1
|
Zuhra K, Szabo C. The two faces of cyanide: an environmental toxin and a potential novel mammalian gasotransmitter. FEBS J 2022; 289:2481-2515. [PMID: 34297873 PMCID: PMC9291117 DOI: 10.1111/febs.16135] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 12/16/2022]
Abstract
Cyanide is traditionally viewed as a cytotoxic agent, with its primary mode of action being the inhibition of mitochondrial Complex IV (cytochrome c oxidase). However, recent studies demonstrate that the effect of cyanide on Complex IV in various mammalian cells is biphasic: in lower concentrations (nanomolar to low micromolar) cyanide stimulates Complex IV activity, increases ATP production and accelerates cell proliferation, while at higher concentrations (high micromolar to low millimolar) it produces the previously known ('classic') toxic effects. The first part of the article describes the cytotoxic actions of cyanide in the context of environmental toxicology, and highlights pathophysiological conditions (e.g., cystic fibrosis with Pseudomonas colonization) where bacterially produced cyanide exerts deleterious effects to the host. The second part of the article summarizes the mammalian sources of cyanide production and overviews the emerging concept that mammalian cells may produce cyanide, in low concentrations, to serve biological regulatory roles. Cyanide fulfills many of the general criteria as a 'classical' mammalian gasotransmitter and shares some common features with the current members of this class: nitric oxide, carbon monoxide, and hydrogen sulfide.
Collapse
Affiliation(s)
- Karim Zuhra
- Chair of PharmacologySection of MedicineUniversity of FribourgSwitzerland
| | - Csaba Szabo
- Chair of PharmacologySection of MedicineUniversity of FribourgSwitzerland
| |
Collapse
|
2
|
Karatani H, Fuse Y, Mizuguchi H, Monji S, Oyama H, Waku T, Iwasaki M. Bioluminescence Microplate Assay of Cyanide with Escherichia coli Harboring a Plasmid Responsible for Cyanide-dependent Light Emission in Alginate Microenvironment. ANAL SCI 2019; 35:821-825. [PMID: 31105086 DOI: 10.2116/analsci.19n014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We describe the bioluminescence of a genetically engineered Escherichia coli harboring a recombined plasmid with a catalase gene promoter fused lux gene cluster, responsible for the generation of photons closely associated with respiratory inhibition, with the aim of applying it for cyanide sensing. This E. coli construct was favorably utilized for the microplate assay of cyanide by leveraging the microenvironment of the biocompatible alginate. The brightness of the bioluminescence, induced by cyanide stimulation of the respiration causative of the production of hydrogen peroxide, positively correlates with its concentration. Moreover, visualization of cyanide with a consumer digital camera, ranging in concentration from about 0.01 mg CN·L-1 in the alginate sol to around 100 mg CN·L-1 in its gel, was attained.
Collapse
Affiliation(s)
- Hajime Karatani
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology.,Kyoto Luminous Science Laboratory.,Center of Environmental Science, Kyoto Institute of Technology
| | - Yasuro Fuse
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology.,Center of Environmental Science, Kyoto Institute of Technology
| | | | - Shogo Monji
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| | - Hiroshi Oyama
- Department of Life Science, Faculty of Science and Engineering, Setsunan University
| | - Tomonori Waku
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| | - Masashi Iwasaki
- Center of Environmental Science, Kyoto Institute of Technology.,Faculty of Materials Science and Engineering, Kyoto Institute of Technology
| |
Collapse
|
3
|
Beyenbach KW. Voltages and resistances of the anterior Malpighian tubule of Drosophila melanogaster. ACTA ACUST UNITED AC 2019; 222:jeb.201574. [PMID: 31043456 DOI: 10.1242/jeb.201574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/25/2019] [Indexed: 01/12/2023]
Abstract
The small size of Malpighian tubules in the fruit fly Drosophila melanogaster has discouraged measurements of the transepithelial electrical resistance. The present study introduces two methods for measuring the transepithelial resistance in isolated D . melanogaster Malpighian tubules using conventional microelectrodes and PClamp hardware and software. The first method uses three microelectrodes to measure the specific transepithelial resistance normalized to tubule length or luminal surface area for comparison with resistances of other epithelia. The second method uses only two microelectrodes to measure the relative resistance for comparing before and after effects in a single Malpighian tubule. Knowledge of the specific transepithelial resistance allows the first electrical model of electrolyte secretion by the main segment of the anterior Malpighian tubule of D . melanogaster The electrical model is remarkably similar to that of the distal Malpighian tubule of Aedes aegypti when tubules of Drosophila and Aedes are studied in vitro under the same experimental conditions. Thus, despite 189 millions of years of evolution separating these two genera, the electrophysiological properties of their Malpighian tubules remains remarkably conserved.
Collapse
Affiliation(s)
- Klaus W Beyenbach
- Department of Biology/Chemistry, Division of Animal Physiology, University of Osnabrück, Barbarastrasse 11, Osnabrück 49076, Germany
| |
Collapse
|
4
|
|
5
|
Torres RJ, Subramanyam M, Altenberg GA, Reuss L. Cell swelling activates the K+ conductance and inhibits the Cl- conductance of the basolateral membrane of cells from a leaky epithelium. J Gen Physiol 1997; 109:61-72. [PMID: 8997666 PMCID: PMC2217048 DOI: 10.1085/jgp.109.1.61] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Necturus gallbladder epithelial cells bathed in 10 mM HCO3/1% CO2 display sizable basolateral membrane conductances for Cl- (GClb) and K+ (GKb). Lowering the osmolality of the apical bathing solution hyperpolarized both apical and basolateral membranes and increased the K+/Cl- selectivity of the basolateral membrane. Hyperosmotic solutions had the opposite effects. Intracellular free-calcium concentration ([Ca2+]i) increased transiently during hyposmotic swelling (peak at approximately 30 s, return to baseline within approximately 90 s), but chelation of cell Ca2+ did not prevent the membrane hyperpolarization elicited by the hyposmotic solution. Cable analysis experiments showed that the electrical resistance of the basolateral membrane decreased during hyposmotic swelling and increased during hyperosmotic shrinkage, whereas the apical membrane resistance was unchanged in hyposmotic solution and decreased in hyperosmotic solution. We assessed changes in cell volume in the epithelium by measuring changes in the intracellular concentration of an impermeant cation (tetramethylammonium), and in isolated polarized cells measuring changes in intracellular calcein fluorescence, and observed that these epithelial cells do not undergo measurable volume regulation over 10-12 min after osmotic swelling. Depolarization of the basolateral membrane voltage (Vcs) produced a significant increase in the change in Vcs elicited by lowering basolateral solution [Cl-], whereas hyperpolarization of Vcs had the opposite effect. These results suggest that: (a) Hyposmotic swelling increases GKb and decreases GClb. These two effects appear to be linked, i.e., the increase in GKb produces membrane hyperpolarization, which in turn reduces GClb. (b) Hyperosmotic shrinkage has the opposite effects on GKb and GClb. (c) Cell swelling causes a transient increase in [Ca2+]i, but this response may not be necessary for the increase in GKb during cell swelling.
