1
|
Leone CM, Lenoir C, van den Broeke EN. Assessing signs of central sensitization: A critical review of physiological measures in experimentally induced secondary hyperalgesia. Eur J Pain 2024. [PMID: 39315535 DOI: 10.1002/ejp.4733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/24/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND AND OBJECTIVES Central sensitization (CS) is believed to play a role in many chronic pain conditions. Direct non-invasive recording from single nociceptive neurons is not feasible in humans, complicating CS establishment. This review discusses how secondary hyperalgesia (SHA), considered a manifestation of CS, affects physiological measures in healthy individuals and if these measures could indicate CS. It addresses controversies about heat sensitivity changes, the role of tactile afferents in mechanical hypersensitivity and detecting SHA through electrical stimuli. Additionally, it reviews the potential of neurophysiological measures to indicate CS presence. DATABASES AND DATA TREATMENT Four databases, PubMed, ScienceDirect, Scopus and Cochrane Library, were searched using terms linked to 'hyperalgesia'. The search was limited to research articles in English conducted in humans until 2023. RESULTS Evidence for heat hyperalgesia in the SHA area is sparse and seems to depend on the experimental method used. Minimal or no involvement of tactile afferents in SHA was found. At the spinal level, the threshold of the nociceptive withdrawal reflex (RIII) is consistently reduced during experimentally induced SHA. The RIII area and the spinal somatosensory potential (N13-SEP) amplitude are modulated only with long-lasting nociceptive input. At the brain level, pinprick-evoked potentials within the SHA area are increased. CONCLUSIONS Mechanical pinprick hyperalgesia is the most reliable behavioural readout for SHA, while the RIII threshold is the most sensitive neurophysiological readout. Due to scarce data on reliability, sensitivity and specificity, none of the revised neurophysiological methods is currently suitable for CS identification at the individual level. SIGNIFICANCE Gathering evidence for CS in humans is a crucial research focus, especially with the increasing interest in concepts such as 'central sensitization-like pain' or 'nociplastic pain'. This review clarifies which readouts, among the different behavioural and neurophysiological proxies tested in experimental settings, can be used to infer the presence of CS in humans.
Collapse
Affiliation(s)
- Caterina M Leone
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Cedric Lenoir
- Institute of Neuroscience, UCLouvain, Brussels, Belgium
| | | |
Collapse
|
2
|
Howe EE, Apollinaro M, Bent LR. Mechanoreceptor sensory feedback is impaired by pressure induced cutaneous ischemia on the human foot sole and can predict cutaneous microvascular reactivity. Front Neurosci 2024; 18:1329832. [PMID: 38629048 PMCID: PMC11019310 DOI: 10.3389/fnins.2024.1329832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/06/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction The foot sole endures high magnitudes of pressure for sustained periods which results in transient but habitual cutaneous ischemia. Upon unloading, microvascular reactivity in cutaneous capillaries generates an influx of blood flow (PORH: post-occlusive reactive hyperemia). Whether pressure induced cutaneous ischemia from loading the foot sole impacts mechanoreceptor sensitivity remains unknown. Methods Pressure induced ischemia was attained using a custom-built-loading device that applied load to the whole right foot sole at 2 magnitudes (15 or 50% body weight), for 2 durations (2 or 10 minutes) in thirteen seated participants. Mechanoreceptor sensitivity was assessed using Semmes-Weinstein monofilaments over the third metatarsal (3MT), medial arch (MA), and heel. Perceptual thresholds (PT) were determined for each site prior to loading and then applied repeatedly to a metronome to establish the time course to return to PT upon unload, defined as PT recovery time. Microvascular flux was recorded from an in-line laser speckle contrast imager (FLPI-2, Moor Instruments Inc.) to establish PORH peak and recovery rates at each site. Results PT recovery and PORH recovery rate were most influenced at the heel and by load duration rather than load magnitude. PT recovery time at the heel was significantly longer with 10 minutes of loading, regardless of magnitude. Heel PORH recovery rate was significantly slower with 10minutes of loading. The 3MT PT recovery time was only longer after 10 minutes of loading at 50% body weight. Microvascular reactivity or sensitivity was not influenced with loading at the MA. A simple linear regression found that PORH recovery rate could predict PT recovery time at the heel (R2=0.184, p<0.001). Conclusion In populations with degraded sensory feedback, such as diabetic neuropathy, the risk for ulcer development is heightened. Our work demonstrated that prolonged loading in healthy individuals can impair skin sensitivity, which highlights the risks of prolonged loading and is likely exacerbated in diabetes. Understanding the direct association between sensory function and microvascular reactivity in age and diabetes related nerve damage, could help detect early progressions of neuropathy and mitigate ulcer development.
Collapse
Affiliation(s)
- Erika E. Howe
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | | | |
Collapse
|
3
|
Salgues S, Plancher G, Michael GA. Is it really on your hand? Spontaneous sensations are not peripheral sensations - Evidence from able-bodied individuals and a phantom limb syndrome patient. Brain Cogn 2024; 175:106138. [PMID: 38335922 DOI: 10.1016/j.bandc.2024.106138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Among other bodily signals, the perception of sensations arising spontaneously on the skin with no external triggers contributes to body awareness. The topic of spontaneous sensations (SPS) being quite recent in the literature, there is still a debate whether this phenomenon is elicited by peripheral cutaneous units' activity underlying tactile perception or originates directly from central mechanisms. In a first experiment, we figured that, if SPS depended on peripheral afferents, their perception on the glabrous hand should relate to the hand tactile sensitivity. On the contrary, we found no relationship at all, which led us to envisage the scenario of SPS in the absence of cutaneous units. In a second experiment, we present the case of Julie, a right-hand amputee that could perceive and report SPS arising on her phantom limb syndrome. We found that SPS distribution on the phantom limb followed the same gradient as that observed in control participants, unlike SPS perceived on the intact left hand. Those findings are crucial to the understanding of neural factors determining body awareness through SPS perception and provide insights into the existence of a precise neural gradient underlying somesthesis.
Collapse
Affiliation(s)
- Sara Salgues
- Département de Sciences Cognitives, Psychologie Cognitive & Neuropsychologie, Institut de Psychologie, Unité de Recherche Étude des Mécanismes Cognitifs (EA 3082), Université Lumière Lyon 2, Lyon, France; Laboratoire Mémoire Cerveau et Cognition, Université Paris Cité, Paris, France.
| | - Gaën Plancher
- Département de Sciences Cognitives, Psychologie Cognitive & Neuropsychologie, Institut de Psychologie, Unité de Recherche Étude des Mécanismes Cognitifs (EA 3082), Université Lumière Lyon 2, Lyon, France; Institut Universitaire de France (IUF), France
| | - George A Michael
- Département de Sciences Cognitives, Psychologie Cognitive & Neuropsychologie, Institut de Psychologie, Unité de Recherche Étude des Mécanismes Cognitifs (EA 3082), Université Lumière Lyon 2, Lyon, France
| |
Collapse
|
4
|
Howe EE, Sharma T, Marrelli LC, Nwebube C, Bent LR. Heating the skin on the foot sole enhances cutaneous reflexes in the lower limb. J Appl Physiol (1985) 2023; 135:985-994. [PMID: 37675471 DOI: 10.1152/japplphysiol.00533.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023] Open
Abstract
Cutaneous input is important in postural control and balance. Aging and diabetes impair skin sensitivity and motor control. Heat application can improve skin sensation, but its influence on motor control remains unknown. This study investigated the effects of heating the skin of the foot sole on lower limb cutaneous reflexes. Reflexes were evoked in the tibialis anterior muscle of 20 young, healthy adults before and after heating the foot sole to a maximum of 42°C. While holding a 15% maximum root mean square EMG generated during maximum isometric dorsiflexion, a filtered white noise (0-50 Hz) vibration at 10 times the perceptual threshold was applied to the heel to stimulate cutaneous mechanoreceptors. Reflexes were analyzed in both the time (cumulant density) and frequency (coherence, gain) domains. Heat increased foot skin temperature ∼15.4°C (P < 0.001). Cumulant density peak to peak amplitude significantly increased by 44% after heating (P = 0.01) while latencies did not vary (P = 0.46). Coherence and gain were significantly greater in the 30- to 40-Hz range following heating (P = 0.048; P = 0.02). Heating significantly enhances lower limb cutaneous reflexes. This may be due to the increased ability of cutaneous mechanoreceptors to encode in the 30- to 40-Hz range.NEW & NOTEWORTHY Cutaneous input is a known modulator of muscle activity. Targeting skin to intentionally enhance motor output has received little attention. We explored local skin heating to enhance skin sensitivity and found a significant increase in the amplitude, coherence, and gain of cutaneous reflexes in the tibialis anterior. Our current findings provide the first support for the use of heat as a viable and easily integrated modality in rehabilitation technology to improve balance and postural control.
Collapse
Affiliation(s)
- Erika E Howe
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Tushar Sharma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Laura C Marrelli
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Chioma Nwebube
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Leah R Bent
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
5
|
Gherri E, White F, Ambron E. Searching on the Back: Attentional Selectivity in the Periphery of the Tactile Field. Front Psychol 2022; 13:934573. [PMID: 35911043 PMCID: PMC9328746 DOI: 10.3389/fpsyg.2022.934573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
Recent evidence has identified the N140cc lateralized component of event-related potentials as a reliable index of the deployment of attention to task-relevant items in touch. However, existing ERP studies have presented the tactile search array to participants' limbs, most often to the hands. Here, we investigated distractor interference effects when the tactile search array was presented to a portion of the body that is less lateralized and peripheral compared to the hands. Participants were asked to localize a tactile target presented among distractors in a circular arrangement to their back. The N140cc was elicited contralateral to the target when the singleton distractor was absent. Its amplitude was reduced when the singleton distractor was present and contralateral to the target, suggesting that attention was directed at least in part to the distractor when the singletons are on opposite sides. However, similar N140cc were observed when the singleton distractor was ipsilateral to the target compared to distractor absent trials. We suggest that when target and singleton distractor are ipsilateral, the exact localization of the target requires the attentional processing of all items on the same side of the array, similar to distractor absent trials. Together, these observations replicate the distractor interference effects previously observed for the hands, suggesting that analogous mechanisms guide attentional selectivity across different body parts.
Collapse
Affiliation(s)
- Elena Gherri
- Dipartimento di Filosofia e Comunicazione, University of Bologna, Bologna, Italy
- Human Cognitive Neuroscience, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Elena Gherri
| | - Felicity White
- Human Cognitive Neuroscience, University of Edinburgh, Edinburgh, United Kingdom
| | - Elisabetta Ambron
- Laboratory for Cognition and Neural Stimulation, Neurology Department, School of Medicine University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
6
|
Macefield VG. Why is our sense of touch so good at our fingertips? J Physiol 2022; 600:1539-1540. [PMID: 35081664 DOI: 10.1113/jp282846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Vaughan G Macefield
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Anatomy and Physiology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
7
|
Smith SG, Yokich MK, Beaudette SM, Brown SHM, Bent LR. Cutaneous Sensitivity Across Regions of the Foot Sole and Dorsum are Influenced by Foot Posture. Front Bioeng Biotechnol 2022; 9:744307. [PMID: 35096786 PMCID: PMC8792506 DOI: 10.3389/fbioe.2021.744307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/04/2021] [Indexed: 01/13/2023] Open
Abstract
Understanding the processing of tactile information is crucial for the development of biofeedback interventions that target cutaneous mechanoreceptors. Mechanics of the skin have been shown to influence cutaneous tactile sensitivity. It has been established that foot skin mechanics are altered due to foot posture, but whether these changes affect cutaneous sensitivity are unknown. The purpose of this study was to investigate the potential effect of posture-mediated skin deformation about the ankle joint on perceptual measures of foot skin sensitivity. Participants (N = 20) underwent perceptual skin sensitivity testing on either the foot sole (N = 10) or dorsum (N = 10) with the foot positioned in maximal dorsiflexion/toe extension, maximal plantarflexion/toe flexion, and a neutral foot posture. Perceptual tests included touch sensitivity, stretch sensitivity, and spatial acuity. Regional differences in touch sensitivity were found across the foot sole (p < 0.001) and dorsum (p < 0.001). Touch sensitivity also significantly increased in postures where the skin was compressed (p = 0.001). Regional differences in spatial acuity were found on the foot sole (p = 0.002) but not dorsum (p = 0.666). Spatial acuity was not significantly altered by posture across the foot sole and dorsum, other than an increase in sensitivity at the medial arch in the dorsiflexion posture (p = 0.006). Posture*site interactions were found for stretch sensitivity on the foot sole and dorsum in both the transverse and longitudinal directions (p < 0.005). Stretch sensitivity increased in postures where the skin was pre-stretched on both the foot sole and dorsum. Changes in sensitivity across locations and postures were believed to occur due to concurrent changes in skin mechanics, such as skin hardness and thickness, which follows our previous findings. Future cutaneous biofeedback interventions should be applied with an awareness of these changes in skin sensitivity, to maximize their effectiveness for foot sole and dorsum input.
