1
|
Westbrook AM. A review of the neurophysiology of the turtle retina III. Amacrine and ganglion cells. Clin Exp Optom 2021. [DOI: 10.1111/j.1444-0938.1994.tb06538.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
2
|
Wang J, Jacoby R, Wu SM. Physiological and morphological characterization of ganglion cells in the salamander retina. Vision Res 2016; 119:60-72. [PMID: 26731645 PMCID: PMC4774266 DOI: 10.1016/j.visres.2015.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 10/21/2015] [Accepted: 12/23/2015] [Indexed: 11/26/2022]
Abstract
Retinal ganglion cells (RGCs) integrate visual information from the retina and transmit collective signals to the brain. A systematic investigation of functional and morphological characteristics of various types of RGCs is important to comprehensively understand how the visual system encodes and transmits information via various RGC pathways. This study evaluated both physiological and morphological properties of 67 RGCs in dark-adapted flat-mounted salamander retina by examining light-evoked cation and chloride current responses via voltage-clamp recordings and visualizing morphology by Lucifer yellow fluorescence with a confocal microscope. Six groups of RGCs were described: asymmetrical ON-OFF RGCs, symmetrical ON RGCs, OFF RGCs, and narrow-, medium- and wide-field ON-OFF RGCs. Dendritic field diameters of RGCs ranged 102-490 μm: narrow field (<200 μm, 31% of RGCs), medium field (200-300 μm, 45%) and wide field (>300 μm, 24%). Dendritic ramification patterns of RGCs agree with the sublamina A/B rule. 34% of RGCs were monostratified, 24% bistratified and 42% diffusely stratified. 70% of ON RGCs and OFF RGCs were monostratified. Wide-field RGCs were diffusely stratified. 82% of RGCs generated light-evoked ON-OFF responses, while 11% generated ON responses and 7% OFF responses. Response sensitivity analysis suggested that some RGCs obtained separated rod/cone bipolar cell inputs whereas others obtained mixed bipolar cell inputs. 25% of neurons in the RGC layer were displaced amacrine cells. Although more types may be defined by more refined classification criteria, this report is to incorporate more physiological properties into RGC classification.
Collapse
Affiliation(s)
- Jing Wang
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States.
| | - Roy Jacoby
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States
| | - Samuel M Wu
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
3
|
Popova E. GABAergic neurotransmission and retinal ganglion cell function. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:261-83. [PMID: 25656810 DOI: 10.1007/s00359-015-0981-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 01/13/2023]
Abstract
Ganglion cells are the output retinal neurons that convey visual information to the brain. There are ~20 different types of ganglion cells, each encoding a specific aspect of the visual scene as spatial and temporal contrast, orientation, direction of movement, presence of looming stimuli; etc. Ganglion cell functioning depends on the intrinsic properties of ganglion cell's membrane as well as on the excitatory and inhibitory inputs that these cells receive from other retinal neurons. GABA is one of the most abundant inhibitory neurotransmitters in the retina. How it modulates the activity of different types of ganglion cells and what is its significance in extracting the basic features from visual scene are questions with fundamental importance in visual neuroscience. The present review summarizes current data concerning the types of membrane receptors that mediate GABA action in proximal retina; the effects of GABA and its antagonists on the ganglion cell light-evoked postsynaptic potentials and spike discharges; the action of GABAergic agents on centre-surround organization of the receptive fields and feature related ganglion cell activity. Special emphasis is put on the GABA action regarding the ON-OFF and sustained-transient ganglion cell dichotomy in both nonmammalian and mammalian retina.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University, 1431, Sofia, Bulgaria,
| |
Collapse
|
4
|
Yu Y, Satoh H, Vila A, Wu SM, Marshak DW. Effects of histamine on light responses of amacrine cells in tiger salamander retina. Neurochem Res 2010; 36:645-54. [PMID: 20878231 DOI: 10.1007/s11064-010-0278-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2010] [Indexed: 11/24/2022]
Abstract
Using immunofluorescence, we showed that histamine receptor 1 is expressed by horizontal cell axons and a subset of amacrine cells in the tiger salamander retina. The effects of histamine on light responses of amacrine cells were studied in slice preparations. Histamine modulated the light responses of many salamander amacrine cells, depending upon the morphological type. The most pronounced effects of histamine were decreases in the light responses of broadly stratified amacrine cells, particularly those having medium-sized dendritic field diameters. To determine whether the effects of histamine were direct, Co(++) was substituted for Ca(++) in the extracellular medium to block synaptic transmission. Histamine still affected broadly stratified amacrine cells, but not narrowly stratified amacrine cells under these conditions. Taken together, these findings suggest that inhibitory interactions between strata of the IPL and within the classical receptive fields of the ganglion cells would be particularly sensitive to histamine released from retinopetal axons.
Collapse
Affiliation(s)
- Yongchun Yu
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, TX 77225, USA
| | | | | | | | | |
Collapse
|
5
|
van Wyk M, Wässle H, Taylor WR. Receptive field properties of ON- and OFF-ganglion cells in the mouse retina. Vis Neurosci 2009; 26:297-308. [PMID: 19602302 PMCID: PMC2874828 DOI: 10.1017/s0952523809990137] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
There are two subclasses of alpha cell in the mammalian retina, which are morphologically identical in plain view but have opposite responses to a luminance change: one is ON center and the other is OFF center. Recent studies have shown that the neural circuitries, which underlie light responses in such ON- and OFF-ganglion cell pairs, are not mirror symmetric with respect to the ON and OFF pathways (Pang et al., 2003; Zaghloul et al., 2003; Murphy & Rieke, 2006). This study examines alpha-cell homologues in the mouse retina and elucidates the synaptic mechanisms that generate their light responses. Morphological analysis of recorded cells revealed three subclasses that were essentially identical in plan view but had distinct vertical stratification levels. We refer to these cells as the sustained ON (ON-S), sustained OFF (OFF-S), and transient OFF (OFF-T) cells (Murphy & Rieke, 2006; Margolis & Detwiler, 2007). Both ON-S and OFF-S cells were largely driven through the ON pathway via changes in excitatory and inhibitory inputs, respectively. Light responses of OFF-T cells were driven by transient changes in excitatory and inhibitory inputs. Light responses of OFF-S cells were also measured in connexin 36 knockout mice in order to dissect glycinergic input arising from AII amacrine cells. At photopic/mesopic intensities, peak glycinergic input to OFF-S cells in the connexin 36 knockout mouse was reduced by ~85% compared to OFF-S cells in the wild-type retina. This is consistent with the idea that AII cells receive their input from ON-cone bipolar cells through gap junctions and in turn provide glycinergic inhibition to OFF-S cells.
Collapse
Affiliation(s)
- Michiel van Wyk
- Max Planck Institute for Brain Research, Department of Neuroanatomy, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
6
|
Sakaguchi DS, Murphey RK, Hunt RK, Tompkins R. The development of retinal ganglion cells in a tetraploid strain of Xenopus laevis: a morphological study utilizing intracellular dye injection. J Comp Neurol 2009; 224:231-51. [PMID: 19180813 DOI: 10.1002/cne.902240205] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The morphological development of retinal ganglion cells was examined in a tetraploid strain of Xenopus frogs. The enlarged cells of the tetraploid strain facilitate the application of intracellular techniques. Using an in vitro retinal preparation and Nomarski optics, intracellular recording and dye injection were carried out under visual control on ganglion cells in central retina from 2 days of development (stage 24) to metamorphosis (stage 64). We identified three phases in the morphological differentiation of ganglion cells. During the first phase (stages 24-30), all cells were neuroepitheliallike in form and possessed robust resting potentials in the range of -35 to -60 mV, and dye-coupling was occasionally observed between neighboring cells. During the second phase of ganglion cell development (stages 31-45) the neurons had begun to elaborate axons and dendrites. These cells possessing neurites had resting potentials between -15 and -30 mV, and no dye-coupling was observed between neighbors. During the third and final phase of maturation, from stage 46 onward, three distinct morphological types of ganglion cells could be identified. Type I cells had the smallest somata and the smallest-diameter dendritic arborizations. The profusely branched dendrites of these cells ramify extensively throughout the inner plexiform layer. Type II cells had large somata, intermediate-diameter dendritic fields, and a highly elaborate dendritic branching pattern. These cells were seen to arborize within two sublamina in the inner plexiform layer. Type III cells had large somata, the largest-diameter dendritic fields, and a dendritic arbor with long primary branches but little higher-order branching. These large dendritic fields were confined to a single sublamina of the inner plexiform layer, abutting the inner nuclear layer. While most phase 3 cells showed radial axon trajectories from the soma to the optic disc, a minority of cells (1-5%) with erratic and nonradial axon trajectories were also observed. Our data provide a morphological description of ganglion cell maturation in the central retina of Xenopus. We show that very early in development (as early as stage 46) three distinct morphological types of retinal ganglion cells are present, which correspond to the three classes of ganglion cells previously described in adult Xenopus (Chung et al., '75).