Collapse
Affiliation(s)
- R J Torres
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77555-0641, USA
| | | | | | | |
Collapse
|
6
|
Wang J, Benz R, Zimmermann U. Effects of light and inhibitors of ATP-synthesis on the chloride carrier of the alga Valonia utricularis: is the carrier a chloride pump? BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1233:185-97. [PMID: 7865542 DOI: 10.1016/0005-2736(94)00252-k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effect of metabolic inhibitors, such as cyanide, antimycin A and azide was studied on the chloride transport system of the giant marine alga Valonia utricularis by using the charge pulse relaxation method. Two clearly defined voltage relaxations were resolved. The addition of 10-30 microM cyanide to the artificial sea water (ASW) bathing the algal cells increased the time constants of the slow voltage relaxation, tau 2, significantly when the algal cells were kept in the dark. The cyanide-effect reached a plateau value at 100-300 microM and was fully reversible when cyanide was removed from the ASW. Analysis of the charge pulse data in terms of the Läuger-model demonstrated that the translocation rates of the free, kS, and the charged carrier, kAS, decreased. The decrease of kS was more pronounced than that of kAS. 10 microM antimycin A and 3 mM azide had similar effects on the rate constants when the light was switched off. Upon illumination the cyanide- and antimycin A-, but not the azide-mediated effects disappeared. At concentrations higher than 1 mM cyanide caused a further, dramatic decrease of kS and kAS, while the surface concentration of the carrier molecules, N0, was not affected. This cyanide-effect was also reversible, but not light-dependent. Measurements of the ATP level showed that 3 mM cyanide reduced the ATP level by about 70% both under light and dark conditions. In the presence of 30 microM cyanide (or 10 microM antimycin A) the ATP level decreased by about 50%, but only in the dark. These results suggest two different effects of cyanide on the Cl(-)-carrier system: in the micromolar concentration range cyanide (and antimycin A) reduced predominantly the translocation of the free carrier by inhibition of ATP synthesis by oxidative phosphorylation, whereas in the millimolar concentration range cyanide apparently inhibits the translocation rates of both the free and charged carriers by its binding to the carrier. The results provide some evidence that the chloride transport of V. utricularis could be coupled to metabolic energy but it is an open question whether it is a pump or not.
Collapse
Affiliation(s)
- J Wang
- Lehrstuhl für Biotechnologie, Biozentrum der Universität Würzburg, Germany
| | | | | |
Collapse
|
7
|
Altenberg GA, Subramanyam M, Reuss L. Muscarinic stimulation of gallbladder epithelium. II. Fluid transport, cell volume, and ion permeabilities. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 265:C1613-9. [PMID: 8279521 DOI: 10.1152/ajpcell.1993.265.6.c1613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Activation of muscarinic receptors in the fluid-absorptive epithelium of the Necturus gallbladder elevates cytosolic Ca2+ concentration, transiently hyperpolarizes the cell membrane voltages, and decreases the apparent fractional resistance of the apical membrane [G. A. Altenberg, M. Subramanyam, J. S. Bergmann, K. M. Johnson, and L. Reuss. Am. J. Physiol. 265 (Cell Physiol. 34): C1604-C1612, 1993]. In these studies, we show that at the peak of the hyperpolarization both apical and basolateral membrane resistances (Ra and Rb, respectively) decreased, but in 2-3 min Ra returned to control values while Rb rose to a level approximately 60% higher than control. The acetylcholine (ACh)-induced decrease in Ra is caused by activation of apical membrane maxi K+ channels secondary to elevation of cytosolic Ca2+ concentration. The increase in Rb is due to decreases in K+ and Cl- conductances. ACh had no effects on cell KCl content or water volume, although K+ conductance transiently increased. These results can be explained by the changes in basolateral membrane conductances. ACh did not alter fluid absorption. In conclusion, ACh has complex time-dependent effects on K+ and Cl- electrodiffusive permeabilities without measurable changes in cell volume or in the rate of transepithelial fluid transport.
Collapse
Affiliation(s)
- G A Altenberg
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77555
| | | | | |
Collapse
|
8
|
Altenberg GA, Subramanyam M, Bergmann JS, Johnson KM, Reuss L. Muscarinic stimulation of gallbladder epithelium. I. Electrophysiology and signaling mechanisms. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 265:C1604-12. [PMID: 8279520 DOI: 10.1152/ajpcell.1993.265.6.c1604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To understand the effects of acetylcholine (ACh) on fluid-absorbing epithelia, we carried out experiments on Necturus gallbladder epithelium. Binding studies with 1-quinuclidinyl[phenyl-4(N)-3H]benzilate (QNB) demonstrated that Necturus gallbladder epithelial cells express high-affinity muscarinic receptors. The effects of ACh and carbachol were exerted from the basolateral surface and consisted of a transient hyperpolarization of both cell membranes and a concomitant decrease in the apparent fractional resistance of the apical membrane. Atropine blocked both effects. ACh also elicited transient elevations of inositol 1,4,5-trisphosphate and intracellular free calcium ([Ca2+]i) levels, the latter by both release from intracellular stores and basolateral influx. The phospholipase C antagonist U-73122 inhibited the effects of ACh, whereas inhibition of prostaglandin and guanosine 3',5'-cyclic monophosphate synthesis with indomethacin or methylene blue, respectively, had no effect. In conclusion, Necturus gallbladder epithelium expresses muscarinic receptors in the basolateral membrane. Receptor activation stimulates phospholipase C and elevates cellular levels of inositol 1,4,5-trisphosphate and [Ca2+]i. The elevation in [Ca2+]i activates K+ channels but apparently not Cl- channels.