Collapse
Affiliation(s)
- Simone G.V.S. Smith
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, ON, Canada
| | - Maiya K. Yokich
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, ON, Canada
| | - Shawn M. Beaudette
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, ON, Canada
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Stephen H. M. Brown
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, ON, Canada
| | - Leah R. Bent
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, ON, Canada
- *Correspondence: Leah R. Bent,
| |
Collapse
|
8
|
Heating the Skin Over the Knee Improves Kinesthesia During Knee Extension. Motor Control 2022; 27:293-313. [PMID: 36400025 DOI: 10.1123/mc.2021-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/19/2022]
Abstract
To determine how heating affects dynamic joint position sense at the knee, participants (n = 11; F = 6) were seated in a HUMAC NORM dynamometer. The leg was passively moved through extension and flexion, and participants indicated when the 90° reference position was perceived, both at baseline (28.74 ± 2.43 °C) and heated (38.05 ± 0.16 °C) skin temperatures. Day 2 of testing reduced knee skin feedback with lidocaine. Directional error (actual leg angle–target angle) and absolute error (AE) were calculated. Heating reduced extension AE (baseline AE = 5.46 ± 2.39°, heat AE = 4.10 ± 1.97°), but not flexion. Lidocaine did not significantly affect flexion AE or extension AE. Overall, increased anterior knee-skin temperature improves dynamic joint position sense during passive knee extension, where baseline matching is poorer. Limited application of lidocaine to the anterior thigh, reducing some skin input, did not influence dynamic joint position sense, suggesting cutaneous receptors may play only a secondary role to spindle information during kinesthetic tasks. Importantly, cutaneous input from adjacent thigh regions cannot be ruled out as a contributor.
Collapse
|
9
|
Humans Use a Temporally Local Code for Vibrotactile Perception. eNeuro 2021; 8:ENEURO.0263-21.2021. [PMID: 34625459 PMCID: PMC8570683 DOI: 10.1523/eneuro.0263-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 11/21/2022] Open
Abstract
Sensory environments are commonly characterized by specific physical features, which sensory systems might exploit using dedicated processing mechanisms. In the tactile sense, one such characteristic feature is frictional movement, which gives rise to short-lasting (<10 ms), information-carrying integument vibrations. Rather than generic integrative encoding (i.e., averaging or spectral analysis capturing the "intensity" and "best frequency"), the tactile system might benefit from, what we call a "temporally local" coding scheme that instantaneously detects and analyzes shapes of these short-lasting features. Here, by employing analytic psychophysical measurements, we tested whether the prerequisite of temporally local coding exists in the human tactile system. We employed pulsatile skin indentations at the fingertip that allowed us to trade manipulation of local pulse shape against changes in global intensity and frequency, achieved by adding pulses of the same shape. We found that manipulation of local pulse shape has strong effects on psychophysical performance, arguing for the notion that humans implement a temporally local coding scheme for perceptual decisions. As we found distinct differences in performance using different kinematic layouts of pulses, we inquired whether temporally local coding is tuned to a unique kinematic variable. This was not the case, since we observed different preferred kinematic variables in different ranges of pulse shapes. Using an established encoding model for primary afferences and indentation stimuli, we were able to demonstrate that the found kinematic preferences in human performance, may well be explained by the response characteristics of Pacinian corpuscles (PCs), a class of human tactile primary afferents.
Collapse
|
10
|
Ryan CP, Bettelani GC, Ciotti S, Parise C, Moscatelli A, Bianchi M. The interaction between motion and texture in the sense of touch. J Neurophysiol 2021; 126:1375-1390. [PMID: 34495782 DOI: 10.1152/jn.00583.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Besides providing information on elementary properties of objects, like texture, roughness, and softness, the sense of touch is also important in building a representation of object movement and the movement of our hands. Neural and behavioral studies shed light on the mechanisms and limits of our sense of touch in the perception of texture and motion, and of its role in the control of movement of our hands. The interplay between the geometrical and mechanical properties of the touched objects, such as shape and texture, the movement of the hand exploring the object, and the motion felt by touch, will be discussed in this article. Interestingly, the interaction between motion and textures can generate perceptual illusions in touch. For example, the orientation and the spacing of the texture elements on a static surface induces the illusion of surface motion when we move our hand on it or can elicit the perception of a curved trajectory during sliding, straight hand movements. In this work we present a multiperspective view that encompasses both the perceptual and the motor aspects, as well as the response of peripheral and central nerve structures, to analyze and better understand the complex mechanisms underpinning the tactile representation of texture and motion. Such a better understanding of the spatiotemporal features of the tactile stimulus can reveal novel transdisciplinary applications in neuroscience and haptics.
Collapse
Affiliation(s)
- Colleen P Ryan
- Department of Systems Medicine and Centre of Space Bio-Medicine, University of Rome "Tor Vergata", Rome, Italy.,Department of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome, Italy
| | - Gemma C Bettelani
- Research Center E. Piaggio, University of Pisa, Pisa, Italy.,Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Simone Ciotti
- Department of Systems Medicine and Centre of Space Bio-Medicine, University of Rome "Tor Vergata", Rome, Italy.,Department of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome, Italy.,Department of Information Engineering, University of Pisa, Pisa, Italy
| | | | - Alessandro Moscatelli
- Department of Systems Medicine and Centre of Space Bio-Medicine, University of Rome "Tor Vergata", Rome, Italy.,Department of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome, Italy
| | - Matteo Bianchi
- Research Center E. Piaggio, University of Pisa, Pisa, Italy.,Department of Information Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
11
|
Kim K, Sim M, Lim S, Kim D, Lee D, Shin K, Moon C, Choi J, Jang JE. Tactile Avatar: Tactile Sensing System Mimicking Human Tactile Cognition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002362. [PMID: 33854875 PMCID: PMC8024994 DOI: 10.1002/advs.202002362] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/14/2020] [Indexed: 05/24/2023]
Abstract
As a surrogate for human tactile cognition, an artificial tactile perception and cognition system are proposed to produce smooth/soft and rough tactile sensations by its user's tactile feeling; and named this system as "tactile avatar". A piezoelectric tactile sensor is developed to record dynamically various physical information such as pressure, temperature, hardness, sliding velocity, and surface topography. For artificial tactile cognition, the tactile feeling of humans to various tactile materials ranging from smooth/soft to rough are assessed and found variation among participants. Because tactile responses vary among humans, a deep learning structure is designed to allow personalization through training based on individualized histograms of human tactile cognition and recording physical tactile information. The decision error in each avatar system is less than 2% when 42 materials are used to measure the tactile data with 100 trials for each material under 1.2N of contact force with 4cm s-1 of sliding velocity. As a tactile avatar, the machine categorizes newly experienced materials based on the tactile knowledge obtained from training data. The tactile sensation showed a high correlation with the specific user's tendency. This approach can be applied to electronic devices with tactile emotional exchange capabilities, as well as advanced digital experiences.
Collapse
Affiliation(s)
- Kyungsoo Kim
- Department of Information and Communication EngineeringDaegu Gyeongbuk Institute of Science & Technology (DGIST)Daegu711‐873Korea
- Department of NeurologyUniversity of CaliforniaSan Francisco (UCSF)San FranciscoCA94158USA
| | - Minkyung Sim
- Department of Information and Communication EngineeringDaegu Gyeongbuk Institute of Science & Technology (DGIST)Daegu711‐873Korea
| | - Sung‐Ho Lim
- Department of Information and Communication EngineeringDaegu Gyeongbuk Institute of Science & Technology (DGIST)Daegu711‐873Korea
| | - Dongsu Kim
- Department of Information and Communication EngineeringDaegu Gyeongbuk Institute of Science & Technology (DGIST)Daegu711‐873Korea
| | - Doyoung Lee
- Department of Information and Communication EngineeringDaegu Gyeongbuk Institute of Science & Technology (DGIST)Daegu711‐873Korea
| | - Kwonsik Shin
- Department of Information and Communication EngineeringDaegu Gyeongbuk Institute of Science & Technology (DGIST)Daegu711‐873Korea
| | - Cheil Moon
- Department of Brain and Cognitive SciencesDaegu Gyeongbuk Institute of Science & Technology (DGIST)Daegu711–873Korea
| | - Ji‐Woong Choi
- Department of Information and Communication EngineeringDaegu Gyeongbuk Institute of Science & Technology (DGIST)Daegu711‐873Korea
| | - Jae Eun Jang
- Department of Information and Communication EngineeringDaegu Gyeongbuk Institute of Science & Technology (DGIST)Daegu711‐873Korea
| |
Collapse
|
12
|
Macefield VG. Recording and quantifying sympathetic outflow to muscle and skin in humans: methods, caveats and challenges. Clin Auton Res 2021; 31:59-75. [PMID: 32588247 PMCID: PMC7907024 DOI: 10.1007/s10286-020-00700-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/26/2020] [Indexed: 01/04/2023]
Abstract
The development of microneurography, in which the electrical activity of axons can be recorded via an intrafascicular microelectrode inserted through the skin into a peripheral nerve in awake human participants, has contributed a great deal to our understanding of sensorimotor control and the control of sympathetic outflow to muscle and skin. This review summarises the different approaches to recording muscle sympathetic nerve activity (MSNA) and skin sympathetic nerve activity (SSNA), together with discussion on the issues that determine the quality of a recording. Various analytical approaches are also described, with a primary emphasis on those developed by the author, aimed at maximizing the information content from recordings of postganglionic sympathetic nerve activity in awake humans.
Collapse
Affiliation(s)
- Vaughan G Macefield
- Human Autonomic Neurophysiology Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, VIC, 3004, Australia.
- Department of Physiology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
13
|
Schwaller F, Bégay V, García-García G, Taberner FJ, Moshourab R, McDonald B, Docter T, Kühnemund J, Ojeda-Alonso J, Paricio-Montesinos R, Lechner SG, Poulet JFA, Millan JM, Lewin GR. USH2A is a Meissner's corpuscle protein necessary for normal vibration sensing in mice and humans. Nat Neurosci 2021. [PMID: 33288907 DOI: 10.1101/2020.07.01.180919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Fingertip mechanoreceptors comprise sensory neuron endings together with specialized skin cells that form the end-organ. Exquisitely sensitive, vibration-sensing neurons are associated with Meissner's corpuscles in the skin. In the present study, we found that USH2A, a transmembrane protein with a very large extracellular domain, was found in terminal Schwann cells within Meissner's corpuscles. Pathogenic USH2A mutations cause Usher's syndrome, associated with hearing loss and visual impairment. We show that patients with biallelic pathogenic USH2A mutations also have clear and specific impairments in vibrotactile touch perception, as do mutant mice lacking USH2A. Forepaw rapidly adapting mechanoreceptors innervating Meissner's corpuscles, recorded from Ush2a-/- mice, showed large reductions in vibration sensitivity. However, the USH2A protein was not found in sensory neurons. Thus, loss of USH2A in corpuscular end-organs reduced mechanoreceptor sensitivity as well as vibration perception. Thus, a tether-like protein is required to facilitate detection of small-amplitude vibrations essential for the perception of fine-grained tactile surfaces.
