1
|
Minkov IL, Dimitrova IM, Arabadzhieva D, Mileva E, Slavchov RI. The cause of accelerated desorption of sparingly soluble dodecanol monolayers: Convection or leakage? Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
2
|
Roohbakhshan F, Sauer RA. A finite membrane element formulation for surfactants. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Stetten AZ, Iasella SV, Corcoran TE, Garoff S, Przybycien TM, Tilton RD. Surfactant-induced Marangoni transport of lipids and therapeutics within the lung. Curr Opin Colloid Interface Sci 2018; 36:58-69. [PMID: 30147429 PMCID: PMC6103298 DOI: 10.1016/j.cocis.2018.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Understanding the fundamentals of surface transport on thin viscous films has important application in pulmonary drug delivery. The human lung contains a large-area interface between its complex fluid lining and inhaled air. Marangoni flows driven by surface tension gradients along this interface would promote enhanced distribution of inhaled therapeutics by carrying them from where they are deposited in the upper airways, along the fluid interface to deeper regions of the lung. Motivated by the potential to improve therapies for acute and chronic lung diseases, we review recent progress in modeling and experimental studies of Marangoni transport induced by the deposition of surfactant-containing microliter drops and liquid aerosols (picoliter drops) onto a fluid interface. The roles of key system variables are identified, including surfactant solubility, drop miscibility with the subphase, and the thickness, composition and surface properties of the subphase liquid. Of particular interest is the unanticipated but crucial role of aerosol processing to achieve Marangoni transport via phospholipid vesicle dispersions, which are likely candidates for a biocompatible delivery system. Progress in this field has the potential to not only improve outcomes in patients with chronic and acute lung diseases, but also to further our understanding of surface transport in complex systems.
Collapse
Affiliation(s)
- Amy Z. Stetten
- Carnegie Mellon Center for Complex Fluids Engineering, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Steven V. Iasella
- Carnegie Mellon Center for Complex Fluids Engineering, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | - Stephen Garoff
- Carnegie Mellon Center for Complex Fluids Engineering, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Todd M. Przybycien
- Carnegie Mellon Center for Complex Fluids Engineering, Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Carnegie Mellon Center for Complex Fluids Engineering, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Robert D. Tilton
- Carnegie Mellon Center for Complex Fluids Engineering, Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Carnegie Mellon Center for Complex Fluids Engineering, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
4
|
Sosnowski TR, Kubski P, Wojciechowski K. New experimental model of pulmonary surfactant for biophysical studies. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.06.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Stetten AZ, Moraca G, Corcoran TE, Tristram-Nagle S, Garoff S, Przybycien TM, Tilton RD. Enabling Marangoni flow at air-liquid interfaces through deposition of aerosolized lipid dispersions. J Colloid Interface Sci 2016; 484:270-278. [PMID: 27623189 DOI: 10.1016/j.jcis.2016.08.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 11/29/2022]
Abstract
It has long been known that deposited drops of surfactant solution induce Marangoni flows at air-liquid interfaces. These surfactant drops create a surface tension gradient, which causes an outward flow at the fluid interface. We show that aqueous phospholipid dispersions may be used for this same purpose. In aqueous dispersions, phospholipids aggregate into vesicles that are not surface-active; therefore, drops of these dispersions do not initiate Marangoni flow. However, aerosolization of these dispersions disrupts the vesicles, allowing access to the surface-active monomers within. These lipid monomers do have the ability to induce Marangoni flow. We hypothesize that monomers released from broken vesicles adsorb on the surfaces of individual aerosol droplets and then create localized surface tension reduction upon droplet deposition. Deposition of lipid monomers via aerosolization produces surface tensions as low as 1mN/m on water. In addition, aerosolized lipid deposition also drives Marangoni flow on entangled polymer solution subphases with low initial surface tensions (∼34mN/m). The fact that aerosolization of phospholipids naturally found within pulmonary surfactant can drive Marangoni flows on low surface tension liquids suggests that aerosolized lipids may be used to promote uniform pulmonary drug delivery without the need for exogenous spreading agents.
Collapse
Affiliation(s)
- Amy Z Stetten
- Center for Complex Fluids Engineering, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Grace Moraca
- Center for Complex Fluids Engineering, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Timothy E Corcoran
- Center for Complex Fluids Engineering, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Stephanie Tristram-Nagle
- Center for Complex Fluids Engineering, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Stephen Garoff
- Center for Complex Fluids Engineering, Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Todd M Przybycien
- Center for Complex Fluids Engineering, Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Center for Complex Fluids Engineering, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Robert D Tilton
- Center for Complex Fluids Engineering, Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA; Center for Complex Fluids Engineering, Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| |
Collapse
|
6
|
Zuo YY, Neumann AW. Pulmonary Surfactant and its in vitro Assessment Using Axisymmetric Drop Shape Analysis (ADSA): A Review. TENSIDE SURFACT DET 2013. [DOI: 10.3139/113.100255] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Recent progress in the study of pulmonary surfactant is reviewed. The first half of this paper provides general background in both physiological and clinical perspectives. The second half focuses on the in vitro assessment of pulmonary surfactant using methods based on a drop shape technique, Axisymmetric Drop Shape Analysis (ADSA). Theories, experiments, and techniques of image analysis used in these ADSA methods are briefly described. Typical applications of these methods are discussed in detail. It is concluded that the accuracy, versatility, and simplicity of these ADSA methods render them suitable to the study of pulmonary surfactant.