Collapse
Affiliation(s)
- D S Sakaguchi
- Neurobiology Research Center, Department of Biological Sciences, State University of New York at Albany, Albany, New York 12222, USA
| | | | | | | |
Collapse
|
7
|
Abstract
The output of retinal ganglion cells depends on local and global aspects of the visual scene. The local receptive field is well studied and classically consists of a linear excitatory center and a linear antagonistic surround. The global receptive field contains pools of nonlinear subunits that are distributed widely across the retina. The subunit pools mediate in uncertain ways various nonlinear behaviors of ganglion cells, like temporal-frequency doubling, saccadic suppression, and contrast adaptation. To clarify mechanisms of subunit function, we systematically examined the effect of remote grating patterns on the spike activity of cat X- and Y-type ganglion cells in vivo. We present evidence for two distinct subunit types based on spatiotemporal relationships between response nonlinearities elicited by remote drifting and contrast-reversing gratings. One subunit type is excitatory and activated by gratings of approximately 0.1 cycles per degree, while the other is inhibitory and activated by gratings of approximately 1 cycle per degree. The two subunit pools contribute to a global gain control mechanism that differentially modulates ganglion cell response dynamics, particularly for ON-center cells, where excitatory and inhibitory subunit stimulation respectively makes responses to antipreferred and preferred contrast steps more transient. We show that the excitatory subunits also have a profound influence on spatial tuning, turning cells from lowpass into bandpass filters. Based on difference-of-Gaussians model fits to tuning curves, we attribute the increased bandpass selectivity to changes in center-surround strength and relative phase and not center-surround size. A conceptual model of the extraclassical receptive field that could explain many observed phenomena is discussed.
Collapse
|
8
|
Pang JJ, Gao F, Wu SM. Cross-talk between ON and OFF channels in the salamander retina: Indirect bipolar cell inputs to ON–OFF ganglion cells. Vision Res 2007; 47:384-92. [PMID: 17092534 DOI: 10.1016/j.visres.2006.09.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 09/06/2006] [Accepted: 09/07/2006] [Indexed: 11/22/2022]
Abstract
It has been widely accepted that ON and OFF channels in the visual system are segregated with little cross-communication, except for the mammalian rod bipolar cell-AII amacrine cell-ganglion cell pathway. Here, we show that in the tiger salamander retina the light responses of a subpopulation of ON-OFF ganglion cells are mediated by crossing the ON and OFF bipolar cell pathways. Although the majority of ON-OFF ganglion cells (type I cells) receive direct excitatory inputs from depolarizing and hyperpolarizing bipolar cells (DBCs and HBCs), about 5% (type II cells) receive indirect excitatory inputs from DBCs and 20% (type III cells) receive indirect excitatory inputs from HBCs. These indirect bipolar cell inputs are likely to be mediated by a subpopulation of amacrine cells that exhibit transient hyperpolarizing light responses (AC(H)s) and make GABAergic/glycinergic synapses on DBC or HBC axon terminals. GABA and glycine receptor antagonists enhanced the ON and OFF excitatory cation current (DeltaI(C)) in type I ganglion cells, but completely suppressed the ON DeltaI(C) mediated by DBCs in type II cells and the OFF DeltaI(C) mediated by HBCs in types III cells. Dendrites of type I cells ramify in both sublamina A and B, type II cells exclusively in sublamina A, and type III cells exclusively in sublamina B of the inner plexiform layer. These results demonstrate that indirect, amacrine cell-mediated bipolar cell-ganglion cell synaptic pathways exist in a non-mammalian retina, and that bidirectional cross-talk between ON and OFF channels is present in the vertebrate retina.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Cullen Eye Institute, Baylor College of Medicine, One Baylor Plaza, NC-205, Houston, TX 77030, USA
| | | | | |
Collapse
|
9
|
Thiel A, Greschner M, Ammermüller J. The temporal structure of transient ON/OFF ganglion cell responses and its relation to intra-retinal processing. J Comput Neurosci 2006; 21:131-51. [PMID: 16732489 DOI: 10.1007/s10827-006-7863-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 02/15/2006] [Accepted: 02/22/2006] [Indexed: 11/27/2022]
Abstract
A subpopulation of transient ON/OFF ganglion cells in the turtle retina transmits changes in stimulus intensity as series of distinct spike events. The temporal structure of these event sequences depends systematically on the stimulus and thus carries information about the preceding intensity change. To study the spike events' intra-retinal origins, we performed extracellular ganglion cell recordings and simultaneous intracellular recordings from horizontal and amacrine cells. Based on these data, we developed a computational retina model, reproducing spike event patterns with realistic intensity dependence under various experimental conditions. The model's main features are negative feedback from sustained amacrine onto bipolar cells, and a two-step cascade of ganglion cell suppression via a slow and a fast transient amacrine cell. Pharmacologically blocking glycinergic transmission results in disappearance of the spike event sequence, an effect predicted by the model if a single connection, namely suppression of the fast by the slow transient amacrine cell, is weakened. We suggest that the slow transient amacrine cell is glycinergic, whereas the other types release GABA. Thus, the interplay of amacrine cell mediated inhibition is likely to induce distinct temporal structure in ganglion cell responses, forming the basis for a temporal code.
Collapse
Affiliation(s)
- Andreas Thiel
- Neurobiology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | | | | |
Collapse
|
10
|
Abstract
The theory of "parallel pathways" predicts that, except for a sign reversal, ON and OFF ganglion cells are driven by a similar presynaptic circuit. To test this hypothesis, we measured synaptic inputs to ON and OFF cells as reflected in the subthreshold membrane potential. We made intracellular recordings from brisk-transient (Y) cells in the in vitro guinea pig retina and show that ON and OFF cells in fact express significant asymmetries in their synaptic inputs. An ON cell receives relatively linear input that modulates a single excitatory conductance; whereas an OFF cell receives rectified input that modulates both inhibitory and excitatory conductances. The ON pathway, blocked by L-AP-4, tonically inhibits an OFF cell at mean luminance and phasically inhibits an OFF cell during a light increment. Our results suggest that basal glutamate release is high at ON but not OFF bipolar terminals, and inhibition between pathways is unidirectional: ON --> OFF. These circuit asymmetries explain asymmetric contrast sensitivity observed in spiking behavior.
Collapse
|
11
|
Zaghloul KA, Boahen K, Demb JB. Different circuits for ON and OFF retinal ganglion cells cause different contrast sensitivities. J Neurosci 2003; 23:2645-54. [PMID: 12684450 PMCID: PMC6742092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
The theory of "parallel pathways" predicts that, except for a sign reversal, ON and OFF ganglion cells are driven by a similar presynaptic circuit. To test this hypothesis, we measured synaptic inputs to ON and OFF cells as reflected in the subthreshold membrane potential. We made intracellular recordings from brisk-transient (Y) cells in the in vitro guinea pig retina and show that ON and OFF cells in fact express significant asymmetries in their synaptic inputs. An ON cell receives relatively linear input that modulates a single excitatory conductance; whereas an OFF cell receives rectified input that modulates both inhibitory and excitatory conductances. The ON pathway, blocked by L-AP-4, tonically inhibits an OFF cell at mean luminance and phasically inhibits an OFF cell during a light increment. Our results suggest that basal glutamate release is high at ON but not OFF bipolar terminals, and inhibition between pathways is unidirectional: ON --> OFF. These circuit asymmetries explain asymmetric contrast sensitivity observed in spiking behavior.
Collapse
Affiliation(s)
- Kareem A Zaghloul
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6058, USA
| | | | | |
Collapse
|
12
|
Pang JJ, Gao F, Wu SM. Relative contributions of bipolar cell and amacrine cell inputs to light responses of ON, OFF and ON-OFF retinal ganglion cells. Vision Res 2002; 42:19-27. [PMID: 11804628 DOI: 10.1016/s0042-6989(01)00258-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Light-evoked postsynaptic currents (lePSCs) were recorded from ON, OFF and ON-OFF ganglion cells in dark-adapted salamander retinal slices under voltage clamp conditions, and the cell morphology was examined using Lucifer yellow fluorescence with confocal microscopy. The current-voltage relations of the lePSCs in all three types of ganglion cells are approximately linear within the cells' physiological range. The average chloride/cation conductance ratio (Deltag(Cl)(NR)/Deltag(C)(NR)) of the lePSCs is near 3, suggesting that ganglion cell light responses are associated with a greater postsynaptic conductance change at the amacrine-ganglion cell inhibitory synapses than at the bipolar-ganglion cell excitatory synapses. By comparing the charge transfer of lePSCs in normal Ringer's and in picrotoxin+strychnine+Imidazole-4-acidic acid, we found that the GABAergic and glycinergic amacrine-bipolar cell feedback synapses decreased the light-induced glutamatergic vesicle release from bipolar cells to all ganglion cells, and the degree of release reduction varied widely from ganglion cell to ganglion cell, with a range of 3-28 fold.
Collapse
Affiliation(s)
- Ji Jie Pang
- Cullen Eye Institute, Baylor College of Medicine, One Baylor Plaza, NC-205, Houston, TX 77030, USA
| | | | | |
Collapse
|
13
|
Cohen ED. Synaptic mechanisms shaping the light-response in retinal ganglion cells. PROGRESS IN BRAIN RESEARCH 2001; 131:215-28. [PMID: 11420942 DOI: 10.1016/s0079-6123(01)31018-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- E D Cohen
- Department of Cellular and Molecular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
| |
Collapse
|
14
|
Abstract
The excitatory amino acid receptor (EAAR) types involved in the generation of light-evoked excitatory postsynaptic currents (EPSCs) were examined in X-type retinal ganglion cells. Using isolated and sliced preparations of cat and ferret retina, the light-evoked EPSCs of X cells were isolated by adding picrotoxin and strychnine to the bath to remove synaptic inhibition. N-methyl-D-aspartate (NMDA) receptors contribute significantly to the light-evoked EPSCs of ON- and OFF-X cells at many different holding potentials. An NMDA receptor contribution to the EPSCs was observable when retinal synaptic inhibition was either normally present or pharmacologically blocked. NMDA receptors formed 80% of the peak light-evoked EPSC at a holding potential of -40 mV; however, even at -80 mV, 20% of the light-evoked EPSC was NMDA-mediated. An alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor-mediated component to the light-evoked EPSCs predominated at a holding potential of -80 mV. The light-evoked EPSC was blocked by the AMPA receptor-selective antagonist GYKI52466 (50-100 microM). The AMPA receptor-mediated EPSC component had a linear current-voltage relation. AMPA receptors form the main non-NMDA EAAR current on both ON- and OFF- X ganglion cell dendrites. When synaptic transmission was blocked by the addition of Cd(2+) to the Ringer, application of kainate directly to ganglion cells evoked excitatory currents that were strongly blocked by GYKI52466. Experiments using selective EAAR modulators showed the AMPA receptor-selective modulator cyclothiazide potentiated glutamate-evoked currents on X cells, while the kainate receptor-selective modulator concanavalin A (ConA) had no effect on kainate-evoked currents. Whereas the present study confirms the general notion that AMPA EAAR-mediated currents are transient and NMDA receptor-mediated currents are sustained, current-voltage relations of the light-evoked EPSC at different time points showed the contributions of these two receptor types significantly overlap. Both NMDA and AMPA EAARs can transmit transient and sustained visual signals in X ganglion cells, suggesting that much signal shaping occurs presynaptically in bipolar cells.