Collapse
Affiliation(s)
- G A Altenberg
- Department of Physiology, University of Texas Medical Branch, Galveston 77555
| | | | | | | | | |
Collapse
|
9
|
Petersen KU, Goergen R, Höfken F, Macherey HJ, Sprakties G. Electrogenic bicarbonate secretion in gallbladder: induction by barium via neuronal, possibly VIP-ergic pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1993; 348:526-35. [PMID: 7906868 DOI: 10.1007/bf00173214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In guinea-pig gallbladder epithelium, cAMP converts electroneutral HCO3- secretion into an electrogenic process. The effects of blood side Ba2+ (5 mmol/l) on HCO3- transport were investigated in vitro, using pH-stat and voltage clamp techniques to determine unidirectional fluxes of HCO3- and transepithelial electrical characteristics. Serosal, not mucosal addition of Ba2+ elevated short-circuit current (Isc), transepithelial potential difference, and tissue conductance; it inhibited the absorptive HCO3- flux while leaving the secretory flux unchanged. The Isc effect of Ba2+ was inhibited or prevented by tetrodotoxin; D- and L-propranolol; the Cl- channel blocker 4-N-methyl-N-phenylaminothiophene-3-carboxylic acid; the intracellular Ca2+ antagonist, 3,4,5-trimethoxybenzoic acid 8-(diethylamino)ocytl ester; noradrenaline, by a yohimbine-sensitive action; somatostatin; HCO3(-)-free solutions. Thus Ba2+ appeared to release a neurotransmitter that gives rise to cAMP synthesis sufficient to turn part of electroneutral HCO3- secretion electrogenic. In a search for the involved signalling pathways, the H1-receptor antagonist, cetirizine, largely and hexamethonium, atropine, atenolol, indomethacin, and trifluoperazine entirely failed to antagonize the Isc effect of Ba2+. Similarly, carbachol, dobutamine, salbutamol, and serotonin were unable to mimic the action of Ba2+ and Isc effects of histamine were small and short-lived. By contrast, vasoactive intestinal peptide (VIP; 3 x 10(-7) mol/l) completely transformed HCO3- secretion into an electrogenic process. The VIP receptor antagonist (4Cl-DPhe6, Leu17) VIP, delayed and reduced the Isc responses to Ba2+ and VIP. As guinea-pig gallbladder epithelial cells possess cAMP-coupled VIP receptors close to VIPergic neurons, Ba2+ is likely to act by releasing VIP from neural terminals.
Collapse
Affiliation(s)
- K U Petersen
- Institut für Pharmakologie und Toxikologie der Medizinischen Fakultät, Rheinisch-Westfälische Technische Hochschule Aachen, Germany
| | | | | | | | | |
Collapse
|
10
|
Copello J, Wehner F, Reuss L. Artifactual expression of maxi-K+ channels in basolateral membrane of gallbladder epithelial cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1993; 264:C1128-36. [PMID: 8498476 DOI: 10.1152/ajpcell.1993.264.5.c1128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To patch clamp the basolateral cell membrane, sheets of Necturus gallbladder epithelium were stripped of the subepithelial tissue layers and affixed apical side down on cover slips coated with Cell-Tak [F. Wehner, L. Garretson, K. Dawson, Y. Segal, and L. Reuss. Am. J. Physiol. 258 (Cell Physiol. 27): C1159-C1164, 1990]. In 90% of the patches we observed K+ channels identical to the maxi-K+ channels previously demonstrated in the apical membrane (Y. Segal and L. Reuss. J. Gen. Physiol. 95: 791-818, 1990). To ascertain whether these channels were present in the native tissue, we carried out intracellular-microelectrode studies. We tested for activation of basolateral membrane K+ conductance by depolarization or by elevation of intracellular Ca2+ and for tetraethylammonium sensitivity of the basolateral membrane voltage and fractional resistance. The results were negative, indicating that maxi-K+ channels are not expressed in the basolateral membrane of the "intact" epithelium. Using the same intracellular-microelectrode protocol on the apical membrane, we demonstrated the presence of an apical K+ conductance attributable to maxi-K+ channels. Additional experiments revealed a Ba(2+)-sensitive basolateral K+ conductance in the native epithelium. We conclude that in the stripped preparation there is artifactual expression of maxi-K+ channels. In addition, the native basolateral membrane K+ channels either are not expressed in this preparation or have a low conductance and cannot be discerned from the background noise.