Collapse
|
7
|
Zuo YY, Veldhuizen RAW, Neumann AW, Petersen NO, Possmayer F. Current perspectives in pulmonary surfactant--inhibition, enhancement and evaluation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1947-77. [PMID: 18433715 DOI: 10.1016/j.bbamem.2008.03.021] [Citation(s) in RCA: 371] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 03/26/2008] [Accepted: 03/26/2008] [Indexed: 02/06/2023]
Abstract
Pulmonary surfactant (PS) is a complicated mixture of approximately 90% lipids and 10% proteins. It plays an important role in maintaining normal respiratory mechanics by reducing alveolar surface tension to near-zero values. Supplementing exogenous surfactant to newborns suffering from respiratory distress syndrome (RDS), a leading cause of perinatal mortality, has completely altered neonatal care in industrialized countries. Surfactant therapy has also been applied to the acute respiratory distress syndrome (ARDS) but with only limited success. Biophysical studies suggest that surfactant inhibition is partially responsible for this unsatisfactory performance. This paper reviews the biophysical properties of functional and dysfunctional PS. The biophysical properties of PS are further limited to surface activity, i.e., properties related to highly dynamic and very low surface tensions. Three main perspectives are reviewed. (1) How does PS permit both rapid adsorption and the ability to reach very low surface tensions? (2) How is PS inactivated by different inhibitory substances and how can this inhibition be counteracted? A recent research focus of using water-soluble polymers as additives to enhance the surface activity of clinical PS and to overcome inhibition is extensively discussed. (3) Which in vivo, in situ, and in vitro methods are available for evaluating the surface activity of PS and what are their relative merits? A better understanding of the biophysical properties of functional and dysfunctional PS is important for the further development of surfactant therapy, especially for its potential application in ARDS.
Collapse
Affiliation(s)
- Yi Y Zuo
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | |
Collapse
|
8
|
Klein R, Marmur A, Weintraub Z. Bubble clicking: Oscillations induced by the lung surfactant. Colloids Surf A Physicochem Eng Asp 2007. [DOI: 10.1016/j.colsurfa.2007.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Zuo YY, Acosta E, Policova Z, Cox PN, Hair ML, Neumann AW. Effect of humidity on the stability of lung surfactant films adsorbed at air–water interfaces. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1609-20. [PMID: 16930529 DOI: 10.1016/j.bbamem.2006.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 06/29/2006] [Accepted: 07/05/2006] [Indexed: 11/27/2022]
Abstract
The effect of humidity on the film stability of Bovine Lipid Extract Surfactant (BLES) is studied using the captive bubble method. It is found that adsorbed BLES films show distinctly different stability patterns at two extreme relative humidities (RHs), i.e., bubbles formed by ambient air and by air prehumidified to 100% RH at 37 degrees C. The differences are illustrated by the ability to maintain low surface tensions at various compression ratios, the behavior of bubble clicks, and film compressibility. These results suggest that 100% RH at 37 degrees C tends to destabilize the BLES films. In turn, the experimental results indicate that the rapidly adsorbed BLES film on a captive bubble presents a barrier to water transport that retards full humidification of the bubble when ambient air is used for bubble formation. These findings necessitate careful evaluation and maintenance of environmental humidity for all in vitro assessment of lung surfactants. It is also found that the stability of adsorbed bovine natural lung surfactant (NLS) films is not as sensitive as BLES films to high humidity. This may indicate a physiological function of SP-A and/or cholesterol, which are absent in BLES, in maintaining the extraordinary film stability in vivo.
Collapse
Affiliation(s)
- Yi Y Zuo
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, Canada M5S 3G8
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Currently, the study of surfactant proteins is much in vogue, but, in the early days, the physics underlying surfactant function was treated somewhat superficially, leaving assumptions that have become culturally embedded, such as the "bubble" model of the alveolus. This review selectively reexamines these assumptions, comparing each combination of alveolar model and role of surfactant for compatibility with the major features of pulmonary mechanics and alveolar stability, morphology, and fluid balance.
Collapse
Affiliation(s)
- B A Hills
- Paediatric Respiratory Research Centre, Mater Children's Hospital, and Department of Medicine, The University of Queensland, Brisbane, Queensland 4101, Australia
| |
Collapse
|
11
|
|
12
|
Jessen K, Mirsky R, Hills J. GABA as an autonomic neurotransmitter: studies on intrinsic GABAergic neurons in the myenteric plexus of the gut. Trends Neurosci 1987. [DOI: 10.1016/0166-2236(87)90169-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Hayward JA, Durrani AA, Shelton CJ, Lee DC, Chapman D. Biomembranes as models for polymer surfaces. III. Characterization of a phosphorylcholine surface covalently bound to glass. Biomaterials 1986; 7:126-31. [PMID: 3708064 DOI: 10.1016/0142-9612(86)90069-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A surface layer of phosphorylcholine has been chemically linked with the surface hydroxyl groups present on glass and silica by reaction with mono- and bifunctional reagents. Evidence for the structural integrity of the deposited group was provided by the equimolar association of phosphorus and choline with the reacted surfaces. Modified glass surfaces yielded contact angles which are consistent with those found previously for other models of biological membranes. Covalent modification of the treated surfaces was demonstrated by i.r. spectroscopy via the removal of surface hydroxyl groups. The modified surfaces were thermostable at temperatures up to 375 degrees C for extended periods. The relevance of these results to the generation of new biomaterials is discussed.
Collapse
|