Collapse
Affiliation(s)
- Fred Schwaller
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Valérie Bégay
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Gema García-García
- Research Group on Molecular, Cellular and Genomic Biomedicine Health Research, Institute La Fe and Joint Unit for Rare Diseases CIPF-IIS La Fe, Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases, Institute of Health Carlos III, Madrid, Spain
| | - Francisco J Taberner
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Alicante, Spain
| | - Rabih Moshourab
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Anesthesiology and Operative Intensive Care Medicine, Campus Virchow Klinikum and Campus Mitte, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Anesthesiology, Helios Klinikum Erfurt, Erfurt, Germany
| | - Brennan McDonald
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Trevor Docter
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Molecular and Cellular Biology at Life Sciences Addition, University of California at Berkeley, Berkeley, CA, USA
| | - Johannes Kühnemund
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Julia Ojeda-Alonso
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ricardo Paricio-Montesinos
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin, Berlin, Germany
| | - Stefan G Lechner
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - James F A Poulet
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin, Berlin, Germany
| | - Jose M Millan
- Research Group on Molecular, Cellular and Genomic Biomedicine Health Research, Institute La Fe and Joint Unit for Rare Diseases CIPF-IIS La Fe, Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases, Institute of Health Carlos III, Madrid, Spain
| | - Gary R Lewin
- Department of Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
14
|
Liu M, Batista A, Bensmaia S, Weber DJ. Information about contact force and surface texture is mixed in the firing rates of cutaneous afferent neurons. J Neurophysiol 2020; 125:496-508. [PMID: 33326349 DOI: 10.1152/jn.00725.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cutaneous mechanoreceptors in our hands gather information about the objects we handle. Tactile fibers encode mixed information about contact events and object properties. Neural coding in tactile afferents is typically studied by varying a single aspect of tactile stimuli, avoiding the confounds of real-world haptic interactions. We instead record responses of small populations of dorsal root ganglia (DRG) neurons to variable tactile stimuli and find that neurons primarily respond to force, though some texture information can be detected. Tactile nerve fibers convey information about many features of haptic interactions, including the force and speed of contact, as well as the texture and shape of the objects being handled. How we perceive these object features is relatively unaffected by the forces and movements we use when interacting with the object. Because signals related to contact events and object properties are mixed in the responses of tactile fibers, our ability to disentangle these different components of our tactile experience implies that they are demultiplexed as they propagate along the neuraxis. To understand how texture and contact mechanics are encoded together by tactile fibers, we studied the activity of multiple neurons recorded simultaneously in the cervical DRG of two anesthetized rhesus monkeys while textured surfaces were applied to the glabrous skin of the fingers and palm using a handheld probe. A transducer at the tip of the textured probe measured contact forces as tactile stimuli were applied at different locations on the finger-pads and palm. We examined how a sample population of DRG neurons encode force and texture and found that firing rates of individual neurons are modulated by both force and texture. In particular, slowly adapting (SA) neurons were more responsive to force than texture, and rapidly adapting (RA) neurons were more responsive to texture than force. Although force could be decoded accurately throughout the entire contact interval, texture signals were most salient during onset and offset phases of the contact interval.NEW & NOTEWORTHY Cutaneous mechanoreceptors in our hands gather information about the objects we handle. Tactile fibers encode mixed information about contact events and object properties. Neural coding in tactile afferents is typically studied by varying a single aspect of tactile stimuli, avoiding the confounds of real-world haptic interactions. We instead record responses of small populations of DRG neurons to variable tactile stimuli and find that neurons primarily respond to force, though some texture information can be detected.
Collapse
Affiliation(s)
- Monica Liu
- Rehab Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania
| | - Aaron Batista
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania
| | - Sliman Bensmaia
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Douglas J Weber
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania.,Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania.,Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Improvements and Degradation to Spatial Tactile Acuity Among Blind and Deaf Individuals. Neuroscience 2020; 451:51-59. [PMID: 33065233 DOI: 10.1016/j.neuroscience.2020.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 11/22/2022]
Abstract
Cross-modal reorganization takes place for sensory cortices when there is no more primary input. For instance, the visual cortex in blind individuals which receives no visual input starts responding to auditory and tactile stimuli. Reorganization may improve or degrade processing of other modality inputs, via bottom-up compensational processes and top-down updating. In two experiments, we measured the spatial tactile response in a large sample of early- (N = 49) and late-blind (N = 51) individuals with varying levels of Braille proficiencies, and early-deaf (N = 69) with varying levels of hearing devices against separate hearing and sighted controls. Spatial tactile responses were measured using a standard gradient orientation task on two locations, the finger and tongue. Experiments show limited to no advantage in passive tactile response for blind individuals and degradation for deaf individuals at the finger. However, the use of hearing devices decreased the tactile impairment in early-deaf individuals. Also, no differences in age-related decline in both sensory-impaired groups were shown. Results show less tactile acuity differences between blind and sighted than previously reported, but supports recent reports of tactile impairment among the early-deaf.
Collapse
|
16
|
Watkins RH, Dione M, Ackerley R, Backlund Wasling H, Wessberg J, Löken LS. Evidence for sparse C-tactile afferent innervation of glabrous human hand skin. J Neurophysiol 2020; 125:232-237. [PMID: 33296618 DOI: 10.1152/jn.00587.2020] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
C-tactile (CT) afferents were long-believed to be lacking in humans, but these were subsequently shown to densely innervate the face and arm skin, and to a lesser extent the leg. Their firing frequency to stroking touch at different velocities has been correlated with ratings of tactile pleasantness. CT afferents were thought to be absent in human glabrous skin; however, tactile pleasantness can be perceived across the whole body, including glabrous hand skin. We used microneurography to investigate mechanoreceptive afferents in the glabrous skin of the human hand, during median and radial nerve recordings. We describe CTs found in the glabrous skin, with characteristics comparable with those in hairy arm skin, and detail recordings from three such afferents. CTs were infrequently encountered in the glabrous skin and we estimate that the ratio of recorded CTs relative to myelinated mechanoreceptors (1:80) corresponds to an absolute innervation density of around seven times lower than in hairy skin. This sparse innervation sheds light on discrepancies between psychophysical findings of touch perception on glabrous skin and hairy skin, although the role of these CT afferents in the glabrous skin remains subject to future work.NEW & NOTEWORTHY Human touch is encoded by low-threshold mechanoreceptors, including myelinated Aβ afferents and unmyelinated C-tactile (CT) afferents. CTs are abundant in hairy skin and are thought to code gentle, stroking touch that signals positive affective interactions. CTs have never been described in human glabrous skin, yet we show evidence of their existence on the hand, albeit at a relatively low density. Glabrous skin CTs may provide modulatory reinforcement of gentle tactile interactions during touch using the hands.
Collapse
Affiliation(s)
- Roger Holmes Watkins
- LNC (Laboratoire de Neurosciences Cognitives (UMR 7291), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Marseille, France.,Department of Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Mariama Dione
- LNC (Laboratoire de Neurosciences Cognitives (UMR 7291), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Marseille, France.,Department of Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Rochelle Ackerley
- LNC (Laboratoire de Neurosciences Cognitives (UMR 7291), Centre National de la Recherche Scientifique (CNRS), Aix-Marseille Université, Marseille, France.,Department of Physiology, University of Gothenburg, Gothenburg, Sweden
| | | | - Johan Wessberg
- Department of Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Line S Löken
- Department of Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Poulsen AH, Tigerholm J, Andersen OK, Mørch CD. Increased preferential activation of small cutaneous nerve fibers by optimization of electrode design parameters. J Neural Eng 2020; 18. [PMID: 33291093 DOI: 10.1088/1741-2552/abd1c1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/08/2020] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Electrical preferential activation of small nociceptive fibers may be achieved with the use of specialized small area electrodes, however, the existing electrodes are limited to low stimulation intensities. As existing electrodes have been developed empirically, the present study aimed to use computational modeling and optimization techniques to investigate if changes in electrode design parameters could improve the preferential activation of small fibers. APPROACH Two finite element models; one of a planar concentric and one of an intra-epidermal electrode were combined with two multi-compartmental nerve fiber models of an Aδ-fiber and an Aβ-fiber. These two-step hybrid models were used for the optimization of four electrode parameters; anode area, anode-cathode distance, cathode area, and cathode protrusion. Optimization was performed using a gradient-free bounded Nelder-Mead algorithm, to maximize the current activation threshold ratio between the Aβ-fiber model and the Aδ-fiber model. MAIN RESULTS All electrode parameters were optimal at their lower bound, except the cathode protrusion, which was optimal a few micrometers above the location of the Aδ-fiber model. A small cathode area is essential for producing a high current density in the epidermal skin layer enabling activation of small fibers, while a small anode area and anode-cathode distance are important for the minimization of the current spread to deeper tissues, making it less likely to activate large fibers. Combining each of the optimized electrode parameters improved the preferential activation of small fibers in comparison to existing electrodes, by increasing the activation threshold ratio between the two nerve fiber types. The maximum increase in the activation threshold ratio was 289% and 595% for the intra-epidermal and planar concentric design, respectively. SIGNIFICANCE The present study showed that electrical preferential small fiber activation can be improved by electrode design. Additionally, the results may be used for the production of an electrode that could potentially be used for clinical assessment of small fiber neuropathy.
Collapse
Affiliation(s)
- Aida Hejlskov Poulsen
- Department of Health science and technology, Aalborg Universitet, Fredrik bajers vej 7A, Aalborg, Nordjylland, 9220, DENMARK
| | - Jenny Tigerholm
- Health Science and Technology, Aalborg Universitet, Fredrik bajers vej 7A,, Aalborg, Nordjylland, 9220, DENMARK
| | - Ole Kaeseler Andersen
- Department of Health Science and Technology, Aalborg Universitet, Fredrik bajers vej 7A,, Aalborg, Nordjylland, 9220, DENMARK
| | | |
Collapse
|
18
|
Schwaller F, Bégay V, García-García G, Taberner FJ, Moshourab R, McDonald B, Docter T, Kühnemund J, Ojeda-Alonso J, Paricio-Montesinos R, Lechner SG, Poulet JFA, Millan JM, Lewin GR. USH2A is a Meissner’s corpuscle protein necessary for normal vibration sensing in mice and humans. Nat Neurosci 2020; 24:74-81. [DOI: 10.1038/s41593-020-00751-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/30/2020] [Indexed: 12/29/2022]
|
19
|
Vuong QC, Shaaban AM, Black C, Smith J, Nassar M, Abozied A, Degenaar P, Al-Atabany W. Detection of Simulated Tactile Gratings by Electro-Static Friction Show a Dependency on Bar Width for Blind and Sighted Observers, and Preliminary Neural Correlates in Sighted Observers. Front Neurosci 2020; 14:548030. [PMID: 33177973 PMCID: PMC7591789 DOI: 10.3389/fnins.2020.548030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
The three-dimensional micro-structure of physical surfaces produces frictional forces that provide sensory cues about properties of felt surfaces such as roughness. This tactile information activates somatosensory cortices, and frontal and temporal brain regions. Recent advances in haptic-feedback technologies allow the simulation of surface micro-structures via electro-static friction to produce touch sensations on otherwise flat screens. These sensations may benefit those with visual impairment or blindness. The primary aim of the current study was to test blind and sighted participants' perceptual sensitivity to simulated tactile gratings. A secondary aim was to explore which brain regions were involved in simulated touch to further understand the somatosensory brain network for touch. We used a haptic-feedback touchscreen which simulated tactile gratings using digitally manipulated electro-static friction. In Experiment 1, we compared blind and sighted participants' ability to detect the gratings by touch alone as a function of their spatial frequency (bar width) and intensity. Both blind and sighted participants showed high sensitivity to detect simulated tactile gratings, and their tactile sensitivity functions showed both linear and quadratic dependency on spatial frequency. In Experiment 2, using functional magnetic resonance imaging, we conducted a preliminary investigation to explore whether brain activation to physical vibrations correlated with blindfolded (but sighted) participants' performance with simulated tactile gratings outside the scanner. At the neural level, blindfolded (but sighted) participants' detection performance correlated with brain activation in bi-lateral supplementary motor cortex, left frontal cortex and right occipital cortex. Taken together with previous studies, these results suggest that there are similar perceptual and neural mechanisms for real and simulated touch sensations.
