
- Postgraduate Program Physiological Sciences, Center of Health Science, Federal University of Espirito Santo, Vitória, Brazil
- Physiotherapy Course at the Federal University of Espirito Santo, Vitória, Brazil
| |
Collapse
|
8
|
Zambolin F, Duro Ocana P, Goulding R, Sanderson A, Venturelli M, Wood G, McPhee J, Parr JVV. The corticomuscular response to experimental pain via blood flow occlusion when applied to the ipsilateral and contralateral leg during an isometric force task. Psychophysiology 2024; 61:e14466. [PMID: 37872004 DOI: 10.1111/psyp.14466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/21/2023] [Accepted: 10/08/2023] [Indexed: 10/25/2023]
Abstract
Blood flow occlusion (BFO) has been previously used to investigate physiological responses to muscle ischemia, showing increased perceptual effort (RPE) and pain along with impaired neuromuscular performance. However, at present, it is unclear how BFO alters corticomuscular activities when either applied to the exercising or nonexercising musculature. The present study therefore set out to assess the corticomuscular response to these distinct BFO paradigms during an isometric contraction precision task. In a repeated measures design, fifteen participants (age = 27.00 ± 5.77) completed 15 isometric contractions across three experimental conditions; no occlusion (CNTRL), occlusion of the contralateral (i.e., nonexercising) limb (CON-OCC), and occlusion of the ipsilateral (i.e., exercising) limb (IPS-OCC). Measures of force, electroencephalographic (EEG), and electromyographic (EMG) were recorded during contractions. We observed that IPS-OCC broadly impaired force steadiness, elevated EMG of the vastus lateralis, and heightened RPE and pain. IPSI-OCC also significantly decreased corticomuscular coherence during the early phase of contraction and decreased EEG alpha activity across the sensorimotor and temporoparietal regions during the middle and late phases of contraction compared with CNTRL. By contrast, CON-OCC increased perceived levels of pain (but not RPE) and decreased EEG alpha activity across the prefrontal cortex during the middle and late phases of contraction, with no changes observed for EMG and force steadiness. Together, these findings highlight distinctive psychophysiological responses to experimental pain via BFO showing altered cortical activities (CON-OCC) and altered cortical, corticomuscular, and neuromuscular activities (IPS-OCC) when applied to the lower limbs during an isometric force precision task.
Collapse
Affiliation(s)
- F Zambolin
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
- Department of Sport and Exercise Science, Manchester Metropolitan University, Manchester, UK
| | - P Duro Ocana
- Department of Life Science, Manchester Metropolitan University, Manchester, UK
| | - R Goulding
- Laboratory for Myology, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - A Sanderson
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
- Department of Sport and Exercise Science, Manchester Metropolitan University, Manchester, UK
| | - M Venturelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - G Wood
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
- Department of Sport and Exercise Science, Manchester Metropolitan University, Manchester, UK
| | - J McPhee
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
- Department of Sport and Exercise Science, Manchester Metropolitan University, Manchester, UK
| | - J V V Parr
- Institute of Sport, Manchester Metropolitan University, Manchester, UK
- Department of Sport and Exercise Science, Manchester Metropolitan University, Manchester, UK
| |
Collapse
|
9
|
Machado DGDS, Amiri E. Critical considerations on tDCS-induced changes in corticospinal excitability and exercise performance: should we go beyond M1? J Physiol 2023; 601:5453-5455. [PMID: 37786946 DOI: 10.1113/jp285507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023] Open
Affiliation(s)
- Daniel Gomes da Silva Machado
- Research Group in Neuroscience of Human Movement (NeuroMove), Department of Physical Education, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ehsan Amiri
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
10
|
Amann M, Sidhu SK, McNeil CJ, Gandevia SC. Transcranial direct current stimulation to enhance athletic performance: Are we there yet? Will we ever get there? J Physiol 2023; 601:5457-5458. [PMID: 37929747 DOI: 10.1113/jp285691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Affiliation(s)
- Markus Amann
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Simranjit K Sidhu
- School of Biomedicine, University of Adelaide, South Australia, Australia
| | - Chris J McNeil
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Simon C Gandevia
- Neuroscience Research Australia and University of New South Wales, Sydney, Australia
| |
Collapse
|
11
|
Mackay K, Orssatto LBR, Polman R, Van der Pols JC, Trajano GS. Caffeine does not influence persistent inward current contribution to motoneuron firing. J Neurophysiol 2023; 130:1529-1540. [PMID: 37877186 DOI: 10.1152/jn.00350.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023] Open
Abstract