Collapse
MESH Headings
- Animals
- Cats
- Electrophysiology
- Excitatory Amino Acid Agonists/pharmacology
- Excitatory Amino Acid Antagonists/pharmacology
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Ferrets
- In Vitro Techniques
- Patch-Clamp Techniques
- Photic Stimulation
- Receptors, AMPA/agonists
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/physiology
- Receptors, Glutamate/drug effects
- Receptors, Glutamate/physiology
- Receptors, Kainic Acid/agonists
- Receptors, Kainic Acid/antagonists & inhibitors
- Receptors, Kainic Acid/physiology
- Receptors, N-Methyl-D-Aspartate/agonists
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/physiology
- Retinal Ganglion Cells/drug effects
- Retinal Ganglion Cells/physiology
- Synapses/drug effects
- Synapses/physiology
Collapse
Affiliation(s)
- E D Cohen
- Yale Vision Research Center, Yale School of Medicine, New Haven, Connecticut 06520-8061, USA
| |
Collapse
|
15
|
Protti DA, Flores-Herr N, von Gersdorff H. Light evokes Ca2+ spikes in the axon terminal of a retinal bipolar cell. Neuron 2000; 25:215-27. [PMID: 10707985 DOI: 10.1016/s0896-6273(00)80884-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Bipolar cells in the vertebrate retina have been characterized as nonspiking interneurons. Using patch-clamp recordings from goldfish retinal slices, we find, however, that the morphologically well-defined Mb1 bipolar cell is capable of generating spikes. Surprisingly, in dark-adapted retina, spikes were reliably evoked by light flashes and had a long (1-2 s) refractory period. In light-adapted retina, most Mb1 cells did not spike. However, an L-type Ca2+ channel agonist could induce periodic spiking in these cells. Spikes were determined to be Ca2+ action potentials triggered at the axon terminal and were abolished by 2-amino-4-phosphonobutyric acid (APB), an agonist that mimics glutamate. Signaling via spikes in a specific class of bipolar cells may serve to accelerate and amplify small photo-receptor signals, thereby securing the synaptic transmission of dim and rapidly changing visual input.
Collapse
Affiliation(s)
- D A Protti
- Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| | | | | |
Collapse
|
16
|
Gao F, Wu SM. Multiple types of spontaneous excitatory synaptic currents in salamander retinal ganglion cells. Brain Res 1999; 821:487-502. [PMID: 10064836 DOI: 10.1016/s0006-8993(99)01067-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Spontaneous and light-evoked excitatory postsynaptic currents (sEPSCs and leEPSCs) in retinal ganglion cells of the larval tiger salamander were recorded under voltage clamp conditions from living retinal slices. sEPSCs were isolated from the spontaneous inhibitory postsynaptic currents (sIPSCs) by application of 100 M picrotoxin+1 microM strychnine. In addition to the previously reported sEPSCs [K. Matsui, N. Hosoi, M. Tachibana, Excitatory synaptic transmission in the inner retina: pair recordings of bipolar cells and neurons of the ganglion cell layer, J. Neurosci. 18 (1998) 4500-4510; W.R. Taylor, E. Chen, D.R. Copenhagen, Characterization of spontaneous excitatory synaptic currents in salamander retinal ganglion cells, J. Physiol. 486 (1995) 207-221] [which are equivalent to our fast AMPA receptor-mediated sEPSCs (fAMPAsEPSCs)], we found another type of AMPA receptor-mediated sEPSC with slower rise and decay time courses and larger peak amplitudes (sAMPAsEPSCs), and the NMDA receptor-mediated sEPSCs (NMDAsEPSCs) in ON-OFF ganglion cells. The frequency of all three types of sEPSCs is greatly reduced by cobalt (with zero calcium) and increased by hyperosmotic solution, suggesting that these events are mediated by calcium-dependent exocytosis of glutamatergic synaptic vesicles. The amplitude histograms of sEPSCs do not show multiple peaks, suggesting that larger events are not discrete multiples of elementary events, or quanta, of similar neurotransmitter contents, as in the neuromuscular junction [P. Fatt, B. Katz, Spontaneous subthreshold activity at motor nerve endings, J. Physiol. 117 (1952) 109-128]. The average I-V relations of the fAMPAsEPSCs and sAMPAsEPSCs were outward rectified with reversal potentials at -12.2 mV and -10.8 mV, and that of the NMDAsEPSCs was N-shaped with a reversal potential at -5.8 mV. The average conductance increase associated with a single fAMPAsEPSC, a single sAMPAsEPSC, and a single NMDAsEPSC were 163. 26+/-51.02 pS, 233.33+/-163.64 pS, and 37.5+/-50.0 pS at -110 mV; 241.67+/-22.92 pS, 444.90+/-469.94 pS, and 25.93+/-70.37 pS at -60 mV; and 440.48+/-183.33 pS, 1,192.68+/-651.22 pS, and 517.71+/-238. 24 pS at +30 mV, respectively. The average frequency of the three sEPSCs at +30 mV were 15 Hz, 3.7 Hz and 3.6 Hz, respectively. The rise time (time to peak) of fAMPAsEPSCs was 1.5+/-1.05 ms and the decay time could be fitted with a single exponential with an average time constant of 3.4+/-4.1 ms. The rise and decay time course of the sAMPAsEPSCs and NMDAsEPSCs were much slower and sawtooth-shaped, and each 'sawtooth' had time course and amplitude similar to those of individual fAMPAsEPSCs. We propose that each fAMPAsEPSC is mediated by single or synchronized multiples of glutamatergic synaptic vesicles from bipolar cells, and each sAMPAsEPSC or NMDAsEPSC is mediated by larger clusters of synaptic vesicles triggered by spontaneous calcium spikes in bipolar cell axon terminals [J. Burrone, L. Lagnado, Electrical resonance and calcium influx in the synaptic terminal of depolarizing bipolar cells from the goldfish retina, J. Physiol. 505 (1997) 571-584; D. Zenisek, G. Matthews, Calcium action potentials in retinal bipolar neurons, Vis. Neurosci. 15 (1998) 69-75].
Collapse
Affiliation(s)
- F Gao
- Cullen Eye Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | |
Collapse
|
17
|
Cook PB, McReynolds JS. Lateral inhibition in the inner retina is important for spatial tuning of ganglion cells. Nat Neurosci 1998; 1:714-9. [PMID: 10196588 DOI: 10.1038/3714] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The center-surround receptive-field organization in retinal ganglion cells is widely believed to result mainly from lateral inhibition at the first synaptic level (in the outer retina). Inhibition at the second synaptic level (in the inner retina) is thought to mediate more complex response properties. Here we show that much of the sustained surround antagonism in certain on-center ganglion cells results from lateral inhibition in the inner retina, via GABAergic amacrine cells, and that the lateral conduction of this signal requires voltage-gated sodium currents. Blocking lateral inhibition in the inner retina eliminates the preference of small-center ganglion cells for small stimuli but has little effect on ganglion cells with large receptive-field centers. These results illustrate how lateral inhibition at successive synaptic stages can selectively control the size of neural receptive-field centers.