Collapse
Affiliation(s)
- J Copello
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77555-0641
| | | | | |
Collapse
|
11
|
Altenberg GA, Stoddard JS, Reuss L. Electrophysiological effects of basolateral [Na+] in Necturus gallbladder epithelium. J Gen Physiol 1992; 99:241-62. [PMID: 1613485 PMCID: PMC2216613 DOI: 10.1085/jgp.99.2.241] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In Necturus gallbladder epithelium, lowering serosal [Na+] ([Na+]s) reversibly hyperpolarized the basolateral cell membrane voltage (Vcs) and reduced the fractional resistance of the apical membrane (fRa). Previous results have suggested that there is no sizable basolateral Na+ conductance and that there are apical Ca(2+)-activated K+ channels. Here, we studied the mechanisms of the electrophysiological effects of lowering [Na+]s, in particular the possibility that an elevation in intracellular free [Ca2+] hyperpolarizes Vcs by increasing gK+. When [Na+]s was reduced from 100.5 to 10.5 mM (tetramethylammonium substitution), Vcs hyperpolarized from -68 +/- 2 to a peak value of -82 +/- 2 mV (P less than 0.001), and fRa decreased from 0.84 +/- 0.02 to 0.62 +/- 0.02 (P less than 0.001). Addition of 5 mM tetraethylammonium (TEA+) to the mucosal solution reduced both the hyperpolarization of Vcs and the change in fRa, whereas serosal addition of TEA+ had no effect. Ouabain (10(-4) M, serosal side) produced a small depolarization of Vcs and reduced the hyperpolarization upon lowering [Na+]s, without affecting the decrease in fRa. The effects of mucosal TEA+ and serosal ouabain were additive. Neither amiloride (10(-5) or 10(-3) M) nor tetrodotoxin (10(-6) M) had any effects on Vcs or fRa or on their responses to lowering [Na+]s, suggesting that basolateral Na+ channels do not contribute to the control membrane voltage or to the hyperpolarization upon lowering [Na+]s. The basolateral membrane depolarization upon elevating [K+]s was increased transiently during the hyperpolarization of Vcs upon lowering [Na+]s. Since cable analysis experiments show that basolateral membrane resistance increased, a decrease in basolateral Cl- conductance (gCl-) is the main cause of the increased K+ selectivity. Lowering [Na+]s increases intracellular free [Ca2+], which may be responsible for the increase in the apical membrane TEA(+)-sensitive gK+. We conclude that the decrease in fRa by lowering [Na+]s is mainly caused by an increase in intracellular free [Ca2+], which activates TEA(+)-sensitive maxi K+ channels at the apical membrane and decreases apical membrane resistance. The hyperpolarization of Vcs is due to increase in: (a) apical membrane gK+, (b) the contribution of the Na+ pump to Vcs, (c) basolateral membrane K+ selectivity (decreased gCl-), and (d) intraepithelial current flow brought about by a paracellular diffusion potential.
Collapse
Affiliation(s)
- G A Altenberg
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550
| | | | | |
Collapse
|
12
|
Cotton CU, Reuss L. Electrophysiological effects of extracellular ATP on Necturus gallbladder epithelium. J Gen Physiol 1991; 97:949-71. [PMID: 1713948 PMCID: PMC2216508 DOI: 10.1085/jgp.97.5.949] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The effects of addition of ATP to the mucosal bathing solution on transepithelial, apical, and basolateral membrane voltages and resistances in Necturus gallbladder epithelium were determined. Mucosal ATP (100 microM) caused a rapid hyperpolarization of both apical (Vmc) and basolateral (Vcs) cell membrane voltages (delta Vm = 18 +/- 1 mV), a fall in transepithelial resistance (Rt) from 142 +/- 8 to 122 +/- 7 omega.cm2, and a decrease in fractional apical membrane resistance (fRa) from 0.93 +/- 0.02 to 0.83 +/- 0.03. The rapid initial hyperpolarization of Vmc and Vcs was followed by a slower depolarization of cell membrane voltages and a lumen-negative change in transepithelial voltage (Vms). This phase also included an additional decrease in fRa. Removal of the ATP caused a further depolarization of membrane voltages followed by a hyperpolarization and then a return to control values. fRa fell to a minimum after removal of ATP and then returned to control values as the cell membrane voltages repolarized. Similar responses could be elicited by ADP but not by adenosine. The results of two-point cable experiments revealed that ATP induced an initial increase in cell membrane conductance followed by a decrease. Transient elevations of mucosal solution [K+] induced a larger depolarization of Vmc and Vcs during exposure to ATP than under control conditions. Reduction of mucosal solution [Cl-] induced a slow hyperpolarization of Vmc and Vcs before exposure to ATP and a rapid depolarization during exposure to ATP. We conclude that ATP4- is the active agent and that it causes a concentration-dependent increase in apical and basolateral membrane K+ permeability. In addition, an apical membrane electrodiffusive Cl- permeability is activated by ATP4-.
Collapse
Affiliation(s)
- C U Cotton
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550
| | | |
Collapse
|
13
|
Segal Y, Reuss L. Maxi K+ channels and their relationship to the apical membrane conductance in Necturus gallbladder epithelium. J Gen Physiol 1990; 95:791-818. [PMID: 2362182 PMCID: PMC2216345 DOI: 10.1085/jgp.95.5.791] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Using the patch-clamp technique, we have identified large-conductance (maxi) K+ channels in the apical membrane of Necturus gallbladder epithelium, and in dissociated gallbladder epithelial cells. These channels are more than tenfold selective for K+ over Na+, and exhibit unitary conductance of approximately 200 pS in symmetric 100 mM KCl. They are activated by elevation of internal Ca2+ levels and membrane depolarization. The properties of these channels could account for the previously observed voltage and Ca2+ sensitivities of the macroscopic apical membrane conductance (Ga). Ga was determined as a function of apical membrane voltage, using intracellular microelectrode techniques. Its value was 180 microS/cm2 at the control membrane voltage of -68 mV, and increased steeply with membrane depolarization, reaching 650 microS/cm2 at -25 mV. We have related maxi K+ channel properties and Ga quantitatively, relying on the premise that at any apical membrane voltage Ga comprises a leakage conductance and a conductance due to maxi K+ channels. Comparison between Ga and maxi K+ channels reveals that the latter are present at a surface density of 0.09/microns 2, are open approximately 15% of the time under control conditions, and account for 17% of control Ga. Depolarizing the apical membrane voltage leads to a steep increase in channel steady-state open probability. When correlated with patch-clamp studies examining the Ca2+ and voltage dependencies of single maxi K+ channels, results from intracellular microelectrode experiments indicate that maxi K+ channel activity in situ is higher than predicted from the measured apical membrane voltage and estimated bulk cytosolic Ca2+ activity. Mechanisms that could account for this finding are proposed.