The purpose of this study was to investigate whether caffeine consumption would change persistent inward current (PIC) contribution to motoneuron firing at increased contraction intensities and after repetitive sustained maximal contractions. Before and after the consumption of 6 mg·kg-1 of caffeine or placebo, 16 individuals performed isometric triangular-shaped ramp dorsiflexion contractions (to 20% and 40% of peak torque), followed by four maximal contractions sustained until torque production dropped to 60% of maximum, and consecutive 20% triangular-shaped contractions. Tibialis anterior motor unit firing frequencies were analyzed from high-density surface electromyograms. PIC contribution to motor unit firing was estimated by calculating the delta frequency (ΔF) using the paired motor unit technique. Motoneuron peak firing frequencies at 20% and 40% contractions and total torque-time integral during the repetitive sustained maximal contractions were also assessed. ΔF increased 0.69 peaks per second (pps) (95% CI = -0.98, -0.405; d = -0.87) from 20% to 40% contraction intensities and reduced 0.85 pps (95% CI = 0.66, 1.05; d = 0.99) after the repetitive sustained maximal contractions, regardless of caffeine consumption. Participants produced 337 Nm·s (95% CI = 49.9, 624; d = 0.63) more torque integral during the repetitive sustained maximal contractions after caffeine consumption. A strong repeated-measures correlation (r = 0.61; 95% CI = 0.49, 0.69) was observed between reductions of ΔF and peak firing frequencies after the repetitive sustained maximal contractions. PIC contribution to motoneuron firing increases from 20% to 40% contraction intensities, with no effect of caffeine (on rested tibialis anterior). Repetitive sustained maximal contractions reduced PIC contribution to motoneuron firing, regardless of caffeine or placebo consumption, evidencing that changes in intrinsic motoneuron properties contributed to performance loss. Caffeine-attenuated reduction of torque production capacity was unlikely mediated by PICs.NEW & NOTEWORTHY Persistent inward current (PIC) contribution to motoneuron firing increases with contraction intensities and is reduced after repetitive sustained maximal contractions, regardless of caffeine consumption. Reductions of PIC contribution to motoneuron firing and peak firing frequencies were largely associated, evidencing a novel mechanism underpinning decrements in maximal torque production capacity following repetitive sustained maximal contractions. Caffeine consumption attenuated neuromuscular performance reductions-allowing higher time-torque integral production during repetitive sustained maximal contractions. This was unlikely mediated by PIC.
Collapse
Affiliation(s)
- Karen Mackay
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Lucas B R Orssatto
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | - Remco Polman
- Institute of Health and Wellbeing, Federation University, Melbourne, Victoria, Australia
| | - Jolieke C Van der Pols
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Gabriel S Trajano
- School of Exercise and Nutrition Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Zhan J, Yu C, Xiao S, Shen B, Zhang C, Zhou J, Fu W. Effects of high-definition transcranial direct current stimulation on the cortical-muscular functional coupling and muscular activities of ankle dorsi-plantarflexion under running-induced fatigue. Front Physiol 2023; 14:1263309. [PMID: 37841316 PMCID: PMC10570418 DOI: 10.3389/fphys.2023.1263309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/22/2023] [Indexed: 10/17/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) can improve motor control performance under fatigue. However, the influences of tDCS on factors contributing to motor control (e.g., cortical-muscular functional coupling, CMFC) are unclear. This double-blinded and randomized study examined the effects of high-definition tDCS (HD-tDCS) on muscular activities of dorsiflexors and plantarflexors and CMFC when performing ankle dorsi-plantarflexion under fatigue. Twenty-four male adults were randomly assigned to receive five sessions of 20-min HD-tDCS targeting primary motor cortex (M1) or sham stimulation. Three days before and 1 day after the intervention, participants completed ankle dorsi-plantarflexion under fatigue induced by prolonged running exercise. During the task, electroencephalography (EEG) of M1 (e.g., C1, Cz) and surface electromyography (sEMG) of several muscles (e.g., tibialis anterior [TA]) were recorded synchronously. The corticomuscular coherence (CMC), root mean square (RMS) of sEMG, blood lactate, and maximal voluntary isometric contraction (MVC) of ankle dorsiflexors and plantarflexors were obtained. Before stimulation, greater beta- and gamma-band CMC between M1 and TA were significantly associated with greater RMS of TA (r = 0.460-0.619, p = 0.001-0.024). The beta- and gamma-band CMC of C1-TA and Cz-TA, and RMS of TA and MVC torque of dorsiflexors were significantly higher after HD-tDCS than those at pre-intervention in the HD-tDCS group and post-intervention in the control group (p = 0.002-0.046). However, the HD-tDCS-induced changes in CMC and muscle activities were not significantly associated (r = 0.050-0.128, p = 0.693-0.878). HD-tDCS applied over M1 can enhance the muscular activities of ankle dorsiflexion under fatigue and related CMFC.