Collapse
Affiliation(s)
- P B Cook
- Department of Physiology, University of Michigan Medical School, Ann Arbor 48109-0622, USA.
| | | |
Collapse
|
18
|
Cohen ED. Interactions of inhibition and excitation in the light-evoked currents of X type retinal ganglion cells. J Neurophysiol 1998; 80:2975-90. [PMID: 9862900 DOI: 10.1152/jn.1998.80.6.2975] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The excitatory and inhibitory conductances driving the light-evoked currents (LECs) of cat and ferret ON- and OFF-center X ganglion cells were examined in sliced and isolated retina preparations using center spot stimulation in tetrodotoxin (TTX)-containing Ringer. ON-center X ganglion cells showed an increase in an excitatory conductance reversed positive to +20 mV during the spot stimulus. At spot offset, a transient inhibitory conductance was activated on many cells that reversed near ECl. OFF-center X ganglion cells showed increases in a sustained inhibitory conductance that reversed near ECl during spot stimulation. At spot offset, an excitatory conductance was activated that reversed positive to +20 mV. The light-evoked current kinetics of ON- and OFF-center X cells to spot stimulation did not significantly differ in form from their Y cell counterparts in TTX Ringer. When inhibition was blocked, current-voltage relations of the light-evoked excitatory postsynaptic currents (EPSCs) of both ON- and OFF-X cells were L-shaped and reversed near 0 mV. The EPSCs averaged between 300 and 500 pA at -80 mV. The metabotropic glutamate receptor agonist 2-amino-4-phosphonobutyric acid (APB), was used to block ON-center bipolar cell function. The LECs of ON-X ganglion cells were totally blocked in APB at all holding potentials. APB caused prominent reductions in the dark holding current and synaptic noise of ON-X cells. In contrast, the LECs of OFF-X ganglion cells remained in APB. An increase in the dark holding current was observed. The excitatory amino acid receptor antagonist combination of D-amino-5-phosphono-pentanoic acid (D-AP5) and 2, 3-dihydroxy-6-nitro-7-sulfamoyl-benzo-(F)-quinoxalinedione (NBQX) was used to block ionotropic glutamate receptor retinal neurotransmission. The LECs of all ON-X ganglion cells were totally blocked, and their holding currents were reduced similar to the actions of APB. For OFF-X ganglion cells, the antagonist combination always blocked the excitatory current at light-OFF; however, in many cells, the inhibitory current at light-ON remained. ON-center X ganglion cells receive active excitation during center illumination, and a transient inhibition at light-OFF. In contrast OFF-center X ganglion cells experience a sustained active inhibition during center illumination, and a shorter increase in excitation at light-offset. Cone bipolar cells provide a resting level of glutamate release on X ganglion cells on which their light-evoked currents are superimposed [corrected].
Collapse
Affiliation(s)
- E D Cohen
- Yale Vision Research Center, Yale School of Medicine, New Haven, Connecticut 06520-8061, USA
| |
Collapse
|
19
|
Gao F, Wu SM. Characterization of spontaneous inhibitory synaptic currents in salamander retinal ganglion cells. J Neurophysiol 1998; 80:1752-64. [PMID: 9772236 DOI: 10.1152/jn.1998.80.4.1752] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spontaneous and light-evoked postsynaptic currents (sPSCs and lePSCs, respectively) in retinal ganglion cells of the larval tiger salamander were recorded under voltage-clamp conditions from living retinal slices. The focus of this study is to characterize the spontaneous inhibitory PSCs (sIPSCs) and their contribution to the light-evoked inhibitory PSCs (leIPSCs) in ON-OFF ganglion cells. sIPSCs were isolated from spontaneous excitatory PSCs (sEPSCs) by application of 10 microM 6,7-dinitroquinoxaline-2,3-dione (DNQX) + 50 microM 2-amino-5-phosphonopentanoic acid (AP5). In approximately 70% of ON-OFF ganglion cells, bicuculline (or picrotoxin) completely blocks sIPSCs, suggesting all sIPSCs in these cells are mediated by GABAergic synaptic vesicles and gamma-aminobutyric acid-A (GABAA) receptors (GABAergic sIPSCs, or GABAsIPSCs). In the remaining 30% of - ganglion cells, bicuculline (or picrotoxin) blocks 70-98% of the sIPSCs, and the remaining 2-30% are blocked by strychnine (glycinergic sIPSCs, or GLYsIPSCs). GABAsIPSCs occur randomly with an exponentially distributed interval probability density function, and they persist without noticeable rundown over time. The GABAsIPSC frequency is greatly reduced by cobalt, consistent with the idea that they are largely mediated by calcium-dependent vesicular release. GABAsIPSCs in DNQX + AP5 are tetrodotoxin (TTX) insensitive, suggesting that amacrine cells that release GABA under these conditions do not generate spontaneous action potentials. The average GABAsIPSCs exhibited linear current-voltage relation with a reversal potential near the chloride equilibrium potential, and an average peak conductance of 319.67 +/- 252.83 (SD) pS. For GLYsIPSCs, the average peak conductance increase is 301.68 +/- 94.34 pS. These parameters are of the same order of magnitude as those measured in inhibitory miniature postsynaptic currents (mIPSCs) associated with single synaptic vesicles in the CNS. The amplitude histograms of GABAsIPSCs did not exhibit multiple peaks, suggesting that the larger events are not discrete multiples of elementary events (or quanta). We propose that each GABAsIPSC or GLYsIPSC in retinal ganglion cells is mediated by a single or synchronized multiple of synaptic vesicles with variable neurotransmitter contents. In a sample of 16 ON-OFF ganglion cells, the average peak leIPSC (held at 0 mV) at the light onset is 509.0 +/- 233.85 pA and that at the light offset is 529.0 +/- 339.88 pA. The approximate number of GABAsIPSCs and GLYsIPSCs required to generate the average light responses, calculated by the ratio of the charge (area under current traces) of the leIPSCs to that of the average single sIPSCs, is 118 +/- 52 for the light onset, and 132 +/- 76 for the light offset.
Collapse
Affiliation(s)
- F Gao
- Cullen Eye Institute, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
20
|
Cook PB, McReynolds JS. Modulation of sustained and transient lateral inhibitory mechanisms in the mudpuppy retina during light adaptation. J Neurophysiol 1998; 79:197-204. [PMID: 9425191 DOI: 10.1152/jn.1998.79.1.197] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Two functionally and anatomically distinct types of lateral inhibition contribute to the receptive field organization of ganglion cells in the vertebrate retina: sustained lateral inhibition (SLI), which is present during steady illumination and transient lateral inhibition (TLI), evoked by changes in illumination. We studied adaptive changes in these two lateral inhibitory mechanisms in the mudpuppy retina by measuring the responses of ON-OFF ganglion cells to spots of light in the receptive field center, in the absence and presence of a concentric broken annulus (windmill) pattern, which was either stationary or rotating. SLI was measured as the percent suppression of the centered spot response by the stationary windmill and TLI was measured as the additional suppression produced when the windmill was rotating. In dark-adapted retinas SLI was elicited by windmills of 600 or 1,200 micron ID, but TLI could not be elicited by windmills of any size, over a wide range of windmill intensities and rotation rates. Exposure of dark-adapted retinas to diffuse adapting light caused an immediate decrease in the response to the spot alone, followed by slowly developing changes in both SLI and TLI: SLI produced by 1,200 micron ID windmills became weaker, whereas SLI produced by 600 micron ID windmills became stronger. After several minutes strong TLI could be elicited by both 600 and 1,200 micron ID windmills. The changes in SLI and TLI were usually complete within 5 and 15 min, respectively, and recovered to dark-adapted levels slightly more slowly after the adapting light was turned off. However the changes in sensitivity of the spot response were complete within one minute after onset and termination of the adapting light. The adaptive changes in SLI and TLI did not depend on the presence of the adapting light; after a brief (1 min) exposure to the adapting light, the changes in SLI and TLI slowly developed and then decayed back to the dark-adapted level. The effects of the adapting light on SLI were mimicked by dopamine and blocked by D1 dopamine receptor antagonists. However dopamine did not enable TLI in dark-adapted retinas and dopamine antagonists did not prevent enablement of TLI when dark-adapted retinas were exposed to light or disable TLI when applied to light-adapted retinas. The results suggest that light-adaptive changes in SLI are mediated by dopamine and are consistent with a reduction in electrical coupling between neurons that conduct the SLI signal laterally in the retina. In contrast, TLI appears to be switched off or suppressed in the dark-adapted retina and enabled in light-adapted retinas, by a relatively slow modulatory mechanism that does not involve dopamine.
Collapse
Affiliation(s)
- P B Cook
- Department of Physiology, The University of Michigan, Ann Arbor, Michigan 48109-0622, USA
| | | |
Collapse
|
21
|
Abstract
Whole-cell voltage clamp in the retinal slice and intracellular current clamp in the intact retina were used to study inhibitory interactions in the inner plexiform layer. Picrotoxin or strychnine reduced inhibitory, light-evoked currents in a majority of ganglion cells. However, in nearly a third of the ganglion cells, each of these antagonists enhanced the inhibitory synaptic current. All inhibitory current was blocked by the addition of the other antagonist. This indicates a cross-inhibition between GABAergic and glycinergic feedforward pathways. Blocking of GABAARs with SR95531 shortened the time course of both excitatory and inhibitory synaptic currents in ganglion cells. Application of picrotoxin, which blocked both GABAARs and GABACRs, produced the opposite effect. Recordings in the intact retina indicated that the light responses of ON bipolar cells, sustained ON, and transient ON-OFF third-order neurons were all made more transient by SR95531 and made more sustained by picrotoxin. The data suggest that a GABAC feedback pathway to bipolar cells makes light responses more phasic and that this feedback is inhibited through a GABAAR pathway. Consequently, the balance between GABAAR and GABACR inhibition regulates the time course of inputs to ganglion cells.
Collapse
Affiliation(s)
- J Zhang
- Department of Physiology, School of Medicine, State University of New York, Buffalo 14214, USA
| | | | | |
Collapse
|
22
|
Nirenberg S, Meister M. The light response of retinal ganglion cells is truncated by a displaced amacrine circuit. Neuron 1997; 18:637-50. [PMID: 9136772 DOI: 10.1016/s0896-6273(00)80304-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The vertebrate retina contains ganglion cells that appear to be specialized for detecting temporal changes. The characteristic response of these cells is a transient burst of action potentials when a stationary image is presented or removed, and often a strong discharge to moving images. These transient and motion-sensitive responses are thought to result from processing in the inner retina that involves amacrine cells, but the critical interactions have been difficult to reveal. Here, we used a cell-ablation technique to remove a subpopulation of amacrine cells from the mouse retina. Their ablation changed transient ganglion cell responses into prolonged discharges. This suggests that transient responses are generated, at least in part, by a truncation of sustained excitatory input to the ganglion cells and that the ablated amacrine cells are critical for this process.