Collapse
Affiliation(s)
- Quoc C Vuong
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Aya M Shaaban
- Biomedical Engineering Department, Faculty of Engineering, Helwan University, Helwan, Egypt
| | - Carla Black
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jess Smith
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mahmoud Nassar
- Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom.,Faculty of Medicine, Minia University Hospital, Al Minia, Egypt
| | - Ahmed Abozied
- Electronics and Communications Department, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Patrick Degenaar
- School of Engineering, Newcastle University, Merz Court, Newcastle upon Tyne, United Kingdom
| | - Walid Al-Atabany
- Biomedical Engineering Department, Faculty of Engineering, Helwan University, Helwan, Egypt
| |
Collapse
|
20
|
To the self and beyond: Arousal and functional connectivity of the temporo-parietal junction contributes to spontaneous sensations perception. Behav Brain Res 2020; 396:112880. [PMID: 32910970 DOI: 10.1016/j.bbr.2020.112880] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/27/2020] [Accepted: 08/19/2020] [Indexed: 01/29/2023]
Abstract
The temporoparietal junction (TPJ), along with the anterior insula (AI) and the extrastriate body area (EBA), play a major part in embodiment and self-awareness. However, these connections also appear to be frequently engaged in arousal and attentional processing of external events. Considering that these networks may focus attention both toward and away from the self, we set to investigate how they contribute to the perception of spontaneous sensations (SPS), a common phenomenon related to self-awareness and mediated by both interoceptive and attentional processes. In Experiment 1, resting-state EEG was recorded, as well as arousal reported via a questionnaire, followed by a SPS task. Functional TPJ-AI and TPJ-EBA connectivity were computed using eLORETA. Spatial correlational analyses showed that less frequent SPS coincided with greater TPJ-AI and TPJ-EBA functional connectivity, especially in the theta and alpha frequency bands. High self-reported arousal predicted low intensity and low confidence in the location of SPS. Resting-state skin conductance level (SCL) was recorded in Experiment 2, followed by the SPS task. Less frequent SPS coincided with greater SCL. Findings are interpreted in terms of attention and self-related processes, and a discussion of the TPJ participation in self-awareness through SPS is presented.
Collapse
|
21
|
Peters RM, Mildren RL, Hill AJ, Carpenter MG, Blouin J, Timothy Inglis J. Lower-limb muscle responses evoked with noisy vibrotactile foot sole stimulation. Physiol Rep 2020; 8:e14530. [PMID: 32776496 PMCID: PMC7415907 DOI: 10.14814/phy2.14530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
AIM Cutaneous feedback from the foot sole contributes to the control of standing balance in two ways: it provides perceptual awareness of tactile perturbations at the interface with the ground (e.g., shifts in the pressure distribution, slips, etc.) and it reflexively activates lower-motor neurons to trigger stabilizing postural responses. Here we focus on the latter, cutaneous (or cutaneomotor) reflex coupling in the lower limb. These reflexes have been studied most-frequently with electrical pulse trains that bypass natural cutaneous mechanotransduction, stimulating cutaneous afferents in a largely non-physiological manner. Harnessing the mechanical filtering properties of cutaneous afferents, we take a novel mechanical approach by applying supra-threshold continuous noisy vibrotactile stimulation (NVS) to the medial forefoot. METHODS Using NVS, we characterized the time and frequency domain properties of cutaneomotor reflexes in the Tibialis Anterior. We additionally measured stimulus-triggered average muscle responses to repeated discrete sinusoidal pulses for comparison. To investigate cutaneomotor reflex gain scaling, stimuli were delivered at 3- or 10-times perceptual threshold (PT), while participants held 12.5% or 25% of maximum voluntary contraction (MVC). RESULTS Peak responses in the time domain were observed at lags reflecting transmission delay through a polysynaptic reflex pathway (~90-100 ms). Increasing the stimulus amplitude enhanced cutaneomotor coupling, likely by increasing afferent firing rates. Although greater background muscle contraction increased the overall amplitude of the evoked responses, it did not increase the proportion of the muscle response attributable to cutaneous input. CONCLUSION Taken together, our findings support the use of NVS as a novel tool for probing the physiological properties of cutaneomotor reflex pathways.
Collapse
Affiliation(s)
- Ryan M. Peters
- Faculty of KinesiologyUniversity of CalgaryCalgaryABCanada
- School of KinesiologyUniversity of British ColumbiaVancouverBCCanada
| | - Robyn L. Mildren
- School of KinesiologyUniversity of British ColumbiaVancouverBCCanada
| | - Aimee J. Hill
- School of KinesiologyUniversity of British ColumbiaVancouverBCCanada
| | - Mark G. Carpenter
- School of KinesiologyUniversity of British ColumbiaVancouverBCCanada
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaVancouverBCCanada
| | - Jean‐Sébastien Blouin
- School of KinesiologyUniversity of British ColumbiaVancouverBCCanada
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaVancouverBCCanada
- Institute for Computing, Information, and Cognitive SystemsUniversity of British ColumbiaVancouverBCCanada
| | - J. Timothy Inglis
- School of KinesiologyUniversity of British ColumbiaVancouverBCCanada
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBCCanada
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
22
|
Krug K. Coding Perceptual Decisions: From Single Units to Emergent Signaling Properties in Cortical Circuits. Annu Rev Vis Sci 2020; 6:387-409. [PMID: 32600168 DOI: 10.1146/annurev-vision-030320-041223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spiking activity in single neurons of the primate visual cortex has been tightly linked to perceptual decisions. Any mechanism that reads out these perceptual signals to support behavior must respect the underlying neuroanatomy that shapes the functional properties of sensory neurons. Spatial distribution and timing of inputs to the next processing levels are critical, as conjoint activity of precursor neurons increases the spiking rate of downstream neurons and ultimately drives behavior. I set out how correlated activity might coalesce into a micropool of task-sensitive neurons signaling a particular percept to determine perceptual decision signals locally and for flexible interarea transmission depending on the task context. As data from more and more neurons and their complex interactions are analyzed, the space of computational mechanisms must be constrained based on what is plausible within neurobiological limits. This review outlines experiments to test the new perspectives offered by these extended methods.
Collapse
Affiliation(s)
- Kristine Krug
- Lehrstuhl für Sensorische Physiologie, Institut für Biologie, Otto-von-Guericke-Universität Magdeburg, 39120 Magdeburg, Germany; .,Leibniz-Institut für Neurobiologie, 39118 Magdeburg, Germany.,Department of Physiology, Anatomy, and Genetics, Oxford University, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
23
|
Poulsen AH, Tigerholm J, Meijs S, Andersen OK, Mørch CD. Comparison of existing electrode designs for preferential activation of cutaneous nociceptors. J Neural Eng 2020; 17:036026. [DOI: 10.1088/1741-2552/ab85b1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Mikkelsen M, He J, Tommerdahl M, Edden RAE, Mostofsky SH, Puts NAJ. Reproducibility of flutter-range vibrotactile detection and discrimination thresholds. Sci Rep 2020; 10:6528. [PMID: 32300187 PMCID: PMC7162987 DOI: 10.1038/s41598-020-63208-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/18/2020] [Indexed: 11/24/2022] Open
Abstract
Somatosensory processing can be probed empirically through vibrotactile psychophysical experiments. Psychophysical approaches are valuable for investigating both normal and abnormal tactile function in healthy and clinical populations. To date, the test-retest reliability of vibrotactile detection and discrimination thresholds has yet to be established. This study sought to assess the reproducibility of vibrotactile detection and discrimination thresholds in human adults using an established vibrotactile psychophysical battery. Fifteen healthy adults underwent three repeat sessions of an eleven-task battery that measured a range of vibrotactile measures, including reaction time, detection threshold, amplitude and frequency discrimination, and temporal order judgement. Coefficients of variation and intraclass correlation coefficients (ICCs) were calculated for the measures in each task. Linear mixed-effects models were used to test for length and training effects and differences between tasks within the same domain. Reaction times were shown to be the most reproducible (ICC: ~0.9) followed by detection thresholds (ICC: ~0.7). Frequency discrimination thresholds were the least reproducible (ICC: ~0.3). As reported in prior studies, significant differences in measures between related tasks were also found, demonstrating the reproducibility of task-related effects. These findings show that vibrotactile detection and discrimination thresholds are reliable, further supporting the use of psychophysical experiments to probe tactile function.
Collapse
Affiliation(s)
- Mark Mikkelsen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jason He
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark Tommerdahl
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicolaas A J Puts
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
- Department of Forensic and Neurodevelopmental Sciences, Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK.
| |
Collapse
|
25
|
Hobeika L, Taffou M, Carpentier T, Warusfel O, Viaud-Delmon I. Capturing the dynamics of peripersonal space by integrating expectancy effects and sound propagation properties. J Neurosci Methods 2019; 332:108534. [PMID: 31805302 DOI: 10.1016/j.jneumeth.2019.108534] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Humans perceive near space and far space differently. Peripersonal space (PPS), i.e. the space directly surrounding the body, is often studied using paradigms based on audiotactile integration. In these paradigms, reaction time (RT) to a tactile stimulus is measured in the presence of a concurrent auditory looming stimulus. NEW METHOD We propose here to refine the experimental procedure by disentangling behavioral contributions of the targeted audiotactile integration mechanisms from expectancy effects. To this aim, we added to the protocol a baseline with a fixed sound distance. Furthermore, in order to improve the relevance of the audiotactile integration measures, we took into account sound propagation properties and assessed RTs for logarithmically spaced auditory distances. RESULTS Expectation contributed significantly to overall behavioral responses. Subtracting it isolated the audiotactile effect due to the stimulus proximity. This revealed that audiotactile integration effects have to be tested on a logarithmic scale of distances, and that they follow a linear variation on this scale. COMPARISON WITH EXISTING METHOD(S) The current method allows cleaner and more pertinent sampling measures for evaluating audiotactile integration phenomena linked to PPS. Furthermore, most of the existing methods propose a sigmoid fitting, which rests on the intuitive framework that PPS is an in-or-out zone. Our results suggest that behavioral effects follow a logarithmic decrease, thus a response graduated in space. CONCLUSIONS The proposed protocol design and method of analysis contribute to sharpen the experimental investigation of the factors influencing and modifying multisensory integration phenomena in the space surrounding the body.