Collapse
Affiliation(s)
- Jianglong Zhan
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Changxiao Yu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Songlin Xiao
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Bin Shen
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Chuyi Zhang
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Junhong Zhou
- The Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Weijie Fu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
13
|
Zhou Y, Chu Z, Luo Y, Yang F, Cao F, Luo F, Lin Q. Dietary Polysaccharides Exert Anti-Fatigue Functions via the Gut-Muscle Axis: Advances and Prospectives. Foods 2023; 12:3083. [PMID: 37628082 PMCID: PMC10453516 DOI: 10.3390/foods12163083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Due to today's fast-paced lifestyle, most people are in a state of sub-health and face "unexplained fatigue", which can seriously affect their health, work efficiency, and quality of life. Fatigue is also a common symptom of several serious diseases such as Parkinson's, Alzheimer's, cancer, etc. However, the contributing mechanisms are not clear, and there are currently no official recommendations for the treatment of fatigue. Some dietary polysaccharides are often used as health care supplements; these have been reported to have specific anti-fatigue effects, with minor side effects and rich pharmacological activities. Dietary polysaccharides can be activated during food processing or during gastrointestinal transit, exerting unique effects. This review aims to comprehensively summarize and evaluate the latest advances in the biological processes of exercise-induced fatigue, to understand dietary polysaccharides and their possible molecular mechanisms in alleviating exercise-induced fatigue, and to systematically elaborate the roles of gut microbiota and the gut-muscle axis in this process. From the perspective of the gut-muscle axis, investigating the relationship between polysaccharides and fatigue will enhance our understanding of fatigue and may lead to a significant breakthrough regarding the molecular mechanism of fatigue. This paper will provide new perspectives for further research into the use of polysaccharides in food science and food nutrition, which could help develop potential anti-fatigue agents and open up novel therapies for sub-health conditions.
Collapse
Affiliation(s)
- Yaping Zhou
- National Engineering Research Center of Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, China; (Y.Z.); (Z.C.); (F.Y.); (F.L.)
| | - Zhongxing Chu
- National Engineering Research Center of Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, China; (Y.Z.); (Z.C.); (F.Y.); (F.L.)
| | - Yi Luo
- Department of Clinical Medicine, Medical College of Xiangya, Central South University, Changsha 410008, China;
| | - Feiyan Yang
- National Engineering Research Center of Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, China; (Y.Z.); (Z.C.); (F.Y.); (F.L.)
| | - Fuliang Cao
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
| | - Feijun Luo
- National Engineering Research Center of Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, China; (Y.Z.); (Z.C.); (F.Y.); (F.L.)
| | - Qinlu Lin
- National Engineering Research Center of Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, China; (Y.Z.); (Z.C.); (F.Y.); (F.L.)
| |
Collapse
|
14
|
Teymoori H, Amiri E, Tahmasebi W, Hoseini R, Grospretre S, Machado DGDS. Effect of tDCS targeting the M1 or left DLPFC on physical performance, psychophysiological responses, and cognitive function in repeated all-out cycling: a randomized controlled trial. J Neuroeng Rehabil 2023; 20:97. [PMID: 37496055 PMCID: PMC10373277 DOI: 10.1186/s12984-023-01221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Despite reporting the positive effects of transcranial direct current stimulation (tDCS) on endurance performance, very few studies have investigated its efficacy in anaerobic short all-out activities. Moreover, there is still no consensus on which brain areas could provide the most favorable effects on different performance modalities. Accordingly, this study aimed to investigate the effects of anodal tDCS (a-tDCS) targeting the primary motor cortex (M1) or left dorsolateral prefrontal cortex (DLPFC) on physical performance, psychophysiological responses, and cognitive function in repeated all-out cycling. METHODS In this randomized, crossover, and double-blind study, 15 healthy physically active men underwent a-tDCS targeting M1 or the left DLPFC or sham tDCS in separate days before performing three bouts of all-out 30s cycling anaerobic test. a-tDCS was applied using 2 mA for 20 min. Peak power, mean power, fatigue index, and EMG of the quadriceps muscles were measured during each bout. Heart rate, perceived exertion, affective valence, and arousal were recorded two minutes after each bout. Color-word Stroop test and choice reaction time were measured