Collapse
Affiliation(s)
- S Nirenberg
- Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
23
|
Grunfeld ED, Spitzer H. Spatio-temporal model for subjective colours based on colour coded ganglion cells. Vision Res 1995; 35:275-83. [PMID: 7839622 DOI: 10.1016/0042-6989(94)00119-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We propose a mathematical model for the generation of the subjective colour phenomenon through Benham's disk stimuli. The model relates to the spatial and temporal properties of three colour coded retinal ganglion cells: L+/M-, M+/L- and S-/(L+M)+ [or (L+M)-/S+]. It is suggested that the phenomenon is based on both the opponent mechanisms in the cells' receptive fields, and the "rebound response"--a common cell response to turning off of an inhibitory stimulus (nonlinear cell dynamics). A physiological mechanism is suggested for this response. The integrated cell responses to Benham disk-stimuli create imbalances between the colour pathways that are interpreted as actual colours. The model also predicts the shift in the perceived colours when the disk rotation rate is varied.
Collapse
Affiliation(s)
- E D Grunfeld
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Israel
| | | |
Collapse
|
24
|
Yang CY, Yazulla S. Glutamate-, GABA-, and GAD-immunoreactivities co-localize in bipolar cells of tiger salamander retina. Vis Neurosci 1994; 11:1193-203. [PMID: 7841126 DOI: 10.1017/s0952523800006994] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The presence of inhibitory bipolar cells in salamander retina was investigated by a comparative analysis of the distribution of glutamate- and GABA-immunoreactivities (GLU-IR; GABA-IR) using a postembedding immunocytochemical method. GLU-IR was found in virtually all photoreceptors, bipolar cells and ganglion cells, neuronal elements that transfer information vertically through the retina. GLU-IR also was found in numerous amacrine cells in the mid and proximal inner nuclear layer as well as in the cytoplasm of horizontal cells, while the nucleus of horizontal cells was either lightly labeled or not labeled at all. GLU-IR was found in the outer plexiform layer and intensely in the inner plexiform layer, in which there was no apparent sublamination. Forty-seven percent of Type IB bipolar cells in the distal inner nuclear layer and 13% of the displaced bipolar cells were GABA-IR. All bipolar cells were also GLU-IR, indicating that GABA-IR bipolar cells were a subset of GLU-IR bipolar cells rather than a separate population. About 12% of the Type IB bipolar cells were moderately GABA-IR and likely comprised a GABAergic subtype. GLU-IR levels in the presumed GABAergic bipolar cells were higher than in other purely GLU-IR bipolar cells suggesting that these GABA-IR bipolar cells are glutamatergic as well. All of the displaced bipolar cells were only lightly GABA-IR, indicating that displaced bipolar cells comprise a more homogeneous class of glutamatergic cell than orthotopic bipolar cells. GAD-IR co-localized with GABA-IR in orthotopic but not displaced bipolar cells, further supporting the idea that some orthotopic bipolar cells are GABAergic. A small proportion of bipolar cells in salamander retina contain relatively high levels of both GABA and glutamate. Co-release of these substances by bipolar cells could contribute to the "push-pull" modulation of ganglion cell responses.
Collapse
Affiliation(s)
- C Y Yang
- Department of Neurobiology and Behavior, University at Stony Brook, NY 11794-5230
| | | |
Collapse
|
25
|
Abstract
When a bar of light (215 x 5000 microns) illuminates the receptive field of an ON-beta ganglion cell of cat retina, the cell depolarizes. Intracellular recording from the cat eyecup preparation shows that this depolarization is due to an increase in conductance (2.4 +/- 0.6 nS). Different phases of this depolarization have different reversal potentials, but all of these reversal potentials are more positive than the cell's resting potential in the dark. When the light is turned on, there is an initial transient depolarization; the reversal potential measured for this transient is positive (23 +/- 11 mV). As the light is left on, the cell partially repolarizes to a sustained depolarization; the reversal potential measured for this sustained depolarization is close to zero (-1 +/- 5 mV). When the light is turned off, the cell repolarizes further; the reversal potential measured for this repolarization is negative (-18 +/- 7 mV), but still above the resting potential in the dark (-50 mV). To explain this variety of reversal potentials, at least two different synaptic conductances are required: one to ions which have a positive reversal potential and another to ions which have a negative reversal potential. Comparing the responses to broad and narrow bars suggests that these two conductances are associated with the center and surround, respectively. Finally, since an ON-beta cell in the area centralis receives about 200 synapses, these results indicate that a single synapse produces an average conductance increase of about 15 pS during a near-maximal depolarization.
Collapse
Affiliation(s)
- M A Freed
- Laboratory of Neurophysiology, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892
| | | |
Collapse
|
26
|
Spitzer H, Almon M, Sandler VM. A model for detection of spatial and temporal edges by a single X cell. Vision Res 1993; 33:1871-80. [PMID: 8266643 DOI: 10.1016/0042-6989(93)90178-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
When an inhibitory visual stimulus is turned off, an increased rate of spike discharge is evoked which we term the "rebound response". This response exists as a part of different cell responses from the retina to the cortex. The rebound response, with its temporal dependence on stimulus parameters, has not been previously considered in models. Here we present such a model, and also show its dependence on stimulus duration and its turning off rate. The rebound response enables detection of temporal changes when a visual stimulus involves spatial changes. The temporal change detection is affected by the actual stimulus duration, which can also be seen as a cell memory operation.
Collapse
Affiliation(s)
- H Spitzer
- Engineering Faculty, Tel Aviv University, Israel
| | | | | |
Collapse
|
27
|
Guenther E, Zrenner E. Differences in adaptation between on- and off-centre ganglion cells and rod-mediated cone sensitization in cat retina. J Physiol 1993; 464:613-27. [PMID: 8229821 PMCID: PMC1175405 DOI: 10.1113/jphysiol.1993.sp019654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
1. Response properties of on- and off-centre retinal ganglion cells were investigated in cats. The stimulus parameters were selected so as to demonstrate interactions between the rod and the cone systems. 2. Response versus log stimulus intensity (R-log I) functions were determined for the receptive field centres while both test stimulus irradiance and the background illumination were varied over a range up to 7 log units. In order to determine the course of adaptation to chromatic stimuli, threshold versus intensity (t.v.i.) functions were measured over a wide range of adaptation levels. 3. An increase in background illuminance produced a shift of the R-log I functions to higher irradiances of test stimuli in most ganglion cells, indicating a desensitization of the centre response in the presence of background lights. Using test stimuli which most efficiently stimulate the rods (501 nm), clear differences could be seen in the adaptation behaviour of on- and off-centre ganglion cells. Chromatic backgrounds (blue-green and orange) reduced the responses of off-centre cells more than those of on-centre cells (the difference between them amounting to as much as 2 log units). Simultaneously, equivalent t.v.i. functions had significantly steeper slopes (0.94 and 1.1) in the linear proportions of off-centre cells compared to on-centre cells (0.76 and 0.75) under light levels mediated by rods. Such differences were not observed when a test stimulus of 575 nm was used which resulted primarily in stimulating the long-wavelength cone (L-cone) system. 4. In a subpopulation of off-centre cells (20% of the total number of off-centre cells recorded), a strikingly different adaptation behaviour was observed. Here, the presentation of a dim short-wavelength background produced a shift of R-log I functions to lower test stimulus irradiances. The receptive field centre became even more sensitive, by up to 1.5 log units, in the presence of dim adapting backgrounds rather than in the dark-adapted state. Accordingly, the t.v.i. function did not increase monotonically but showed a 'dip' in the presence of dim backgrounds. Only at photoic levels, the t.v.i. functions revealed a response behaviour similar to the other ganglion cells. The sensitization with dim backgrounds was only observed in the case of test stimuli designed to stimulate the cone system (575 nm) and in the presence of a rod-adapting blue-green background.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E Guenther
- Department of Pathophysiology of Vision and Neuro-Ophthalmology, University Eye Hospital, Tübingen, FRG
| | | |
Collapse
|
28
|
Nelson R, Kolb H, Freed MA. OFF-alpha and OFF-beta ganglion cells in cat retina. I: Intracellular electrophysiology and HRP stains. J Comp Neurol 1993; 329:68-84. [PMID: 8454726 DOI: 10.1002/cne.903290106] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Six OFF-alpha ganglion cells and a single OFF-beta ganglion cell were penetrated with intracellular microelectrodes and marked with horseradish peroxidase (HRP) in a perfused cat eyecup. Gaussian center radii (Rc) ranging from 40 to 217 microns were measured for receptive fields mapped with slits, values in agreement with previous extracellular reports. ON and OFF response components revealed nearly identical Rc's and center locations. Although Gaussian diameters (2Rc) were about 80% of dendritic field diameters overall, in this sample dendritic and receptive fields were not well correlated. Spatial tuning of ganglion cells was evidenced in peaked amplitude-vs.-width functions, fit by difference-of-Gaussians models. Such plots yielded Rc values about 40% less than position-vs amplitude plots. Rs values for surrounds ranged from 200 to 1,700 microns. Rod and cone signals were investigated with flicker. Rod flicker signals in OFF-alpha cells were larger and of shorter latency than in either horizontal or AII amacrine cells. Cone flicker signals were also short in latency, with an ON response time constant of 9 msec, and an OFF response time constant of 3 msec. The OFF-alpha rod-cone transition involved a latency increase of 20-30 msec. The spontaneous and light-evoked impulse rates of OFF-alpha responses varied linearly with extrinsic current, but the amplitude of ON hyperpolarization was little affected. After injection of staining current, the OFF-beta cell transiently depolarized at ON, suggestive of ON inhibition with reversed chloride gradient, a result not seen in OFF-alpha responses. Events (peaked, depolarizing voltage fluctuations) of high, low, and intermediate amplitudes were studied in OFF-alpha responses. High amplitude events (impulses), were OFF-correlated with the stimulus, and exhibited mean rise times (transit time from 25 to 75% of peak amplitude) from 255 to 392 microseconds. Intermediate level events (presumed synaptic origin) were also OFF correlated and had longer rise times (325 microseconds to 1.56 microseconds). Low level events (234-685 microseconds) revealed either ON, ON/OFF, or not stimulus correlation.