Collapse
Affiliation(s)
- Y Segal
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550-2781
| | | |
Collapse
|
14
|
Wehner F, Winterhager JM, Petersen KU. Selective blockage of cell membrane K conductance by an antisecretory agent in guinea-pig gallbladder epithelium. Pflugers Arch 1989; 414:331-9. [PMID: 2780216 DOI: 10.1007/bf00584635] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Loperamide inhibits PGE1-induced electrogenic HCO3 secretion in guinea-pig gallbladder. Underlying changes in epithelial cell membrane properties were investigated using intracellular microelectrode techniques in vitro. In the absence of PGE1, mucosal loperamide (10(-4) mol/l) reversibly depolarized both cell membranes by approximately 6 mV. The apparent ratio of membrane resistances (Ra/Rb) remained unchanged and so did voltage responses to luminal Cl removal and Na reduction. The depolarizing response to elevation of luminal K concentration from 5 to 76 mmol/l was decreased from 13 to 8 mV. In the presence of 1 PGE1, the apical membrane is mainly permeable to Cl and HCO3. Under these conditions, loperamide reduced membrane potentials by approximately 10 mV, Ra/Rb remaining constant at approximately 0.4. Effects on voltage responses to changes in luminal Na or K concentration were unchanged. Responses to luminal Cl removal (transient depolarization) were greatly enhanced (from 22 to 42 mV) as predictable from the fall in K permeability that hinders Cl efflux from cell into lumen. Less marked but significant effects were obtained with 10(-5) mol/l (mucosal side) and serosal loperamide (10(-4) mol/l). We suggest that loperamide inhibits electrogenic HCO3 secretion by reducing apical membrane K permeability. The resulting depolarization diminishes the driving force for conductive anion efflux from cell into lumen. This conclusion is supported by the ability of luminal K elevation to mimick loperamide inhibition of the secretory flux of HCO3 (pH-stat experiments).
Collapse
Affiliation(s)
- F Wehner
- Abteilung Pharmakologie der Medizinischen Fakultät, Rheinisch-Westfälische Technische Hochschule Aachen, Federal Republic of Germany
| | | | | |
Collapse
|
15
|
Stoddard JS, Reuss L. Voltage- and time dependence of apical membrane conductance during current clamp in Necturus gallbladder epithelium. J Membr Biol 1988; 103:191-204. [PMID: 2460628 DOI: 10.1007/bf01870949] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effects of short (1 sec) and long (1 min) transepithelial current clamps on membrane voltages and resistances of Necturus gallbladder were investigated. Transepithelial and cell membrane current-voltage relationships determined from 1-sec clamps revealed that: a) depolarization of the apical membrane voltage (Vmc) results in a marked decrease in apical membrane fractional resistance (fRa), whereas hyperpolarization of Vmc results in either no change in fRa or a small increase, and b) the voltage-dependent changes in fRa are essentially complete within 500 msec. Exposure of the tissue to 5 mM TEA+ on the mucosal side caused no significant change in baseline Vmc (-69 +/- 2 mV) and yet virtually abolished the voltage dependence of fRa. A possible interpretation of these results is that two types of K+ channels exist in the apical membrane, with different voltage dependencies and TEA+ sensitivities. Acidification or Ba2+ addition to the mucosal solution also reduced the voltage-dependent changes in fRa. The time courses of the changes in fRa and in the cable properties of the epithelium were assessed during 1-min transepithelial current clamps (+/- 200 microA/cm2). No secondary change in fRa was observed with mucosa-to-serosa currents, but a slow TEA+-sensitive decrease in fRa (half-time of seconds) was evident with serosa-to-mucosa currents. Cable analysis experiments demonstrated that the initial (less than 500 msec) voltage-dependent decrease in fRa is due to a fall in apical membrane resistance. The later decrease in fRa is due to changes in both cell membrane resistances attributable to the increase in transcellular current flow resulting from a fall in paracellular conductance. The voltage dependence of the apical membrane conductance is a more significant problem in estimating fRa than the current-induced effects on the lateral intercellular spaces. In principle, TEA+ can be used to prevent the nonlinear behavior of Ra during measurements of the voltage divider or membrane resistance ratio.
Collapse
Affiliation(s)
- J S Stoddard
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550
| | | |
Collapse
|
16
|
Davis CW, Finn AL. Potassium-induced cell swelling in Necturus gallbladder epithelium. THE AMERICAN JOURNAL OF PHYSIOLOGY 1988; 254:C643-50. [PMID: 2452572 DOI: 10.1152/ajpcell.1988.254.5.c643] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In Necturus gallbladder epithelium, elevation of mucosal K+ to 95 mM in the presence of 10 mM Na+ resulted in cell swelling at a rate of 3.2% original volume per minute, followed by volume-regulatory shrinking. When Na+ was completely removed from or when amiloride (10(-4) M) was added to the mucosal medium, K+-induced cell swelling was abolished. In the presence of 10 mM Na+, 1 mM Ba2+ abolished and substitution of mucosal Cl- by NO-3 had no effect on K+-induced swelling. Thus solute entry following elevation of mucosal K+ is effected by separate K+ and Cl- pathways. Furthermore, substitution of 95 mM K+ for Na+ in the mucosal bathing medium leads to the development of a Cl- conductance in the basolateral membrane as long as some Na+ remains in the medium. However, cell swelling induced by mucosal dilution does not lead to the appearance of a Cl- conductance. Thus the activation of this conductance requires both swelling and membrane depolarization. These results show that 1) high mucosal K+ leads to cell swelling due to the entry of Cl- along with K+ and the Cl- can enter across either membrane, 2) the Cl- pathways require the presence of mucosal Na+, and 3) cell volume regulation is activated by an increase in volume per se, i.e., a hyposmotic exposure is not required for volume regulation to occur.
Collapse
Affiliation(s)
- C W Davis
- Department of Physiology, University of North Carolina, School of Medicine, Chapel Hill 27599
| | | |
Collapse
|
17
|
Palant CE, Kurtz I. Measurement of intracellular Ca2+ activity in Necturus gallbladder. THE AMERICAN JOURNAL OF PHYSIOLOGY 1987; 253:C309-15. [PMID: 3618764 DOI: 10.1152/ajpcell.1987.253.2.c309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To clarify the effects of Ca2+-free solutions on the electrophysiological properties of leaky epithelia, Necturus gallbladder was mounted in an Ussing-type chamber and its mucosal surface exposed to Ca2+-free EGTA (2 mM) Ringer. Lateral-space width was controlled by a -3-cmH2O pressure gradient on the serosal outflow. Transepithelial potential difference and resistance were monitored while cell membrane potential and intracellular Ca2+ activity (Ca2+i) were determined with conventional and Ca2+-sensitive microelectrodes. Ca2+i averaged 183 +/- 27 nM (n = 15). Reduction of mucosal Ca2+ activity to approximately 500 nM reversibly lowered transepithelial resistance while cell membrane potential remained unaltered and fractional membrane resistance increased from 0.77 +/- 0.01 to 0.83 +/- 0.02 (P less than 0.01, n = 5). In five gallbladders mucosal Ca2+ reduction induced a significant drop in Ca2+i from 133 +/- 26 to 77 +/- 20 nM (P less than 0.01, n = 5) while transepithelial resistance fell from 125 +/- 27 to 107 +/- 24 omega X cm2 (P less than 0.01). These results indicate that transepithelial resistance decrements observed during exposure to Ca2+-free solutions stem from a reversible increase in tight-junctional but not cell membrane permeability and that this effect is associated with a fall in intracellular Ca2+ activity.