at baseline and after the whole anaerobic test. RESULTS Neither tDCS montage significantly changed peak power, mean power, fatigue index, heart rate, affective valence, arousal, and choice reaction time (p> 0.05). a-tDCS over DLPFC significantly lowered RPE of the first bout (compared to sham; p=0.048, Δ=-12.5%) and third bout compared to the M1 (p=0.047, Δ=-12.38%) and sham (p=0.003, Δ=-10.5%), increased EMG of the Vastus Lateralis muscle during the second (p=0.016, Δ= +40.3%) and third bout (p=0.016, Δ= +42.1%) compared to sham, and improved the score of color-word Stroop test after the repeated all-out task (p=0.04, Δ= +147%). The qualitative affective response (valence and arousal) was also higher under the M1 and DLPFC compared to the sham. CONCLUSION We concluded that tDCS targeting M1 or DLPFC does not improve repeated anaerobic performance. However, the positive effect of DLPFC montage on RPE, EMG, qualitative affective responses, and cognitive function is promising and paves the path for future research using different tDCS montages to see any possible effects on anaerobic performance. TRIAL REGISTRATION This study was approved by the Ethics Committee of Razi University (IR.RAZI.REC.1400.023) and registered in the Iranian Registry of Clinical Trials (IRCT id: IRCT20210617051606N5; Registration Date: 04/02/2022).
Collapse
Affiliation(s)
- Hafez Teymoori
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Ehsan Amiri
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran.
| | - Worya Tahmasebi
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Rastegar Hoseini
- Exercise Metabolism and Performance Lab (EMPL), Department of Exercise Physiology, Faculty of Sport Sciences, Razi University, Kermanshah, Iran
| | - Sidney Grospretre
- EA4660-C3S Laboratory - Culture, Sports, Health and Society, University Bourgogne France- Comte, Besancon, France
| | - Daniel Gomes da Silva Machado
- Research Group in Neuroscience of the Human Movement (NeuroMove), Department of Physical Education, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
15
|
Leijding C, Viken I, Bruton JD, Andersson DC, Cheng AJ, Westerblad H. Increased tetanic calcium in early fatigue of mammalian muscle fibers is accompanied by accelerated force development despite a decreased force. FASEB J 2023; 37:e22978. [PMID: 37191967 DOI: 10.1096/fj.202300401r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
During the initial phase of fatigue induced by repeated contractions in fast-twitch muscle fibers, tetanic force decreases despite increasing tetanic free cytosolic [Ca2+ ] ([Ca2+ ]cyt ). Here, we hypothesized that the increase in tetanic [Ca2+ ]cyt nevertheless has positive effects on force in early fatigue. Experiments on enzymatically isolated mouse flexor digitorum brevis (FDB) fibers showed that an increase in tetanic [Ca2+ ]cyt during ten 350 ms contractions required trains of electrical pulses to be elicited at short intervals (≤2 s) and at high frequencies (≥70 Hz). Mechanically dissected mouse FDB fibers showed greater decrease in tetanic force when the stimulation frequency during contractions was gradually reduced to prevent the increase in tetanic [Ca2+ ]cyt . Novel analyses of data from previous studies revealed an increased rate of force development in the tenth fatiguing contraction in mouse FDB fibers, as well as in rat FDB and human intercostal fibers. Mouse FDB fibers deficient in creatine kinase showed no increase in tetanic [Ca2+ ]cyt and slowed force development in the tenth contraction; after injection of creatine kinase to enable phosphocreatine breakdown, these fibers showed an increase in tetanic [Ca2+ ]cyt and accelerated force development. Mouse FDB fibers exposed to ten short contractions (43 ms) produced at short intervals (142 ms) showed increased tetanic [Ca2+ ]cyt accompanied by a marked (~16%) increase in the developed force. In conclusion, the increase in tetanic [Ca2+ ]cyt in early fatigue is accompanied by accelerated force development, which under some circumstances can counteract the decline in physical performance caused by the concomitant decrease in maximum force.
Collapse
Affiliation(s)
- Cecilia Leijding
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ida Viken
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Joseph D Bruton
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Daniel C Andersson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Heart, Vascular and Neurology Theme, Cardiology Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Arthur J Cheng
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Angius L. Critical considerations on tDCS-mediated changes in corticospinal response to fatiguing exercise. J Physiol 2023; 601:703-704. [PMID: 36536518 DOI: 10.1113/jp284152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Luca Angius
- Faculty of Health and Life Sciences, Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|