Collapse
Affiliation(s)
- R Nelson
- Laboratory of Neurophysiology, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | | | | |
Collapse
|
29
|
Vitanova L, Kupenova P, Popova E, Mitova L, Belcheva S. Comparative investigation of retinal responses to brief light stimuli: 2-amino-4-phosphonobutyrate studies--I. Frog retina, Rana ridibunda. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. C, COMPARATIVE PHARMACOLOGY AND TOXICOLOGY 1993; 104:289-97. [PMID: 8098682 DOI: 10.1016/0742-8413(93)90037-l] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1. Electroretinogram (ERG) and responses of single ganglion cells to 75 microseconds light flashes, applied at two different backgrounds, were studied. Additionally, a stimulation with long-lasting stimuli (ordinarily 5 sec ON-, 5 sec OFF-) was used. Both white and coloured light stimuli were presented. 2. 150 microM 2-amino-4-phosphonobutyrate (APB) was used to separate OFF- from ON- channels. 3. Before APB application, one or two components in the impulse activity in response to a flash were observed, depending on the type of ganglion cell (ON-, OFF- or ON-OFF). the latency of the first component was 60 msec and the latency of the second one was from 160 to 430 msec on average, at different background conditions. APB abolished the first component and enhanced the second one. 4. By means of APB, two components were shown to exist in the main positive wave of the flash ERG. APB abolished the first component and did not influence or enhance the second one. 5. The data obtained show that both ON- and OFF- channels take part in the generation of the frog retinal responses to brief stimuli.
Collapse
Affiliation(s)
- L Vitanova
- Department of Physiology, Medical Faculty, Sofia, Bulgaria
| | | | | | | | | |
Collapse
|
30
|
Vitanova L, Popova E, Kupenova P, Mitova L, Belcheva S. Comparative investigation of retinal responses to brief light stimuli: 2-amino-4-phosphonobutyrate studies--II. Turtle retina (Emys orbicularis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. C, COMPARATIVE PHARMACOLOGY AND TOXICOLOGY 1993; 104:299-305. [PMID: 8098683 DOI: 10.1016/0742-8413(93)90038-m] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1. Electroretinogram (ERG) and responses of single ganglion cells to 75 microseconds light flashes, presented on two different backgrounds, were studied. Additionally, stimulation with long lasting stimuli (ordinarily 5 sec ON-, 15 sec OFF-) was used. 2. 2-amino-4-phosphonobutyrate (APB) at a concentration of 450 microM on average was used to separate OFF- from ON- channels. It is known, that in other species APB selectively blocks the activity of ON- channel only. 3. The existence of APB- sensitive membrane receptors was demonstrated in the turtle retina. As in other species, APB abolished the ERG b-wave and enhanced the d-wave, when long lasting stimulation was used. 4. By means of APB, two components were shown to exist in the ERG positive wave in response to a flash. APB abolished the first component and did not influence or enhanced the second one. 5. By means of APB, one or two components in the impulse activity in response to flash were demonstrated, depending on the type of ganglion cell (ON-, OFF- or ON-OFF). The latency of the first component was 70 msec and the latency of the second one 210 msec on average. APB abolished the first component, and enhanced the second one. 6. The data obtained show that both ON- and OFF- channels take part in the generation of the turtle retinal responses to brief stimuli. 7. Based on the results obtained, some peculiarities of the network organization of the ganglion cells' receptive fields are discussed.
Collapse
Affiliation(s)
- L Vitanova
- Department of Physiology, Medical Faculty, Sofia, Bulgaria
| | | | | | | | | |
Collapse
|
31
|
Gábriel R, Straznicky C. Quantitative analysis of GABA-immunoreactive synapses in the inner plexiform layer of the Bufo marinus retina: identification of direct output to ganglion cells and contacts with dopaminergic amacrine cells. JOURNAL OF NEUROCYTOLOGY 1993; 22:26-38. [PMID: 8093900 DOI: 10.1007/bf01183973] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have recently reported that about 50% of amacrine cells and some of the bipolar and ganglion cells are GABA-immunoreactive in the retina of Bufo marinus. Synapses formed by these elements in the inner plexiform layer were studied. GABA-immunoreactive amacrine cell processes were found most frequently in synaptic contact with non-immunoreactive amacrine cells. Double-label experiments showed that some of these non-GABA-immunoreactive elements contain tyrosine hydroxylase immunoreactivity. Another source of input to the GABA-immunoreactive amacrine cells were the bipolar cells; some of which were GABA-immunoreactive. GABA-immunoreactive amacrine cells synapsed also onto bipolar cell terminals, and ganglion cell dendrites that were identified by the retrograde transport of horseradish peroxidase from the optic nerve. Synapses between GABA-immunoreactive amacrine cells and bipolar and ganglion cells were non-uniformly distributed in the inner plexiform layer. Synaptic contacts with bipolar cells were more frequent in the OFF-sublamina, and those with ganglion cell dendrites in the ON-sublamina. These results demonstrate that GABA-immunoreactive amacrine cells (1) preferentially synapse with OFF-responding bipolar and ON-centre ganglion cells in the through-pathway, (2) synapse with tyrosine hydroxylase-immunoreactive amacrine cells in both the OFF- and ON-sublaminae, and (3) synapse directly with GABA-immunoreactive ganglion cells. The synapses between GABA-immunoreactive amacrine and GABA-immunoreactive ganglion cells may inhibit the centrally projecting inhibitory ganglion cells, causing disinhibition in the visual centres.
Collapse
Affiliation(s)
- R Gábriel
- Department of Anatomy & Histology, School of Medicine, Flinders University of South Australia, Adelaide
| | | |
Collapse
|
32
|
Hensley SH, Cohen JL. Effects of serotonergic agonists and antagonists on ganglion cells in the goldfish retina. Vis Neurosci 1992; 9:353-64. [PMID: 1390393 DOI: 10.1017/s0952523800010762] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Extracellular recordings were made from the isolated goldfish retina during superfusion with various serotonergic agonists and antagonists to determine the effects of these drugs on the maintained activity and response properties of the ganglion cells. Superfusion of the retina with serotonin (25-500 microM) increased the maintained activity of OFF-center ganglion cells and decreased the maintained activity of ON-center ganglion cells. In addition, serotonin also attenuated the excitatory responses to annular stimuli, suggesting a decrease in the strength of surround input to the ganglion cells. The effects of serotonin on OFF-center ganglion cells were mimicked by the nonselective 5-HT1 agonist 5-MeOT and the 5-HT1A receptor agonist 8-OH-DPAT, while only 5-MeOT mimicked the action of serotonin on ON-center ganglion cells. The effects of exogenously applied serotonin on the ganglion cells could be blocked by the mixed 5-HT1/5-HT2 receptor antagonist methysergide but not by the 5-HT2 receptor antagonist mianserin or the dopamine receptor antagonist haloperidol. These results support previous anatomical and biochemical evidence that serotonin functions in a neurotransmitter or neuromodulatory role in the teleost retina and suggest that serotonin may be involved in modulating the maintained activity and surround input to the ganglion cells. The results also indicate that two different types of receptors may mediate the actions of serotonin in the ON and OFF pathways, respectively.
Collapse
Affiliation(s)
- S H Hensley
- Biomedical Sciences Ph. D. Program, Wright State University, Dayton, Ohio
| | | |
Collapse
|
33
|
Zimmerman RP, Levine MW. Complicated substructure from simple circularly symmetric Gaussian processes within the centers of goldfish ganglion cell receptive fields. Vis Neurosci 1991; 7:547-59. [PMID: 1772805 DOI: 10.1017/s0952523800010348] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The center of the receptive field of some retinal ganglion cells exhibits an interesting fine structure: the relative amplitudes of responses to onset and responses to offset of a small spot of light varies systematically as the spot is positioned at various places within the center. Although this pattern may appear complicated, a simple model can account for it in detail. The model postulates that the ganglion cell receives input from separate ON and OFF processes within the center of its receptive field. These processes have the form of Gaussian functions and are laterally displaced from each other. These central ON and OFF input processes are not associated with the additional antagonistic surround of the receptive field. The model is examined for various parameters of the input processes. The observed systematic variation in the ratio of offset to onset responses is predicted when the two processes are of nearly equal width (standard deviation of the Gaussians). Receptive fields made of more than two Gaussians produce various patterns, depending on the relative standard deviations of the Gaussians. Oblong fields, reminiscent of those found in visual cortex, may be generated from a relatively small number of circularly symmetric Gaussian processes.
Collapse
Affiliation(s)
- R P Zimmerman
- Department of Neurological Sciences, Rush Medical College, Chicago, IL
| | | |
Collapse
|
34
|
Slaughter MM, Miller RF. Characterization of serine's inhibitory action on neurons in the mudpuppy retina. Neuroscience 1991; 41:817-25. [PMID: 1651465 DOI: 10.1016/0306-4522(91)90372-u] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Experiments were performed in the superfused retina-eyecup of mudpuppies using intracellular electrophysiological techniques to evaluate the effects of serine on amacrine and ganglion cells. Serine was found to have a dose-dependent inhibitory effect mediated by the opening of chloride channels. Serine appears to act on a glycine receptor based on the observations that: (1) serine's effect is blocked by strychnine but not by bicuculline or picrotoxin, (2) in the presence of saturating glycine concentrations serine had no effect on membrane voltage or conductance, and (3) cells inhibited by serine were always sensitive to glycine, but not always sensitive to GABA. High pressure liquid chromatography measurements disclose that there is a high concentration of extracellular serine in the retina. The data indicate that serine could act as an inhibitory neurotransmitter.