Collapse
Affiliation(s)
- Lise Hobeika
- CNRS, Ircam, Sorbonne Université, Ministère de la Culture, Sciences et Technologies de la Musique et du son, STMS, F-75004, Paris, France.
| | - Marine Taffou
- Institut de Recherche Biomédicale des Armées, 91220, Brétigny-sur-Orge, France
| | - Thibaut Carpentier
- CNRS, Ircam, Sorbonne Université, Ministère de la Culture, Sciences et Technologies de la Musique et du son, STMS, F-75004, Paris, France
| | - Olivier Warusfel
- CNRS, Ircam, Sorbonne Université, Ministère de la Culture, Sciences et Technologies de la Musique et du son, STMS, F-75004, Paris, France
| | - Isabelle Viaud-Delmon
- CNRS, Ircam, Sorbonne Université, Ministère de la Culture, Sciences et Technologies de la Musique et du son, STMS, F-75004, Paris, France
| |
Collapse
|
26
|
Abstract
This study proposes a novel skinny button with multimodal audio and haptic feedback to enhance the touch user interface of electronic devices. The active material in the film-type actuator is relaxor ferroelectric polymer (RFP) poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) [P(VDF-TrFE-CFE)] blended with poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)], which produces mechanical vibrations via the fretting vibration phenomenon. Normal pressure applied by a human fingertip on the film-type skinny button mechanically activates the locally concentrated electric field under the contact area, thereby producing a large electrostrictive strain in the blended RFP film. Multimodal audio and haptic feedback is obtained by simultaneously applying various electric signals to the pairs of ribbon-shaped top and bottom electrodes. The fretting vibration provides tactile feedback at frequencies of 50–300 Hz and audible sounds at higher frequencies of 500 Hz to 1 kHz through a simple on-off mechanism. The advantage of the proposed audio-tactile skinny button is that it restores the “click” sensation to the popular virtual touch buttons employed in contemporary electronic devices.
Collapse
|
27
|
Akther A, Castro JO, Mousavi Shaegh SA, Rezk AR, Yeo LY. Miniaturised acoustofluidic tactile haptic actuator. SOFT MATTER 2019; 15:4146-4152. [PMID: 31050347 DOI: 10.1039/c9sm00479c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tactile haptic feedback is an important consideration in the design of advanced human-machine interfaces, particularly in an age of increasing reliance on automation and artificial intelligence. In this work, we show that the typical nanometer-order surface displacement amplitudes of piezoelectric transducers-which are too small to be detectable by the human touch, and constitute a significant constraint in their use for tactile haptic surface actuation-can be circumvented by coupling the vibration into a liquid to drive the deflection of a thermoplastic membrane. In particular, transmission of the sound energy from the standing wave vibration generated along a piezoelectric transducer into a microfluidic chamber atop which the membrane is attached is observed to amplify the mechanical vibration signalling through both the acoustic radiation pressure and the viscous normal stress acting on the membrane-the latter arising due to the acoustic streaming generated as the sound wave propagates through the liquid-to produce 100 μm-order static deflections of the membrane, upon which approximately 0.5 μm dynamic vibrations at frequencies around 1 kHz are superimposed; both these static and dynamic responses are within the perception range for human finger sensation. The large static deformation, the relatively fast response time, and the ability to incorporate a dynamic vibrotactile response together with the small size and potential for integration of the device into large scale arrays make this mechanism well suited for driving actuation in devices which require tactile haptic responses.
Collapse
Affiliation(s)
- Asma Akther
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia.
| | | | | | | | | |
Collapse
|
28
|
Smith SGVS, Yokich MK, Beaudette SM, Brown SHM, Bent LR. Effects of foot position on skin structural deformation. J Mech Behav Biomed Mater 2019; 95:240-248. [PMID: 31054375 DOI: 10.1016/j.jmbbm.2019.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/12/2019] [Accepted: 04/11/2019] [Indexed: 11/29/2022]
Abstract
As the largest and most superficial organ, the skin is well positioned for receiving sensory information from the environment. It is conceivable that changes in posture could result in deformations of the skin and subsequent changes in skin material properties. Specifically, the ankle and metatarsophalangeal joints have the capability to undergo large postural alterations with the potential to induce large structural deformations in the skin of the foot. The purpose of this study was to determine the extent to which alterations in foot posture may influence measures of foot sole and dorsum skin stretch, hardness, and thickness in vivo. Ten young and healthy individuals were tested while three static foot postures (plantar flexion, neutral and dorsiflexion) were maintained passively. Skin stretch deformation was quantified across each posture using an 11 × 4 point matrix of 3D kinematic markers affixed to the skin of the foot sole and dorsum. Skin hardness was assessed across each posture at specific locations of the foot sole (1st metatarsal, 5th metatarsal, medial arch, lateral arch and heel) and foot dorsum (proximal, middle and distal) using a handheld Shore durometer. Skin (epidermal + dermal) thickness was measured in each posture from the same test locations using ultrasound images obtained for the foot sole and dorsum. In the plantar flexion ankle posture, the foot sole skin was observed to relax/retract on average (± standard errorr of the mean (SEM) by 9 ± 2% to become both 20 ± 6% softer and 10 ± 6% thicker. In this posture, the foot dorsum skin stretched on average by 7 ± 2% resulting in 84 ± 8% harder and 5 ± 4% thinner skin. In the dorsiflexion ankle posture, the skin of the foot sole was observed to stretch on average by 5 ± 1% to become both 20 ± 8% harder and 4 ± 7% thinner. In this posture, the skin of the foot dorsum relaxed/retracted on average by 9 ± 1% resulting in the skin becoming 27 ± 12% softer and 7 ± 5% thicker. Notably, all of the sites responded with movement in a similar direction, but each site responded to a variable extent. Importantly, it was clear that the majority of skin structural deformation of the foot sole occurred within the 1st metatarsal, 5th metatarsal, and medial arch regions, while deformation was more evenly distributed across regions of the foot dorsum. The results suggest there is location specificity in the retraction and stretch characteristics of the foot skin. While not tested directly, this may suggest that local stretch distributions could be in part due to the underlying dermal and hypodermal structures in these foot regions. With these observed changes in the mechanical structure of the foot sole and dorsum skin tissue matrix, it is possible that corresponding posture-dependent changes in cutaneous mechanoreceptor activation may be present.
Collapse
Affiliation(s)
- Simone G V S Smith
- University of Guelph, Department of Human Health and Nutritional Science, Guelph, ON, Canada
| | - Maiya K Yokich
- University of Guelph, Department of Human Health and Nutritional Science, Guelph, ON, Canada
| | - Shawn M Beaudette
- University of Ottawa, School of Human Kinetics, Faculty of Health Sciences, Ottawa, ON, Canada
| | - Stephen H M Brown
- University of Guelph, Department of Human Health and Nutritional Science, Guelph, ON, Canada
| | - Leah R Bent
- University of Guelph, Department of Human Health and Nutritional Science, Guelph, ON, Canada.
| |
Collapse
|
29
|
Abstract
Humans exhibit a remarkable ability to discriminate variations in object volume based on natural haptic perception. The discrimination thresholds for the haptic volume perception of the whole hand are well known, but the discrimination thresholds for haptic volume perception of fingers and phalanges are still unknown. In the present study, two psychophysical experiments were performed to investigate haptic volume perception in various fingers and phalanges. The configurations of both experiments were completely dependent on haptic volume perception from the fingers and phalanges. The participants were asked to blindly discriminate the volume variation of regular solid objects in a random order by using the distal phalanx, medial phalanx, and proximal phalanx of their index finger, middle finger, ring finger, and little finger. The discrimination threshold of haptic volume perception gradually decreases from the little finger to the index finger as well as from the proximal phalanx to the distal phalanx. Overall, both the shape of the target and the part of the finger in contact with the target significantly influence the precision of haptic perception of volume. This substantial data set provides detailed and compelling perspectives on the haptic system, including for discrimination of the spatial size of objects and for performing more general perceptual processes.
Collapse
|
30
|
Walcher J, Ojeda‐Alonso J, Haseleu J, Oosthuizen MK, Rowe AH, Bennett NC, Lewin GR. Specialized mechanoreceptor systems in rodent glabrous skin. J Physiol 2018; 596:4995-5016. [PMID: 30132906 PMCID: PMC6187043 DOI: 10.1113/jp276608] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/20/2018] [Indexed: 01/17/2023] Open
Abstract
KEY POINTS An ex vivo preparation was developed to record from single sensory fibres innervating the glabrous skin of the mouse forepaw. The density of mechanoreceptor innervation of the forepaw glabrous skin was found to be three times higher than that of hindpaw glabrous skin. Rapidly adapting mechanoreceptors that innervate Meissner's corpuscles were severalfold more responsive to slowly moving stimuli in the forepaw compared to those innervating hindpaw skin. We found a distinct group of small hairs in the centre of the mouse hindpaw glabrous skin that were exclusively innervated by directionally sensitive D-hair receptors. The directional sensitivity, but not the end-organ anatomy, were the opposite to D-hair receptors in the hairy skin. Glabrous skin hairs in the hindpaw are not ubiquitous in rodents, but occur in African and North American species that diverged more than 65 million years ago. ABSTRACT Rodents use their forepaws to actively interact with their tactile environment. Studies on the physiology and anatomy of glabrous skin that makes up the majority of the forepaw are almost non-existent in the mouse. Here we developed a preparation to record from single sensory fibres of the forepaw and compared anatomical and physiological receptor properties to those of the hindpaw glabrous and hairy skin. We found that the mouse forepaw skin is equipped with a very high density of mechanoreceptors; >3 times more than hindpaw glabrous skin. In addition, rapidly adapting mechanoreceptors that innervate Meissner's corpuscles of the forepaw were severalfold more sensitive to slowly moving mechanical stimuli compared to their counterparts in the hindpaw glabrous skin. All other mechanoreceptor types as well as myelinated nociceptors had physiological properties that were invariant regardless of which skin area they occupied. We discovered a novel D-hair receptor innervating a small group of hairs in the middle of the hindpaw glabrous skin in mice. These glabrous skin D-hair receptors were direction sensitive albeit with an orientation sensitivity opposite to that described for hairy skin D-hair receptors. Glabrous skin hairs do not occur in all rodents, but are present in North American and African rodent species that diverged more than 65 million years ago. The function of these specialized hairs is unknown, but they are nevertheless evolutionarily very ancient. Our study reveals novel physiological specializations of mechanoreceptors in the glabrous skin that likely evolved to facilitate tactile exploration.
Collapse
Affiliation(s)
- Jan Walcher
- Max‐Delbrück Centre for Molecular MedicineDepartment of NeuroscienceRobert‐Rössle Str. 1013125Berlin‐BuchGermany
| | - Julia Ojeda‐Alonso
- Max‐Delbrück Centre for Molecular MedicineDepartment of NeuroscienceRobert‐Rössle Str. 1013125Berlin‐BuchGermany
| | - Julia Haseleu
- Max‐Delbrück Centre for Molecular MedicineDepartment of NeuroscienceRobert‐Rössle Str. 1013125Berlin‐BuchGermany
| | - Maria K. Oosthuizen
- Department of Zoology and EntomologyUniversity of PretoriaPretoriaRepublic of South Africa
| | - Ashlee H. Rowe
- Department of Biology and Program in Cellular and Behavioral NeurobiologyUniversity of OklahomaNormanOKUSA
| | - Nigel C. Bennett
- Department of Zoology and EntomologyUniversity of PretoriaPretoriaRepublic of South Africa
| | - Gary R. Lewin
- Max‐Delbrück Centre for Molecular MedicineDepartment of NeuroscienceRobert‐Rössle Str. 1013125Berlin‐BuchGermany
- Excellence Cluster NeurocureCharité Universitätsmedizin10117BerlinGermany
| |
Collapse
|
31
|
Static and active tactile perception and touch anisotropy: aging and gender effect. Sci Rep 2018; 8:14240. [PMID: 30250244 PMCID: PMC6155374 DOI: 10.1038/s41598-018-32724-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/14/2018] [Indexed: 11/08/2022] Open
Abstract
Although the human finger is the interface used for the touch process, very few studies have used its properties to provide a description of tactile perception regarding age and gender effects. Age and gender effects on the biophysical properties of the human finger were the main topics of our previous study. Correlating tactile perception with each parameter proved very complex. We expand on that work to assess the static and dynamic touch in addition to the touch gestures. We also investigate the age and gender effects on tactile perception by studying the finger size and the real contact area (static and dynamic) of forty human fingers of different ages and gender. The size of the finger and the real contact area (static and dynamic) define the density of the mechanoreceptors. This density is an image of the number of mechanoreceptors solicited and therefore of tactile perception (static and dynamic). In addition, the touch gestures used to perceive an object’s properties differ among people. Therefore, we seek to comprehend the tactile perception of different touch gestures due to the anisotropy of mechanical properties, and we study two different directions (top to bottom and left to right).