Collapse
|
18
|
Davis CW, Finn AL. Effects of mucosal sodium removal on cell volume in Necturus gallbladder epithelium. THE AMERICAN JOURNAL OF PHYSIOLOGY 1985; 249:C304-12. [PMID: 4037072 DOI: 10.1152/ajpcell.1985.249.3.c304] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Necturus gallbladder epithelium transports sodium and chloride by a process that first involves the cellular entry of each ion across the apical membrane in an electrically silent process. In this paper we present results from cell volume and fluid flux measurements in the presence of different inhibitors and at normal and reduced sodium concentrations, which bear on the process by which ionic entry is effected. We find that reduction of mucosal sodium to a concentration of 10 mM has no effect on either cell volume or on the rate of transepithelial fluid transport, whereas the complete removal of sodium causes a significant decrease in cell volume in addition to its known inhibitory effect on fluid transport. Amiloride had no effect on cell volume at normal sodium concentrations but markedly reduced it when the sodium concentration was reduced to 10 mM. Amiloride, bumetanide, and dipyridamole markedly and reversibly inhibited fluid transport. Finally, the addition of ouabain to the serosal medium induced cell swelling, which was prevented by the removal of potassium from the mucosal medium. These results indicate that the process of sodium entry at the apical membrane is complicated and likely includes both cotransport (NaCl or Na-K-2Cl) and parallel exchange (Na-H and Cl-HCO3) transport mechanisms, and that the proportion of NaCl transported by the different mechanisms varies with the conditions.
Collapse
|
19
|
Reuss L, Petersen KU. Cyclic AMP inhibits Na+/H+ exchange at the apical membrane of Necturus gallbladder epithelium. J Gen Physiol 1985; 85:409-29. [PMID: 2985735 PMCID: PMC2215790 DOI: 10.1085/jgp.85.3.409] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The effects of elevating intracellular cAMP levels on Na+ transport across the apical membrane of Necturus gallbladder epithelium were studied by intracellular and extracellular microelectrode techniques. Intracellular cAMP was raised by serosal addition of the phosphodiesterase inhibitor theophylline (3 mM) or mucosal addition of either 8-Br-cAMP (1 mM) or the adenylate cyclase activator forskolin (10 microM). During elevation of intracellular cAMP, intracellular Na+ activity (alpha Nai) and intracellular pH (pHi) decreased significantly. In addition, acidification of the mucosal solution, which contained either 100 or 10 mM Na+, was inhibited by approximately 50%. The inhibition was independent of the presence of Cl- in the bathing media. The rates of change of alpha Nai upon rapid alterations of mucosal [Na+] from 100 to 10 mM and from 10 to 100 mM were both decreased, and the rate of pHi recovery upon acid loading was also reduced by elevated cAMP levels. Inhibition was approximately 50% for all of these processes. These results indicate that cAMP inhibits apical membrane Na+/H+ exchange. The results of measurements of pHi recovery at 10 and 100 mM mucosal [Na+] and a kinetic analysis of recovery as a function of pHi suggest that the main or sole mechanism of the inhibitory effect of cAMP is a reduction in the maximal rate of acid extrusion. In conjunction with the increase in apical membrane electrodiffusional Cl- permeability, produced by cAMP, which causes a decrease in net Cl- entry (Petersen, K.-U., and L. Reuss, 1983, J. Gen. Physiol., 81:705), inhibition of Na+/H+ exchange contributes to the reduction of fluid absorption elicited by this agent. Similar mechanisms may account for the effects of cAMP in other epithelia with similar transport properties. It is also possible that inhibition of Na+/H+ exchange by cAMP plays a role in the regulation of pHi in other cell types.
Collapse
|
20
|
Schoen HF, Erlij D. Basolateral membrane responses to transport modifiers in the frog skin epithelium. Pflugers Arch 1985; 405 Suppl 1:S33-8. [PMID: 3911164 DOI: 10.1007/bf00581777] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Application of transepithelial square voltage pulses to the frog skin leads to responses in the transepithelial current and intracellular potential which include transient components. Determinations at 600 ms allow for meaningful estimates of basolateral membrane responses to transport modifiers. Oxytocin produced a large and sustained increase in the amiloride-inhibitable short circuit current (Im) which was accompanied by a large increase of both apical and basolateral membrane conductance (ga and gb, respectively). While Im and ga increased nearly simultaneously, gb started to increase several minutes after the increase in the two other parameters. Insulin also increased Im, ga and gb. As with oxytocin, the increases in Im and ga often preceded the changes in gb. Ouabain reduced Im and ga. The effects on gb were more complex, since sometimes the inhibition of Im was first accompanied by an increase followed by a decrease while in other instances only minor changes in conductance could be observed. The currently available information regarding the control of cytoplasmic [Ca2+] and the effects of Ca2+ on cell membrane properties are used to construct a model in which changes in cytoplasmic [Ca2+] account for the observed behavior of the basolateral membrane.