Collapse
Affiliation(s)
- M M Slaughter
- Department of Biophysical Sciences, School of Medicine, State University of New York, Buffalo 14214
| | | |
Collapse
|
35
|
|
36
|
Golcich MA, Morgan IG, Dvorak DR. Selective abolition of OFF responses in kainic acid-lesioned chicken retina. Brain Res 1990; 535:288-300. [PMID: 2073607 DOI: 10.1016/0006-8993(90)91612-k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
When ganglion cell responses were recorded from optic axons in the superficial layers of the chicken optic tectum, the responses recorded are predominantly ON-OFF transient, with some ON transient, and rare OFF transient responses. Several weeks after excitotoxic lesion of the retina with 40 nmol of kainic acid injected intravitreally, only ON transient responses could be recorded from the contralateral optic tectum. ON response latency and threshold were not affected. At low light intensities responses in the kainic acid-lesioned retinas showed a sustained component which was not detected in control retinas, but at high light intensities, the sustained component disappeared and the responses were extremely transient. The disappearance of the OFF responses seems to be due to elimination of the OFF component of the responses of cells which are normally ON-OFF transient, rather than the silencing of these cells, leaving only the normally ON transient cells. Morphological evidence suggests that approximately two thirds of the bipolar cells and most amacrine cells are destroyed by the kainic acid lesion (Ingham and Morgan, Neuroscience, 9 (1983) 165-181), and pharmacological logic (Morgan, Prog. Retinal Res., 2 (1983) 247-266) suggests that the missing bipolar cells should be OFF bipolar cells. These results therefore suggest that ON-OFF transient cells receive direct input from bipolar cells, which determines their basic response type. These results also suggest that amacrine cells have little if any role to play in the generation of the basic centre responses of these ON-OFF transient ganglion cells, and that while amacrine cells may have a role in the generation of transient responses in the inner plexiform layer, transient responses can be generated without the intervention of amacrine cells, particularly at high intensities.
Collapse
Affiliation(s)
- M A Golcich
- Visual Sciences Group, Research School of Biological Sciences, Australian National University, Canberra City, A.C.T
| | | | | |
Collapse
|
37
|
Van der Valk JB, Morgan IG, Dvorak DR. Identification of kainic and quisqualic acid receptors on inner retinal cells of the salamander Ambystoma mexicanum. Eur J Pharmacol 1990; 184:143-50. [PMID: 1976525 DOI: 10.1016/0014-2999(90)90675-v] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The presence of kainic (KA) and quisqualic acid (QA) receptors on inner retinal neurones of the axolotl Ambystoma mexicanum has been studied using intracellular recording techniques. In the presence of CoCl2, which blocks neurotransmitter release, KA and QA depolarized the membrane. The minimum concentration of KA that induced a response was 1 microM and a maximum response was obtained with 10 microM (EC50: 3 microM). The operating range of QA was between 0.5 and 5 microM with an EC50 of 1 microM. These data show that inner retinal cells of the axolotl are sensitive to KA and QA. Cis-2,3-piperidine dicarboxylic acid (PDA, 3 mM) completely blocked responses to 5 microM KA, but not those induced by 2 microM QA. This suggests that the KA- and QA-sensitive receptors on inner retinal cells of the salamander are pharmacologically different and that PDA can be a valuable tool in distinguishing KA- and QA-sensitive receptors on these neurones.
Collapse
Affiliation(s)
- J B Van der Valk
- Centre for Visual Sciences and Research School of Biological Sciences, Australian National University, Canberra City
| | | | | |
Collapse
|
38
|
Chen EP, Linsenmeier RA. Centre components of cone-driven retinal ganglion cells: differential sensitivity to 2-amino-4-phosphonobutyric acid. J Physiol 1989; 419:77-93. [PMID: 2621650 PMCID: PMC1189997 DOI: 10.1113/jphysiol.1989.sp017862] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
1. Changes in different components of the cone-driven centre responses of cat retinal ganglion cells were studied before and during local application of 2-amino-4-phosphonobutyric acid (APB). Responses were elicited with bar stimuli whose luminance was above ('brighter') or below ('dimmer') the photopic background luminance. The bars were centrally located, and were similar in width to the receptive field centre. 2. APB acted differently on the on- and off-centre cells. For on-centre X and Y cells, all components of the responses to bright and dim bars were diminished by APB. For the off-centre X and Y cells. APB reduced all components except the transient increase in firing rate when the bright bar was turned off or when the dim bar was turned on. 3. These results suggest that the centre response mechanism of off-centre X and Y cells comprises APB-sensitive and APB-resistant components. The APB-sensitive component is more sustained and responds to both brightening and dimming stimuli. The APB-resistant component is more transient and responds primarily to dimming stimuli. For on-centre X and Y cells only APB-sensitive components could be demonstrated. 4. Experiments with stationary sinusoidal gratings modulated at 0.5-10 Hz showed that responses of off-centre cells were more affected by APB at low than at high temporal frequencies, confirming that the APB-sensitive pathway is responsible for more of the low temporal frequency responses. As expected from the responses to bar stimuli, APB had a uniform effect at all temporal frequencies in on-centre cells. 5. For off-centre cells, the APB-sensitive component is probably derived from input from depolarizing bipolar cells, and the APB-resistant component is derived from hyperpolarizing bipolar input, although one or both pathways could also involve amacrine cells. The combination of these pathways increases the range of temporal frequencies to which the cell can respond and also increases the range of response amplitudes. 6. The lack of differential effects on on-centre cells may have several explanations. The most likely explanations are that only depolarizing bipolars contribute significantly to the centre responses of these cells under the conditions of these experiments, or that there is an APB-sensitive synapse somewhere in the retina besides the one from cones to depolarizing bipolars.
Collapse
Affiliation(s)
- E P Chen
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208
| | | |
Collapse
|
39
|
Belgum JH, Dvorak DR, McReynolds JS, Miyachi E. Push-pull effect of surround illumination on excitatory and inhibitory inputs to mudpuppy retinal ganglion cells. J Physiol 1987; 388:233-43. [PMID: 3656191 PMCID: PMC1192546 DOI: 10.1113/jphysiol.1987.sp016612] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
1. Changes in membrane potential and conductance were measured in on-centre and off-centre ganglion cells during the responses to illumination of different portions of the receptive field. 2. In on-centre ganglion cells the sustained depolarizing response to steady illumination of the receptive field centre was associated with a net increase in conductance. In the presence of centre illumination, stimulation of the surround with an annulus of light caused a hyperpolarization and a net decrease in conductance, and the reversal potential of the light-evoked response was shifted in a negative direction. In the absence of centre illumination the same annular stimulus caused a hyperpolarization and a net increase in conductance. 3. In off-centre ganglion cells the sustained hyperpolarizing response to centre illumination was associated with a net increase in conductance. In the presence of centre illumination, stimulation of the surround with an annulus caused a depolarization and a net decrease in conductance, and the reversal potential of the light-evoked response was shifted in a positive direction. In the absence of centre illumination the same annulus caused a depolarization and a net increase in conductance. 4. The results indicate that illumination of the receptive field surround can affect both the excitatory and inhibitory sustained inputs to a given ganglion cell in a 'push-pull' manner, by decreasing the synaptic input that was increased by centre illumination and increasing the synaptic input of opposite sign. The relative effect of a given surround illumination on these two inputs, and hence the sign and magnitude of the net conductance change, varied with the amount of centre illumination.
Collapse
Affiliation(s)
- J H Belgum
- Department of Physiology, University of Michigan, Ann Arbor 48109
| | | | | | | |
Collapse
|
40
|
Nawy S, Copenhagen DR. Multiple classes of glutamate receptor on depolarizing bipolar cells in retina. Nature 1987; 325:56-8. [PMID: 3025746 DOI: 10.1038/325056a0] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Multiple subtypes of excitatory amino acid receptor have been found on individual dissociated neurones. These findings were obtained from cells without intact synaptic connections, so the functional roles for such receptor subtypes are unknown. We have recorded intracellular responses from depolarizing bipolar cells (DBC) that receive direct synaptic input from two distinct populations of neurones: rods and cones. We report here that 2-amino-4-phosphonobutyrate (APB), a glutamate analogue, reveals two subtypes of glutamate receptors on DBCs. APB acts on the same receptor that mediates synaptic transmission from rods but has no action on the second subtype of glutamate receptor. These results show that the rod and cone inputs to DBCs are mediated by pharmacologically distinct receptors and that subtypes of glutamate receptor existing on single neurones can subserve separate, functionally defined synaptic inputs.