Collapse
|
32
|
Parto Dezfouli M, Khamechian MB, Treue S, Esghaei M, Daliri MR. Neural Activity Predicts Reaction in Primates Long Before a Behavioral Response. Front Behav Neurosci 2018; 12:207. [PMID: 30271333 PMCID: PMC6146178 DOI: 10.3389/fnbeh.2018.00207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/20/2018] [Indexed: 01/27/2023] Open
Abstract
How neural activity is linked to behavior is a critical question in neural engineering and cognitive neurosciences. It is crucial to predict behavior as early as possible, to plan a machine response in real-time brain computer interactions. However, previous studies have studied the neural readout of behavior only within a short time before the action is performed. This leaves unclear, if the neural activity long before a decision could predict the upcoming behavior. By recording extracellular neural activities from the visual cortex of behaving rhesus monkeys, we show that: (1) both, local field potentials (LFPs) and the rate of neural spikes long before (>2 s) a monkey responds to a change, foretell its behavioral performance in a spatially selective manner; (2) LFPs, the more accessible component of extracellular activity, are a stronger predictor of behavior; and (3) LFP amplitude is positively correlated while spiking activity is negatively correlated with behavioral reaction time (RT). These results suggest that field potentials could be used to predict behavior way before it is performed, an observation that could potentially be useful for brain computer interface applications, and that they contribute to the sensory neural circuit’s speed in information processing.
Collapse
Affiliation(s)
- Mohsen Parto Dezfouli
- Neuroscience and Neuroengineering Research Laboratory, Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Mohammad Bagher Khamechian
- Neuroscience and Neuroengineering Research Laboratory, Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center-Leibniz Institute for Primate Research, Goettingen, Germany.,Faculty of Biology and Psychology, University of Goettingen, Goettingen, Germany.,Bernstein Center for Computational Neuroscience, Goettingen, Germany.,Leibniz-Science Campus Primate Cognition, Goettingen, Germany
| | - Moein Esghaei
- Neuroscience and Neuroengineering Research Laboratory, Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran.,Cognitive Neuroscience Laboratory, German Primate Center-Leibniz Institute for Primate Research, Goettingen, Germany.,Cognitive Neurobiology Laboratory, School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran
| | - Mohammad Reza Daliri
- Neuroscience and Neuroengineering Research Laboratory, Department of Biomedical Engineering, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran.,Cognitive Neurobiology Laboratory, School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran
| |
Collapse
|
33
|
Abstract
In the first section, this historical review describes endeavors to develop the method for recording normal nerve impulse traffic in humans, designated microneurography. The method was developed at the Department of Clinical Neurophysiology of the Academic Hospital in Uppsala, Sweden. Microneurography involves the impalement of a peripheral nerve with a tungsten needle electrode. Electrode position is adjusted by hand until the activity of interest is discriminated. Nothing similar had previously been tried in animal preparations, and thus the large number of preceding studies that recorded afferent activity in other mammals did not offer pertinent methodological guidance. For 2 years, the two scientists involved in the research impaled their own nerves with electrodes to test various kinds of needles and explore different neural systems, all the while carefully watching for signs of nerve damage. Temporary paresthesiae were common, whereas enduring sequelae never followed. Single-unit impulse trains could be discriminated, even those originating from unmyelinated fibers. An explanation for the discrimination of unitary impulses using a coarse electrode is inferred based on the electrical characteristics of the electrode placed in the flesh and the impulse shapes, as discussed in the second section of this paper. Microneurography and the microstimulation of single afferents, combined with psychophysical methods and behavioral tests, have generated new knowledge particularly regarding four neural systems, namely the proprioceptive system, the cutaneous mechanoreceptive system, the cutaneous nociceptive system, and the sympathetic efferent system to skin structures and muscular blood vessels. Examples of achievements based on microneurography are presented in the final section.
Collapse
Affiliation(s)
- Åke Bernhard Vallbo
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
34
|
Filingeri D, Zhang H, Arens EA. Thermosensory micromapping of warm and cold sensitivity across glabrous and hairy skin of male and female hands and feet. J Appl Physiol (1985) 2018; 125:723-736. [DOI: 10.1152/japplphysiol.00158.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ability of hands and feet to convey skin thermal sensations is an important contributor to our experience of the surrounding world. Surprisingly, the detailed topographical distribution of warm and cold thermosensitivity across hands and feet has not been mapped, although sensitivity maps exist for touch and pain. Using a recently developed quantitative sensory test, we mapped warm and cold thermosensitivity of 103 skin sites over glabrous and hairy skin of hands and feet in male (M; 30.2 ± 5.8 yr) and female (F; 27.7 ± 5.1 yr) adults matched for body surface area (M: 1.77 ± 0.2 m2; F: 1.64 ± 0.1 m2; P = 0.155). Findings indicated that warm and cold thermosensitivity varies by fivefold across glabrous and hairy skin of hands and feet and that hands (warm/cold sensitivity: 1.25/2.14 vote/°C) are twice as sensitive as the feet (warm/cold sensitivity: 0.51/0.99 vote/°C). Opposite to what is known for touch and pain sensitivity, we observed a characteristic distal-to-proximal increase in thermosensitivity over both hairy and glabrous skin (i.e., from fingers and toes to body of hands and feet), and found that hairy skin is more sensitive than glabrous. Finally, we show that body surface area-matched men and women presented small differences in thermosensitivity and that these differences are constrained to glabrous skin only. Our high-density thermosensory micromapping provides the most detailed thermosensitivity maps of hands and feet in young adults available to date. These maps offer a window into peripheral and central mechanisms of thermosensory integration in humans and will help guide future developments in smart skin and sensory neuroprostheses, in wearable, energy-efficient personal comfort systems, and in sport and protective clothing. NEW & NOTEWORTHY We provide the most detailed thermosensitivity maps across glabrous and hairy skin of hands and feet in men and women available to date. Our maps show that thermosensitivity varies by fivefold across hands and feet, distal regions (e.g., fingers, toes) are less sensitive than proximal (e.g., palm, sole), hands are twice as sensitive as feet, and men and women present small thermosensitivity differences. These findings will help guide developments in sensory neuroprostheses, wearable comfort systems, and sport/protective clothing.
Collapse
Affiliation(s)
- Davide Filingeri
- THERMOSENSELAB, Environmental Ergonomics Research Centre, Loughborough University, Loughborough, United Kingdom
- Center for the Built Environment, University of California at Berkeley, Berkeley, California
| | - Hui Zhang
- Center for the Built Environment, University of California at Berkeley, Berkeley, California
| | - Edward A. Arens
- Center for the Built Environment, University of California at Berkeley, Berkeley, California
| |
Collapse
|
35
|
Strzalkowski NDJ, Peters RM, Inglis JT, Bent LR. Cutaneous afferent innervation of the human foot sole: what can we learn from single-unit recordings? J Neurophysiol 2018; 120:1233-1246. [PMID: 29873612 PMCID: PMC6171067 DOI: 10.1152/jn.00848.2017] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 12/21/2022] Open
Abstract
Cutaneous afferents convey exteroceptive information about the interaction of the body with the environment and proprioceptive information about body position and orientation. Four classes of low-threshold mechanoreceptor afferents innervate the foot sole and transmit feedback that facilitates the conscious and reflexive control of standing balance. Experimental manipulation of cutaneous feedback has been shown to alter the control of gait and standing balance. This has led to a growing interest in the design of intervention strategies that enhance cutaneous feedback and improve postural control. The advent of single-unit microneurography has allowed the firing and receptive field characteristics of foot sole cutaneous afferents to be investigated. In this review, we consolidate the available cutaneous afferent microneurographic recordings from the foot sole and provide an analysis of the firing threshold, and receptive field distribution and density of these cutaneous afferents. This work enhances the understanding of the foot sole as a sensory structure and provides a foundation for the continued development of sensory augmentation insoles and other tactile enhancement interventions.
Collapse
Affiliation(s)
- Nicholas D J Strzalkowski
- Department of Human Health and Nutritional Science, University of Guelph , Guelph , Canada
- Department of Clinical Neuroscience, University of Calgary , Calgary , Canada
| | - Ryan M Peters
- School of Kinesiology, University of British Columbia , Vancouver , Canada
- Faculty of Kinesiology, University of Calgary , Calgary , Canada
| | - J Timothy Inglis
- School of Kinesiology, University of British Columbia , Vancouver , Canada
| | - Leah R Bent
- Department of Human Health and Nutritional Science, University of Guelph , Guelph , Canada
| |
Collapse
|
36
|
Héroux ME, Bayle N, Butler AA, Gandevia SC. Time, touch and temperature affect perceived finger position and ownership in the grasp illusion. J Physiol 2017; 596:267-280. [PMID: 29082527 DOI: 10.1113/jp274781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/19/2017] [Indexed: 01/17/2023] Open
Abstract
KEY POINTS The brain's internal model of the body and the sense of body ownership are fundamental to interaction with the world. It is thought that temporally congruent, repetitive multisensory stimuli are required to elicit a sense of body ownership. Here we investigate the ability of static cutaneous stimuli - passively grasping an artificial finger - to induce body ownership and alter perceived body position; we also investigate how physical characteristics of grasped objects alter these senses. We show that static cutaneous stimuli can alter perceived body position and induce an illusion of ownership and also that signals of temperature, texture and shape of grasped finger-sized objects influence body ownership. Thus, these aspects of human proprioception can be altered by a single sustained sensory stimulus and by the physical characteristics of held objects. ABSTRACT Perceived body position and ownership are fundamental to our ability to sense and interact with the world. Previous work indicates that temporally congruent, repetitive multisensory stimuli are needed to alter the sense of body ownership. In the present study 30 subjects passively grasped an artificial rubber finger with their left index and thumb while their right index finger, located 12 cm below, was lightly clamped. Fingers with varied physical characteristics were also passively grasped to determine how these characteristics influenced perceived body position and ownership. Subjects immediately felt their hands to be 5.3 cm [3.4-7.3] (mean [95%CI]) closer, a feeling that remained after 3 min (6.0 cm [4.5-7.5]). By the end of the trial, perceived ownership increased by 1.2 [0.6-1.9] points on a 7-point Likert scale, with the group average moving from 'neither agree or disagree' at the start to 'somewhat agree' at the end. Compared to grasping a control rubber finger, grasping a cold, rough, oddly shaped or rectangular shaped finger-like object reduced perceived ownership. These results provide new insights into the role of cutaneous sensory receptors in defining these aspects of proprioception, and the speed with which these effects occur. Static touch rapidly induces large, sustained changes in perceived body position and prolonged exposure to these cutaneous inputs, alone, can induce a sense of body ownership. Also, certain physical characteristics of grasped objects influence the sense of body ownership.