Collapse
|
21
|
Petersen KU, Reuss L. Electrophysiological effects of propionate and bicarbonate on gallbladder epithelium. THE AMERICAN JOURNAL OF PHYSIOLOGY 1985; 248:C58-69. [PMID: 2981476 DOI: 10.1152/ajpcell.1985.248.1.c58] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effects of propionate and HCO3- on cell membrane potentials in Necturus gallbladder epithelium were investigated using microelectrode techniques in vitro. Bilateral exposure to either propionate or HCO3- (25 mM each) hyperpolarized both cell membranes by about 12 mV. Mucosal addition of either substance produced cyclic changes in voltage of both cell membranes, which attenuated spontaneously, whereas serosal addition caused sustained hyperpolarization. By intraepithelial cable analysis it was shown that both cell membrane conductances rose during the hyperpolarization. Experiments using substitution of mucosal K+ for Na+ revealed that the relative K+ permeability (PK) of the apical membrane was enhanced during the hyperpolarization induced by mucosal (or serosal) propionate (or HCO3-). These effects are mediated by increases in PK at both membranes, with a larger basolateral effect. We suggest that this mechanism accounts for the higher cell membrane potential values measured in epithelia bathed in HCO3--or propionate-containing solutions. Inasmuch as both propionate and HCO3- stimulate fluid absorption in gallbladder epithelium, the increase in cell membrane PK may represent an adaptive response of the cells to regulate their solute content.
Collapse
|
22
|
Cheung LY, De L, Ashley SW. Intracellular microelectrode studies of Necturus antral mucosa. Effect of aspirin on cell membrane potentials. Gastroenterology 1985; 88:261-8. [PMID: 3964776 DOI: 10.1016/s0016-5085(85)80179-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intracellular microelectrode techniques were used to determine the effects of luminal aspirin on epithelial cell membrane potentials of Necturus antral mucosa. In this tissue, prolonged stable intracellular impalements were obtained with 15-50-M omega microelectrodes filled with 3 M KCl. In acidic mucosal solution (pH 4.0) the addition of aspirin at 5.0 mM resulted in a significant decrease of apical cell membrane potential (Vmc) from -36.8 +/- 2.2 to -22.2 +/- 2.1 mV (p less than 0.001) and basolateral cell membrane potentials (Vcs) from -38.8 +/- 1.7 to -25.3 +/- 2.1 mV (p less than 0.001). Upon removal of aspirin from the mucosal solution, both cell membranes hyperpolarized for a brief period before returning to their original potentials. In neutral mucosal solutions (pH 7.0), addition of aspirin (5.0 mM) resulted in a significant increase in apical cell membrane potential (Vmc) from -40.0 +/- 2.4 to -46.8 +/- 3.3 mV (p less than 0.001) and basolateral cell membrane potential (Vcs) from -41.5 +/- 2.0 to -49.7 +/- 2.5 mV (p less than 0.001). This hyperpolarization of the cell was associated with an increase in transmucosal potential from -1.5 +/- 1.8 to -2.9 +/- 1.8 mV (p less than 0.001) and an increase in the ratio of apical to basolateral membrane resistances from 2.2 +/- 0.4 to 3.1 +/- 0.7 (p less than 0.05). These changes in membrane potentials and the ratio of membrane resistances may be caused by a change in ionic conductance of the cell membranes induced by aspirin.
Collapse
|
23
|
Palant CE, Duffey ME, Mookerjee BK, Ho S, Bentzel CJ. Ca2+ regulation of tight-junction permeability and structure in Necturus gallbladder. THE AMERICAN JOURNAL OF PHYSIOLOGY 1983; 245:C203-12. [PMID: 6412561 DOI: 10.1152/ajpcell.1983.245.3.c203] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
To explore the role of Ca2+ in tight-junction permeability, the Necturus gallbladder was exposed to varying Ca2+ concentrations and to the Ca2+ ionophore A23187 added to the mucosal side (1.9 X 10(-6) to 6.8 X 10(-5) M). Electrophysiological parameters measured in an Ussing-type chamber were correlated with tight-junction morphology revealed by freeze-fracture electron microscopy. In Ca2+-free bathing media, transepithelial resistance decreases and tight-junctional ultrastructure is fragmented. In 1.8 mM Ca2+ media, A23187 induces an initial drop in transepithelial resistance, followed by an increase in transepithelial resistance to a value 20% above base line. At peak response to A23187, NaCl diffusion potentials decrease. Freeze-fracture replicas reveal that the number of junctional strands increase pari passu with junctional depth. Both physiological and morphological changes were partially reversible. The initial decrease in transepithelial resistance coincided with a persistent hyperpolarization of the mucosal cell membrane potential difference and a decrease in the mucosal-to-serosal cell membrane resistance ratio. Thus A23187 alters both the transcellular and paracellular pathway, resulting in opposing effects on transepithelial resistance.
Collapse
|
24
|
García-Díaz JF, Nagel W, Essig A. Voltage-dependent K conductance at the apical membrane of Necturus gallbladder. Biophys J 1983; 43:269-78. [PMID: 6313084 PMCID: PMC1329295 DOI: 10.1016/s0006-3495(83)84350-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The epithelial and cellular effects of clamping the transepithelial potential (Vt, mucosa reference) have been investigated in the Necturus gallbladder. Following initial equilibration at short circuit, tissue conductance gt was 4.1 +/- 1.2 (SD) mS/cm2, the apical potential Va was -76 +/- 8 mV, and the apical fractional voltage on brief voltage perturbation (fa = delta Va/delta Vt, reflecting the ratio of apical membrane to transcellular resistance) was 0.72 +/- 0.11 (21 gallbladders, 34 impalements). On clamping Vt at positive values, Va depolarized and fa decreased; at the same time gt decreased. Clamping Vt at negative values produced converse effects. All of the above changes were related directly to the magnitude of the clamping potential Vt and were reversed on return to the short circuit state. Effects of Vt on fa are not due to changes in the extracellular pathway resistances (which, however, contribute to gt). Furthermore, the effects of Vt on fa were abolished by the mucosal application of TEA or Ba, or acidification of the mucosal solution. Thus, these experiments disclose the presence of a voltage-dependent apical K conductance that increases with apical membrane depolarization. The calculated dose-response curve of TEA inhibition of apical conductance and the values of the apparent dissociation constant were in good agreement with those found for K channels in excitable tissues. Mucosal application of the Ca ionophore A23187 shifted the voltage dependence curve of fa to more negative values of Va without altering its shape. The effect of A23187 suggests a possible role of intracellular Ca in the modulation of the apical K channels.