Collapse
|
41
|
Sterling P, Cohen E, Freed MA, Smith RG. Microcircuitry of the on-beta ganglion cell in daylight, twilight, and starlight. NEUROSCIENCE RESEARCH. SUPPLEMENT : THE OFFICIAL JOURNAL OF THE JAPAN NEUROSCIENCE SOCIETY 1987; 6:S269-85. [PMID: 3317147 DOI: 10.1016/0921-8696(87)90022-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- P Sterling
- Department of Anatomy, University of Pennsylvania Medical School, Philadelphia 19104-6058
| | | | | | | |
Collapse
|
42
|
|
43
|
McReynolds JS, Miyachi E. The effect of cholinergic agonists and antagonists on ganglion cells in the mudpuppy retina. NEUROSCIENCE RESEARCH. SUPPLEMENT : THE OFFICIAL JOURNAL OF THE JAPAN NEUROSCIENCE SOCIETY 1986; 4:S153-61. [PMID: 3464854 DOI: 10.1016/0168-0102(86)90080-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
44
|
McReynolds JS, Miyachi EI. The effect of cholinergic agonists and antagonists on ganglion cells in the mudpuppy retina. ACTA ACUST UNITED AC 1986. [DOI: 10.1016/s0921-8696(86)80016-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Lukasiewicz PD, McReynolds JS. Synaptic transmission at N-methyl-D-aspartate receptors in the proximal retina of the mudpuppy. J Physiol 1985; 367:99-115. [PMID: 2865366 PMCID: PMC1193055 DOI: 10.1113/jphysiol.1985.sp015816] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The effects of excitatory amino acid analogues and antagonists on retinal ganglion cells were studied using intracellular recording in the superfused mudpuppy eyecup preparation. Aspartate, glutamate, quisqualate (QA), kainate (KA) and N-methylaspartate (NMA) caused depolarization and decreased input resistance in all classes of ganglion cells. The order of sensitivity was QA greater than or equal to KA greater than NMA greater than aspartate greater than or equal to glutamate. All of these agonists were effective when transmitter release was blocked with 4 mM-Co2+ or Mn2+, indicating that they acted at receptor sites on the ganglion cells. At a concentration of 250 microM, 2-amino-5-phosphonovalerate (APV) blocked the responses of all ganglion cells to NMA, but not to QA or KA, indicating that NMA acts at different receptor sites from QA or KA. Responses to bath-applied aspartate and glutamate were reduced slightly or not at all in the presence of APV, indicating that they were acting mainly at non-NMDA (N-methyl-D-aspartate) receptors. In all ganglion cells 250 microM-APV strongly suppressed the sustained responses driven by the 'on'-pathway but not those driven by the 'off'-pathway. In most on-off ganglion cells the transient excitatory responses at 'light on' and 'light off' were not reduced by 500 microM-APV. APV-resistant transient excitatory responses were also present in some on-centre ganglion cells. APV did not block the transient inhibitory responses in any class of ganglion cells. At concentrations which blocked the sustained responses of ganglion cells, APV did not affect the sustained responses of bipolar cells, indicating that it acted at sites which were post-synaptic to bipolar cells. The simplest interpretation of these results is that the transmitter released by depolarizing bipolar cells acts at NMDA receptors on sustained depolarizing amacrine and ganglion cells. It may act at non-NMDA receptors at synapses which produce transient excitatory responses, but this could not be proved. The transmitter released by hyperpolarizing bipolar cells does not appear to act at NMDA receptors on any post-synaptic cells.
Collapse
|
46
|
Bolz J, Frumkes T, Voigt T, Wässle H. Action and localization of gamma-aminobutyric acid in the cat retina. J Physiol 1985; 362:369-93. [PMID: 3894625 PMCID: PMC1192903 DOI: 10.1113/jphysiol.1985.sp015684] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The effects of iontophoretically applied GABA (gamma-aminobutyric acid) and bicuculline on retinal ganglion cells were studied in the optically intact eye of the anaesthetized cat. GABA suppressed both the spontaneous activity and light-evoked discharge of all retinal ganglion cells, regardless of their type and regardless of the visual stimulus used. Bicuculline antagonized the action of iontophoretically applied GABA. Bicuculline enhanced the spontaneous activity of on-centre cells, but suppressed the spontaneous activity of most off-centre cells. The light-evoked response of on-centre cells was increased by bicuculline. A more complicated picture emerged for off-centre cells. Weak light responses were suppressed by bicuculline, but during strong light responses the initial transient phase of the response was dramatically enhanced. Amacrine cells of the inner nuclear layer and displaced amacrine cells of the ganglion cell layer were labelled, using glutamic acid decarboxylase (GAD) immunohistochemistry and [3H]muscimol uptake. GAD-positive dendrites were found throughout the inner plexiform layer and no sign of dendritic stratification was detected.
Collapse
|
47
|
Dvorak D. Off-pathway synaptic transmission in the outer retina of the axolotl is mediated by a kainic acid-preferring receptor. Neurosci Lett 1984; 50:7-11. [PMID: 6093015 DOI: 10.1016/0304-3940(84)90453-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Intracellular recordings were made from OFF-centre bipolar cells and horizontal cells in the superfused axolotl retina eyecup preparation. Bath-applied (+/-)cis-2,3-piperidine dicarboxylic acid (PDA), gamma-D-glutamylglycine (DGG), L-glutamic acid diethyl ester (GDEE), (+/-)2-amino-5-phosphonovaleric acid (2-APV) and magnesium ions were assessed as antagonists of the actions of the photoreceptor transmitter. The rank order of antagonist efficacy was PDA greater than DGG greater than greater than 2-APV = GDEE = Mg2+. The results indicate that transmission at OFF-pathway synapses in the outer retina of the axolotl is mediated by a kainic acid-preferring receptor.
Collapse
|
48
|
Belgum JH, Dvorak DR, McReynolds JS. Strychnine blocks transient but not sustained inhibition in mudpuppy retinal ganglion cells. J Physiol 1984; 354:273-86. [PMID: 6481635 PMCID: PMC1193411 DOI: 10.1113/jphysiol.1984.sp015375] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Transient and sustained inhibitory synaptic inputs to on-centre, off-centre, and on-off ganglion cells in the mudpuppy retina were studied using intracellular recording in the superfused eye-cup preparation. When chemical transmission was blocked with 4 mM-Co2+, application of either glycine or gamma-aminobutyric acid (GABA) caused a hyperpolarization and conductance increase in all ganglion cells. For both amino acids, the responses were dose dependent in the range 0.05-10 mM, with a half-maximal response at about 0.7 mM. Glycine and GABA sensitivities were very similar in all three types of ganglion cells. The response to applied glycine was selectively antagonized by 10(-5) M-strychnine and the response to applied GABA was selectively antagonized by 10(-5) M-picrotoxin. In all ganglion cells, 10(-5) M-strychnine eliminated the transient inhibitory events which occur at the onset and termination of a light stimulus. The block of transient inhibition was associated with a relative depolarization of membrane potential and decrease in conductance at these times. Strychnine had no effect on membrane potential or conductance in darkness or during sustained inhibitory responses to light. Picrotoxin (10(-5) M) did not block transient inhibitory events in any ganglion cells, but did affect other components of their responses. The results suggest that in all three classes of ganglion cells transient inhibition, but not sustained inhibition, may be mediated by glycine or a closely related substance.
Collapse
|
49
|
Pourch RG, Goebel DJ, McReynolds JS. Autoradiographic studies of [3H]-glycine, [3H]-GABA, and [3H]-muscimol uptake in the mudpuppy retina. Exp Eye Res 1984; 39:69-81. [PMID: 6479250 DOI: 10.1016/0014-4835(84)90116-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Autoradiographic studies showed selective accumulation of [3H]-glycine, [3H]-GABA, and the GABA agonist [3H]-muscimol by neurons of the mudpuppy retina. [3H]-Glycine was taken up by bipolar cells, amacrine cells, and displaced amacrine or ganglion cells. Both [3H]-GABA and [3H]-muscimol were also accumulated by bipolar cells, amacrine cells and ganglion layer cells. However, the [3H]-GABA uptake pattern differed from that of [3H]-muscimol in showing labeling of horizontal cells, an increased percentage of cells in the ganglion cell layer, and a band in the most proximal portion of the inner plexiform layer. Variations in grain density suggested the presence of multiple subpopulations of [3H]-glycine- and [3H]-GABA-labeled amacrine cells. The labeled cells may play a role in inhibitory pathways in the inner retina.
Collapse
|
50
|
Stell WK, Walker SE, Chohan KS, Ball AK. The goldfish nervus terminalis: a luteinizing hormone-releasing hormone and molluscan cardioexcitatory peptide immunoreactive olfactoretinal pathway. Proc Natl Acad Sci U S A 1984; 81:940-4. [PMID: 6199789 PMCID: PMC344955 DOI: 10.1073/pnas.81.3.940] [Citation(s) in RCA: 190] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Antisera to two putative neurotransmitters, luteinizing hormone-releasing hormone (LHRH) and molluscan cardioexcitatory tetrapeptide (H-Phe-Met-Arg-Phe-NH2; FMRF-amide), bind specifically to neurites in the inner nuclear and inner plexiform layers of the goldfish retina. Retrograde labeling showed that intraocular axon terminals originate from the nervus terminalis, whose cell bodies are located in the olfactory nerves. Double immunocytochemical and retrograde labeling showed that some terminalis neurons project to the retina; others may project only within the brain. All terminalis neurons having proven retinal projections were both LHRH- and FMRF-amide-immunoreactive. The activity of retinal ganglion cells was recorded with microelectrodes in isolated superfused goldfish retinas. In ON- and OFF-center double-color-opponent cells, micromolar FMRF-amide and salmon brain gonadotropin-releasing factor ( [Trp7, Leu8] LHRH) caused increased spontaneous activity in the dark, loss of light-induced inhibition, and increased incidence of light-entrained pulsatile response. The nervus terminalis is therefore a putatively peptidergic retinopetal projection. Sex-related olfactory stimuli may act through it, thereby modulating the output of ganglion cells responsive to color contrast.
Collapse
|