Collapse
Affiliation(s)
- Martin E Héroux
- Neuroscience Research Australia Sydney, NSW, Australia.,University of New South Wales, Sydney, Australia
| | - Nicolas Bayle
- Neuroscience Research Australia Sydney, NSW, Australia.,Laboratoire Analyse et Restauration du Mouvement, Université Paris Est Créteil, Créteil, France
| | - Annie A Butler
- Neuroscience Research Australia Sydney, NSW, Australia.,University of New South Wales, Sydney, Australia
| | - Simon C Gandevia
- Neuroscience Research Australia Sydney, NSW, Australia.,University of New South Wales, Sydney, Australia
| |
Collapse
|
37
|
Beaudette SM, Smith SGVS, Bent LR, Brown SHM. Spine Posture Influences Tactile Perceptual Sensitivity of the Trunk Dorsum. Ann Biomed Eng 2017; 45:2804-2812. [PMID: 28924674 DOI: 10.1007/s10439-017-1924-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/12/2017] [Indexed: 11/27/2022]
Abstract
The purpose of the current work was to quantify the influence of posture-mediated skin deformation on trunk dorsum tactile perceptual sensitivity. Twelve young and healthy individuals were assessed while adopting three different spine postures (extension, neutral and flexion). Tactile sensitivity threshold tests (T10 and L4 vertebral levels) included measures of touch sensitivity, spatial acuity and stretch sensitivity. The results demonstrate that tactile sensitivity can differ due to changes in body posture. The skin of the trunk dorsum had increased thresholds for touch sensitivity, longitudinal spatial acuity and transverse stretch sensitivity in spine flexion. Furthermore, spine flexion also resulted in a reduced sensory threshold to stretching stimuli in the longitudinal direction. The opposite trends occurred when participants adopted spine extension. It is suggested that posture-mediated skin deformation generates changes in the amount of strain experienced by individual skin mechanoreceptors, and the relative spacing between mechanoreceptors. Furthermore, it is suggested that "pre-stretch" of the skin brings mechanoreceptors closer to their stretch activation thresholds, thereby increasing an individual's sensitivity to skin stretch when in spine flexion.
Collapse
Affiliation(s)
- Shawn M Beaudette
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Simone G V S Smith
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Leah R Bent
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Stephen H M Brown
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
38
|
Strzalkowski NDJ, Ali RA, Bent LR. The firing characteristics of foot sole cutaneous mechanoreceptor afferents in response to vibration stimuli. J Neurophysiol 2017; 118:1931-1942. [PMID: 28679842 DOI: 10.1152/jn.00647.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 06/12/2017] [Accepted: 06/27/2017] [Indexed: 12/13/2022] Open
Abstract
Single unit microneurography was used to record the firing characteristics of the four classes of foot sole cutaneous afferents [fast and slowly adapting type I and II (FAI, FAII, SAI, and SAII)] in response to sinusoidal vibratory stimuli. Frequency (3-250 Hz) and amplitude (0.001-2 mm) combinations were applied to afferent receptive fields through a 6-mm diameter probe. The impulses per cycle, defined as the number of action potentials evoked per vibration sine wave, were measured over 1 s of vibration at each frequency-amplitude combination tested. Afferent entrainment threshold (lowest amplitude at which an afferent could entrain 1:1 to the vibration frequency) and afferent firing threshold (minimum amplitude for which impulses per cycle was greater than zero) were then obtained for each frequency. Increases in vibration frequency are generally associated with decreases in expected impulses per cycle (P < 0.001), but each foot sole afferent class appears uniquely tuned to vibration stimuli. FAII afferents tended to have the lowest entrainment and firing thresholds (P < 0.001 for both); however, these afferents seem to be sensitive across frequency. In contrast to FAII afferents, SAI and SAII afferents tended to demonstrate optimal entrainment to frequencies below 20 Hz and FAI afferents faithfully encoded frequencies between 8 and 60 Hz. Contrary to the selective activation of distinct afferent classes in the hand, application of class-specific frequencies in the foot sole is confounded due to the high sensitivity of FAII afferents. These findings may aid in the development of sensorimotor control models or the design of balance enhancement interventions.NEW & NOTEWORTHY Our work provides a mechanistic look at the capacity of foot sole cutaneous afferents to respond to vibration of varying frequency and amplitude. We found that foot sole afferent classes are uniquely tuned to vibration stimuli; however, unlike in the hand, they cannot be independently activated by class-specific frequencies. Viewing the foot sole as a sensory structure, the present findings may aid in the refinement of sensorimotor control models and design of balance enhancement interventions.
Collapse
Affiliation(s)
| | - R Ayesha Ali
- Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada; and
| | - Leah R Bent
- Department of Human Health and Nutritional Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
39
|
Congenital deafness is associated with specific somatosensory deficits in adolescents. Sci Rep 2017; 7:4251. [PMID: 28652589 PMCID: PMC5484691 DOI: 10.1038/s41598-017-04074-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/09/2017] [Indexed: 12/25/2022] Open
Abstract
Hearing and touch represent two distinct sensory systems that both rely on the transformation of mechanical force into electrical signals. Here we used a battery of quantitative sensory tests to probe touch, thermal and pain sensitivity in a young control population (14–20 years old) compared to age-matched individuals with congenital hearing loss. Sensory testing was performed on the dominant hand of 111 individuals with normal hearing and 36 with congenital hearing loss. Subjects with congenital deafness were characterized by significantly higher vibration detection thresholds at 10 Hz (2-fold increase, P < 0.001) and 125 Hz (P < 0.05) compared to controls. These sensory changes were not accompanied by any major change in measures of pain perception. We also observed a highly significant reduction (30% compared to controls p < 0.001) in the ability of hearing impaired individual’s ability to detect cooling which was not accompanied by changes in warm detection. At least 60% of children with non-syndromic hearing loss showed very significant loss of vibration detection ability (at 10 Hz) compared to age-matched controls. We thus propose that many pathogenic mutations that cause childhood onset deafness may also play a role in the development or functional maintenance of somatic mechanoreceptors.
Collapse
|
40
|
Beaudette SM, Zwambag DP, Bent LR, Brown SH. Spine postural change elicits localized skin structural deformation of the trunk dorsum in vivo. J Mech Behav Biomed Mater 2017; 67:31-39. [DOI: 10.1016/j.jmbbm.2016.11.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/22/2016] [Accepted: 11/30/2016] [Indexed: 11/29/2022]
|
41
|
Filingeri D, Ackerley R. The biology of skin wetness perception and its implications in manual function and for reproducing complex somatosensory signals in neuroprosthetics. J Neurophysiol 2017; 117:1761-1775. [PMID: 28123008 DOI: 10.1152/jn.00883.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 01/11/2023] Open
Abstract
Our perception of skin wetness is generated readily, yet humans have no known receptor (hygroreceptor) to signal this directly. It is easy to imagine the sensation of water running over our hands or the feel of rain on our skin. The synthetic sensation of wetness is thought to be produced from a combination of specific skin thermal and tactile inputs, registered through thermoreceptors and mechanoreceptors, respectively. The present review explores how thermal and tactile afference from the periphery can generate the percept of wetness centrally. We propose that the main signals include information about skin cooling, signaled primarily by thinly myelinated thermoreceptors, and rapid changes in touch, through fast-conducting, myelinated mechanoreceptors. Potential central sites for integration of these signals, and thus the perception of skin wetness, include the primary and secondary somatosensory cortices and the insula cortex. The interactions underlying these processes can also be modeled to aid in understanding and engineering the mechanisms. Furthermore, we discuss the role that sensing wetness could play in precision grip and the dexterous manipulation of objects. We expand on these lines of inquiry to the application of the knowledge in designing and creating skin sensory feedback in prosthetics. The addition of real-time, complex sensory signals would mark a significant advance in the use and incorporation of prosthetic body parts for amputees in everyday life.NEW & NOTEWORTHY Little is known about the underlying mechanisms that generate the perception of skin wetness. Humans have no specific hygroreceptor, and thus temperature and touch information combine to produce wetness sensations. The present review covers the potential mechanisms leading to the perception of wetness, both peripherally and centrally, along with their implications for manual function. These insights are relevant to inform the design of neuroengineering interfaces, such as sensory prostheses for amputees.
Collapse
Affiliation(s)
- Davide Filingeri
- Environmental Ergonomics Research Centre, Loughborough Design School, Loughborough University, Loughborough, United Kingdom;
| | - Rochelle Ackerley
- Department of Physiology, University of Gothenburg, Göteborg, Sweden; and.,Laboratoire Neurosciences Intégratives et Adaptatives (UMR 7260), Aix Marseille Université-Centre National de la Recherche Scientifique, Marseille, France
| |
Collapse
|
42
|
Effects of Tactile Sensitivity on Structural Variability of Digit Forces during Stable Precision Grip. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8314561. [PMID: 27847823 PMCID: PMC5099480 DOI: 10.1155/2016/8314561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/23/2016] [Accepted: 07/25/2016] [Indexed: 01/08/2023]
Abstract
This study investigated the effects of fingertip tactile sensitivity on the structural variability of thumb and index finger forces during stable precision grip. Thirty right-handed healthy subjects participated in the experiment. Transient perturbation of tactile afferents was achieved by wrapping up the distal pads of the thumb or index finger with transparent polyethylene films. The time-dependent structure of each digit force and the variability of interdigit force correlation were examined by detrended fluctuation analysis (DFA) and detrended cross-correlation analysis (DCCA), respectively. Results showed that the tactile sensitivity affected αDFA of the vertical shear force Fx (F3,239 = 6.814, p < 0.001) and αDCCA of Fx (χ2 = 16.440, p < 0.001). No significant difference was observed in αDFA or αDCCA of the normal forces produced by the thumb or index finger. These results suggested that with blurred tactile sensory inputs the central nervous system might decrease the vertical shear force flexibility and increase the interdigit shear force coupling in order to guarantee a stable grip control of an object against gravity. This study shed light on the feedback and feed-forward strategies involved in digit force control and the role of SA-II afferent fibers in regulation of vertical shear force variability for precision grip.
Collapse
|
43
|
Delhaye B, Barrea A, Edin BB, Lefèvre P, Thonnard JL. Surface strain measurements of fingertip skin under shearing. J R Soc Interface 2016; 13:20150874. [PMID: 26888949 PMCID: PMC4780562 DOI: 10.1098/rsif.2015.0874] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The temporal evolution of surface strain, resulting from a combination of normal and tangential loading forces on the fingerpad, was calculated from high-resolution images. A customized robotic device loaded the fingertip with varying normal force, tangential direction and tangential speed. We observed strain waves that propagated from the periphery to the centre of the contact area. Consequently, different regions of the contact area were subject to varying degrees of compression, stretch and shear. The spatial distribution of both the strains and the strain energy densities depended on the stimulus direction. Additionally, the strains varied with the normal force level and were substantial, e.g. peak strains of 50% with a normal force of 5 N, i.e. at force levels well within the range of common dexterous manipulation tasks. While these observations were consistent with some theoretical predictions from contact mechanics, we also observed substantial deviations as expected given the complex geometry and mechanics of fingertips. Specifically, from in-depth analyses, we conclude that some of these deviations depend on local fingerprint patterns. Our data provide useful information for models of tactile afferent responses and background for the design of novel haptic interfaces.
Collapse
Affiliation(s)
- Benoit Delhaye
- Institute of Neuroscience (IoNS), Université catholique de Louvain, Brussels and Louvain-la-Neuve, Belgium Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université catholique de Louvain, Brussels and Louvain-la-Neuve, Belgium Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | - Allan Barrea
- Institute of Neuroscience (IoNS), Université catholique de Louvain, Brussels and Louvain-la-Neuve, Belgium Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université catholique de Louvain, Brussels and Louvain-la-Neuve, Belgium
| | - Benoni B Edin
- Physiology Section, Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Philippe Lefèvre
- Institute of Neuroscience (IoNS), Université catholique de Louvain, Brussels and Louvain-la-Neuve, Belgium Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Université catholique de Louvain, Brussels and Louvain-la-Neuve, Belgium
| | - Jean-Louis Thonnard
- Institute of Neuroscience (IoNS), Université catholique de Louvain, Brussels and Louvain-la-Neuve, Belgium Cliniques Universitaires Saint-Luc, Physical and Rehabilitation Medicine Department, Université catholique de Louvain, Brussels and Louvain-la-Neuve, Belgium
| |
Collapse
|
44
|
Delhaye BP, Schluter EW, Bensmaia SJ. Robo-Psychophysics: Extracting Behaviorally Relevant Features from the Output of Sensors on a Prosthetic Finger. IEEE TRANSACTIONS ON HAPTICS 2016; 9:499-507. [PMID: 27992321 DOI: 10.1109/toh.2016.2573298] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Efforts are underway to restore sensorimotor function in amputees and tetraplegic patients using anthropomorphic robotic hands. For this approach to be clinically viable, sensory signals from the hand must be relayed back to the patient. To convey tactile feedback necessary for object manipulation, behaviorally relevant information must be extracted in real time from the output of sensors on the prosthesis. In the present study, we recorded the sensor output from a state-of-the-art bionic finger during the presentation of different tactile stimuli, including punctate indentations and scanned textures. Furthermore, the parameters of stimulus delivery (location, speed, direction, indentation depth, and surface texture) were systematically varied. We developed simple decoders to extract behaviorally relevant variables from the sensor output and assessed the degree to which these algorithms could reliably extract these different types of sensory information across different conditions of stimulus delivery. We then compared the performance of the decoders to that of humans in analogous psychophysical experiments. We show that straightforward decoders can extract behaviorally relevant features accurately from the sensor output and most of them outperform humans.