Collapse
|
25
|
Jarrell JA. Reversible carbon dioxide-induced inhibition of dye coupling in Necturus gallbladder. THE AMERICAN JOURNAL OF PHYSIOLOGY 1983; 244:C419-21. [PMID: 6405627 DOI: 10.1152/ajpcell.1983.244.5.c419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cells of Necturus gallbladder epithelium are electrically coupled. This work used intracellular injection of the fluorescent dye Lucifer yellow to demonstrate that these cells are also dye coupled and that this coupling is rapidly and reversibly inhibited by high concentrations of carbon dioxide. Dye coupling is also inhibited by the calcium ionophore A23187.
Collapse
|
26
|
Chase HS, Al-Awqati Q. Calcium reduces the sodium permeability of luminal membrane vesicles from toad bladder. Studies using a fast-reaction apparatus. J Gen Physiol 1983; 81:643-65. [PMID: 6408220 PMCID: PMC2216563 DOI: 10.1085/jgp.81.5.643] [Citation(s) in RCA: 78] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Regulation of the sodium permeability of the luminal membrane is the major mechanism by which the net rate of sodium transport across tight epithelia is varied. Previous evidence has suggested that the permeability of the luminal membrane might be regulated by changes in intracellular sodium or calcium activities. To test this directly, we isolated a fraction of the plasma membrane from the toad urinary bladder, which contains a fast, amiloride-sensitive sodium flux with characteristics similar to those of the native luminal membrane. Using a flow-quench apparatus to measure the initial rate of sodium efflux from these vesicles in the millisecond time range, we have demonstrated that the isotope exchange permeability of these vesicles is very sensitive to calcium. Calcium reduces the sodium permeability, and the half-maximal inhibitory concentration is 0.5 microM, well within the range of calcium activity found in cells. Also, the permeability of the luminal membrane vesicles is little affected by the ambient sodium concentration. These results, when taken together with studies on whole tissue, suggest that cell calcium may be an important regulator of transepithelial sodium transport by its effect on luminal sodium permeability. The effect of cell sodium on permeability may be mediated by calcium rather than by sodium itself.
Collapse
|
27
|
Reuss L, Reinach P, Weinman SA, Grady TP. Intracellular ion activities and Cl-transport mechanisms in bullfrog corneal epithelium. THE AMERICAN JOURNAL OF PHYSIOLOGY 1983; 244:C336-47. [PMID: 6601915 DOI: 10.1152/ajpcell.1983.244.5.c336] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cell membrane potentials, cell membrane resistances, and intracellular ionic activities were measured in bullfrog corneal epithelium. Equivalent circuit analysis was performed by adding adenosine to the apical surface and assuming that only the apical membrane is initially affected. From single-ion substitutions in the apical bathing solution, the apical membrane was found to have a high Cl- permeability, a low K+ permeability, and an unmeasurably small Na+ permeability. Under control conditions intracellular Cl- activity (aCli) was 22 +/- 2 (SE) mM, intracellular Na+ activity (aNai) was 14 +/- 3 mM, and intracellular K+ activity (aKi) was 106 +/- 5 mM. The electrical potential differences across apical and basolateral membranes were about 50 and 67 mV, respectively, both cell negative. aCli and aKi are higher, whereas aNai is much lower than predicted for equilibrium distribution. Inasmuch as Cl- is transported from the basolateral (stromal) to the apical (tear) side, basolateral entry of this anion is uphill and apical exit is downhill. Basolateral entry is Na+ dependent, as evidenced by a fall of aCli to near-equilibrium values after basolateral Na+ removal. The electrochemical gradient for Cl- efflux across the apical membrane is large enough to account for Cl- transport by electrodiffusion only. Na+ removal from the basolateral solution causes a reversible decrease of apical membrane Cl- permeability. The results support the hypothesis that net transepithelial Cl- transport results from coupled NaCl entry (or an equivalent process) at the basolateral membrane and electrodiffusional Cl- exit at the apical membrane.
Collapse
|
28
|
Reuss L, Cheung LY, Grady TP. Mechanisms of cation permeation across apical cell membrane of Necturus gallbladder: effects of luminal pH and divalent cations on K+ and Na+ permeability. J Membr Biol 1981; 59:211-24. [PMID: 7241581 DOI: 10.1007/bf01875426] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Conventional microelectrode techniques were combined with unilateral mucosal ionic substitutions to determine the effects of luminal pH and luminal alkali-earth cation concentrations on apical membrane cation permeability in Necturus gallbladder epithelium. Acidification of the mucosal solution caused reversible depolarization of both cell membranes and increase of transepithelial resistance. Low pH media also caused: (a) reduction of the apical membrane depolarization induced by high K, and (b) increase of the apical membrane hyperpolarization produced by Na replacement with Li or N-Methyl-D-glucamine. These results, in conjunction with estimates of cell membrane conductances, indicate that acidification of the luminal solution produces a reduction of apical membrane K permeability (PK). Addition of alkali earth cations (Mg2+, Ca2+, Sr2+, or Ba2+) produced cell membrane depolarization, increase of relative resistance of the luminal membrane and reduction of the apical membrane potential change produced by a high-K mucosal medium. These results, as those produced by low pH, can be explained by a reduction of apical membrane PK. The effects of Ba2+ on membrane potential and relative apical membrane PK were larger than those of all other four cations at all concentrations tested (1-10 mM). The effect of Sr2+ was significantly larger than those of Mg2+ and Ca2+ at 10 mM, but not different at 5 mM. The reduction of PK produced by mucosal acidification appears to be mediated by: (a) nonspecific titration of membrane fixed negative charges, and (b) an effect of luminal proton activity on the apical K channel. Divalent cations reduce apical membrane PK probably by screening negative surface charges. The larger magnitude of the effects of Ba2+ and Sr2+ can be explained by binding to membrane sites, in the surface or in the K channel, in addition to their screening effect. We suggest that the action of luminal pH on K secretion in some segments of the renal tubule could be mediated in part by this pH-dependent K permeability of the luminal membrane.
Collapse
|