Collapse
|
45
|
Moshourab R, Frenzel H, Lechner S, Haseleu J, Bégay V, Omerbašić D, Lewin GR. Measurement of Vibration Detection Threshold and Tactile Spatial Acuity in Human Subjects. J Vis Exp 2016. [PMID: 27684317 DOI: 10.3791/52966] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Tests that allow the precise determination of psychophysical thresholds for vibration and grating orientation provide valuable information about mechanosensory function that are relevant for clinical diagnosis as well as for basic research. Here, we describe two psychophysical tests designed to determine the vibration detection threshold (automated system) and tactile spatial acuity (handheld device). Both procedures implement a two-interval forced-choice and a transformed-rule up and down experimental paradigm. These tests have been used to obtain mechanosensory profiles for individuals from distinct human cohorts such as twins or people with sensorineural deafness.
Collapse
Affiliation(s)
- Rabih Moshourab
- Department of Anesthesiology and Intensive Care Medicine, Charite Universitätsmedzin, Campus Virchow Klinikum und Campus Charite Mitte; Department of Neuroscience, Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine;
| | - Henning Frenzel
- Department of Neuroscience, Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine
| | | | - Julia Haseleu
- Department of Neuroscience, Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine
| | - Valérie Bégay
- Department of Neuroscience, Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine
| | - Damir Omerbašić
- Department of Neuroscience, Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine
| | - Gary R Lewin
- Department of Neuroscience, Molecular Physiology of Somatic Sensation, Max Delbrück Center for Molecular Medicine
| |
Collapse
|
46
|
Peters RM, McKeown MD, Carpenter MG, Inglis JT. Losing touch: age-related changes in plantar skin sensitivity, lower limb cutaneous reflex strength, and postural stability in older adults. J Neurophysiol 2016; 116:1848-1858. [PMID: 27489366 DOI: 10.1152/jn.00339.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/25/2016] [Indexed: 12/28/2022] Open
Abstract
Age-related changes in the density, morphology, and physiology of plantar cutaneous receptors negatively impact the quality and quantity of balance-relevant information arising from the foot soles. Plantar perceptual sensitivity declines with age and may predict postural instability; however, alteration in lower limb cutaneous reflex strength may also explain greater instability in older adults and has yet to be investigated. We replicated the age-related decline in sensitivity by assessing monofilament and vibrotactile (30 and 250 Hz) detection thresholds near the first metatarsal head bilaterally in healthy young and older adults. We additionally applied continuous 30- and 250-Hz vibration to drive mechanically evoked reflex responses in the tibialis anterior muscle, measured via surface electromyography. To investigate potential relationships between plantar sensitivity, cutaneous reflex strength, and postural stability, we performed posturography in subjects during quiet standing without vision. Anteroposterior and mediolateral postural stability decreased with age, and increases in postural sway amplitude and frequency were significantly correlated with increases in plantar detection thresholds. With 30-Hz vibration, cutaneous reflexes were observed in 95% of young adults but in only 53% of older adults, and reflex gain, coherence, and cumulant density at 30 Hz were lower in older adults. Reflexes were not observed with 250-Hz vibration, suggesting this high-frequency cutaneous input is filtered out by motoneurons innervating tibialis anterior. Our findings have important implications for assessing the risk of balance impairment in older adults.
Collapse
Affiliation(s)
- Ryan M Peters
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Monica D McKeown
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Mark G Carpenter
- School of Kinesiology, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; and International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| | - J Timothy Inglis
- School of Kinesiology, University of British Columbia, Vancouver, Canada; Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada; and International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada
| |
Collapse
|
47
|
Low back skin sensitivity has minimal impact on active lumbar spine proprioception and stability in healthy adults. Exp Brain Res 2016; 234:2215-26. [PMID: 27010722 DOI: 10.1007/s00221-016-4625-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/10/2016] [Indexed: 12/18/2022]
Abstract
The purpose of the current work was to (1) determine whether low back cutaneous sensitivity could be reduced through the use of a topical lidocaine-prilocaine anesthetic (EMLA(®)) to mirror reductions reported in chronic lower back pain (CLBP) patients, as well as to (2) identify whether reductions in cutaneous sensitivity resulted in decreased lumbar spine proprioception, neuromuscular control and dynamic stability. Twenty-eight healthy participants were divided equally into matched EMLA and PLACEBO treatment groups. Groups completed cutaneous minimum monofilament and two-point discrimination (TPD) threshold tests, as well as tests of sagittal and axial lumbar spine active repositioning error, seated balance and repeated lifting dynamic stability. These tests were administered both before and after the application of an EMLA or PLACEBO treatment. Results show that low back minimum monofilament and TPD thresholds were significantly increased within the EMLA group. Skin sensitivity remained unchanged in the PLACEBO group. In the EMLA group, decreases in low back cutaneous sensitivity had minimal effect on low back proprioception (active sagittal and axial repositioning) and dynamic stability (seated balance and repeated lifting). These findings demonstrate that treating the skin of the low back with an EMLA anesthetic can effectively decrease the cutaneous sensitivity of low back region. Further, these decreases in peripheral cutaneous sensitivity are similar in magnitude to those reported in CLBP patients. Within this healthy population, decreased cutaneous sensitivity of the low back region has minimal influence on active lumbar spine proprioception, neuromuscular control and dynamic stability.
Collapse
|
48
|
Kurita S, Takei Y, Maki Y, Hattori S, Uehara T, Fukuda M, Mikuni M. Magnetoencephalography study of the effect of attention modulation on somatosensory processing in patients with major depressive disorder. Psychiatry Clin Neurosci 2016; 70:116-25. [PMID: 26388212 DOI: 10.1111/pcn.12361] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/05/2015] [Accepted: 09/16/2015] [Indexed: 12/13/2022]
Abstract
AIMS Although affective and/or attention modulation of somatosensory processing has been well studied, the biological bases of somatic symptoms in patients with major depressive disorder (MDD) have rarely been examined. To elucidate changes in somatosensory processing underlying somatic symptoms in patients with MDD, we conducted a magnetoencephalography study of patients with MDD and healthy controls. METHODS After median nerve stimulation, somatosensory evoked fields (SEF) were recorded in 10 patients with MDD and 10 sex-, age-, and height-matched healthy volunteers under somatosensory attending, visually attending, and non-attending conditions. The latencies and magnitudes of N20m and P60m SEF were examined. RESULTS In the MDD group, P60m latency was significantly prolonged, irrespective of attention modulation, whereas N20m latency and root mean squares N20m and P60m amplitudes remained unchanged. Prolonged P60m latency negatively correlated with the somatosensory threshold, which was relatively high in the MDD group. Prolonged P60m latency also negatively correlated with a state of anxiety during the examination, but not with depressive symptoms or psychotropic medication. CONCLUSIONS These results suggested that patients with MDD experience dysfunction in somatosensory information processing, approximately 60 ms after stimuli, irrespective of attentional conditions.
Collapse
Affiliation(s)
| | - Yuichi Takei
- Department of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Yohko Maki
- National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Suguru Hattori
- Department of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Toru Uehara
- Takasaki University of Health and Welfare, Gunma, Japan
| | - Masato Fukuda
- Department of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Masahiko Mikuni
- Department of Psychiatry and Neuroscience, Gunma University Graduate School of Medicine, Gunma, Japan.,International University of Health and Welfare Hospital, Tochigi, Japan
| |
Collapse
|
49
|
Mildren RL, Strzalkowski NDJ, Bent LR. Foot sole skin vibration perceptual thresholds are elevated in a standing posture compared to sitting. Gait Posture 2016; 43:87-92. [PMID: 26669957 DOI: 10.1016/j.gaitpost.2015.10.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/19/2015] [Accepted: 10/29/2015] [Indexed: 02/02/2023]
Abstract
Foot sole sensitivity is commonly assessed while individuals are seated or prone; however the primary role of foot sole cutaneous feedback is for the control of upright stance and gait. The aim of this study was to compare vibration perceptual thresholds across the foot sole between sitting and standing postures. Vibration perceptual thresholds were measured in sitting and standing postures in 18 healthy participants (8 male) using a custom vibration device. Two foot sole locations (heels and metatarsals) were tested at four vibration frequencies (3, 15, 40, and 250Hz) selected to target different cutaneous afferent populations. At each frequency, perceptual thresholds across the foot sole were significantly higher in the standing posture compared to the sitting posture; this is indicative of lower sensitivity while standing. In addition, threshold differences between the heels and metatarsals for lower frequency vibratory stimuli were more pronounced while standing, with higher thresholds observed at the heels. Our results demonstrate that standing significantly alters sensitivity across the foot sole. Therefore, conducting perceptual tests at the foot sole during stance could potentially provide more direct information about the ability of cutaneous afferents to signal tactile information in a state where this feedback can contribute to postural control.
Collapse
Affiliation(s)
- Robyn L Mildren
- University of Guelph, Department of Human Health and Nutritional Sciences, N1G2W1 Ontario, Canada.
| | | | - Leah R Bent
- University of Guelph, Department of Human Health and Nutritional Sciences, N1G2W1 Ontario, Canada.
| |
Collapse
|
50
|
Crapse TB, Basso MA. Insights into decision making using choice probability. J Neurophysiol 2015; 114:3039-49. [PMID: 26378203 DOI: 10.1152/jn.00335.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 09/14/2015] [Indexed: 11/22/2022] Open
Abstract
A long-standing question in systems neuroscience is how the activity of single neurons gives rise to our perceptions and actions. Critical insights into this question occurred in the last part of the 20th century when scientists began linking modulations of neuronal activity directly to perceptual behavior. A significant conceptual advance was the application of signal detection theory to both neuronal activity and behavior, providing a quantitative assessment of the relationship between brain and behavior. One metric that emerged from these efforts was choice probability (CP), which provides information about how well an ideal observer can predict the choice an animal makes from a neuron's discharge rate distribution. In this review, we describe where CP has been studied, locational trends in the values found, and why CP values are typically so low. We discuss its dependence on correlated activity among neurons of a population, assess whether it arises from feedforward or feedback mechanisms, and investigate what CP tells us about how many neurons are required for a decision and how they are pooled to do so.
Collapse
Affiliation(s)
- Trinity B Crapse
- Joaquin Fuster Laboratory of Cognitive Neuroscience, Departments of Psychiatry and Biobehavioral Sciences and Neurobiology, The Semel Institute for Neuroscience and Human Behavior and the Brain Research Institute, University of California, Los Angeles, Los Angeles, California
| | - Michele A Basso
- Joaquin Fuster Laboratory of Cognitive Neuroscience, Departments of Psychiatry and Biobehavioral Sciences and Neurobiology, The Semel Institute for Neuroscience and Human Behavior and the Brain Research Institute, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|