1
|
Sanchez A, Valverde A, Sinclair M, Mosley C, Singh A, Mutsaers AJ, Hanna B, Johnson R, Gu Y, Beaudoin-Kimble M. Antihistaminic and cardiorespiratory effects of diphenhydramine hydrochloride in anesthetized dogs undergoing excision of mast cell tumors. J Am Vet Med Assoc 2017; 251:804-813. [PMID: 28967819 DOI: 10.2460/javma.251.7.804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the effects of IV diphenhydramine hydrochloride administration on cardiorespiratory variables in anesthetized dogs undergoing mast cell tumor (MCT) excision. DESIGN Randomized, blinded clinical trial. ANIMALS 16 client-owned dogs with MCTs. PROCEDURES In a standardized isoflurane anesthesia session that included mechanical ventilation, dogs received diphenhydramine hydrochloride (1 mg/kg [0.45 mg/lb], IV; n = 8) or an equivalent volume of saline (0.9% NaCl) solution (IV; control treatment; 8) 10 minutes after induction. Cardiorespiratory variables were recorded throughout anesthesia and MCT excision, and blood samples for determination of plasma diphenhydramine and histamine concentrations were collected prior to premedication (baseline), throughout anesthesia, and 2 hours after extubation. RESULTS Cardiorespiratory values in both treatment groups were acceptable for anesthetized dogs. Mean ± SD diastolic arterial blood pressure was significantly lower in the diphenhydramine versus control group during tumor dissection (52 ± 10 mm Hg vs 62 ± 9 mm Hg) and surgical closure (51 ± 10 mm Hg vs 65 ± 9 mm Hg). Mean arterial blood pressure was significantly lower in the diphenhydramine versus control group during surgical closure (65 ± 12 mm Hg vs 78 ± 11 mm Hg), despite a higher cardiac index value. Plasma histamine concentrations were nonsignificantly higher than baseline during maximal manipulation of the tumor and surgical preparation in the diphenhydramine group and during surgical dissection in the control group. CONCLUSIONS AND CLINICAL RELEVANCE IV administration of diphenhydramine prior to MCT excision had no clear clinical cardiorespiratory benefits over placebo in isoflurane-anesthetized dogs.
Collapse
|
2
|
Gemba C, Nakayama K, Nakamura S, Mochizuki A, Inoue M, Inoue T. Involvement of histaminergic inputs in the jaw-closing reflex arc. J Neurophysiol 2015; 113:3720-35. [PMID: 25904711 DOI: 10.1152/jn.00515.2014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 04/20/2015] [Indexed: 11/22/2022] Open
Abstract
Histamine receptors are densely expressed in the mesencephalic trigeminal nucleus (MesV) and trigeminal motor nucleus. However, little is known about the functional roles of neuronal histamine in controlling oral-motor activity. Thus, using the whole-cell recording technique in brainstem slice preparations from Wistar rats aged between postnatal days 7 and 13, we investigated the effects of histamine on the MesV neurons innervating the masseter muscle spindles and masseter motoneurons (MMNs) that form a reflex arc for the jaw-closing reflex. Bath application of histamine (100 μM) induced membrane depolarization in both MesV neurons and MMNs in the presence of tetrodotoxin, whereas histamine decreased and increased the input resistance in MesV neurons and MMNs, respectively. The effects of histamine on MesV neurons and MMNs were mimicked by an H1 receptor agonist, 2-pyridylethylamine (100 μM). The effects of an H2 receptor agonist, dimaprit (100 μM), on MesV neurons were inconsistent, whereas MMNs were depolarized without changes in the input resistance. An H3 receptor agonist, immethridine (100 μM), also depolarized both MesV neurons and MMNs without changing the input resistance. Histamine reduced the peak amplitude of postsynaptic currents (PSCs) in MMNs evoked by stimulation of the trigeminal motor nerve (5N), which was mimicked by 2-pyridylethylamine but not by dimaprit or immethridine. Moreover, 2-pyridylethylamine increased the failure rate of PSCs evoked by minimal stimulation and the paired-pulse ratio. These results suggest that histaminergic inputs to MesV neurons through H1 receptors are involved in the suppression of the jaw-closing reflex although histamine depolarizes MesV neurons and/or MMNs.
Collapse
Affiliation(s)
- Chikako Gemba
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan; Department of Pediatric Dentistry, Showa University School of Dentistry, Oota-ku, Tokyo, Japan
| | - Kiyomi Nakayama
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan
| | - Shiro Nakamura
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan
| | - Ayako Mochizuki
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan
| | - Mitsuko Inoue
- Department of Pediatric Dentistry, Showa University School of Dentistry, Oota-ku, Tokyo, Japan
| | - Tomio Inoue
- Department of Oral Physiology, Showa University School of Dentistry, Shinagawa-ku, Tokyo, Japan
| |
Collapse
|
3
|
Murakami M, Yoshikawa T, Nakamura T, Ohba T, Matsuzaki Y, Sawamura D, Kuwasako K, Yanagisawa T, Ono K, Nakaji S, Yanai K. Involvement of the histamine H1 receptor in the regulation of sympathetic nerve activity. Biochem Biophys Res Commun 2015; 458:584-589. [DOI: 10.1016/j.bbrc.2015.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
|
4
|
Leal-Cardoso JH, Lahlou S, Weinreich D, Caldas Magalhães PJ. The essential oil of Croton nepetaefolius selectively blocks histamine-augmented neuronal excitability in guinea-pig celiac ganglion. J Pharm Pharmacol 2010; 62:1045-53. [PMID: 20663039 DOI: 10.1111/j.2042-7158.2010.01121.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Croton nepetaefolius is a medicinal plant useful against intestinal disorders. In this study, we elucidate the effects of its essential oil (EOCN) on sympathetic neurons, with emphasis on the interaction of EOCN- and histamine-induced effects. METHODS The effects of EOCN and histamine were studied in guinea-pig celiac ganglion in vitro. KEY FINDINGS Histamine significantly altered the resting potential (E(m)) and the input resistance (R(i)) of phasic neurons (from -56.6 +/- 1.78 mV and 88.6 +/- 11.43 MOmega, to -52.9 +/- 1.96 mV and 108.6 +/- 11.00 MOmega, respectively). E(m), R(i) and the histamine-induced alterations of these parameters were not affected by 200 microg/ml EOCN. The number of action potentials produced by a 1-s (two-times threshold) depolarising current and the current threshold (I(th)) for eliciting action potentials (rheobase) were evaluated. Number of action potentials and I(th) were altered by histamine (from 2.6 +/- 0.43 action potentials and 105.4 +/- 11.15 pA to 6.2 +/- 1.16 action potentials and 67.3 +/- 8.21 pA, respectively). EOCN alone did not affect number of action potentials and I(th) but it fully blocked the histamine-induced modifications of number of action potentials and I(th). All the effects produced by histamine were abolished by pyrilamine. CONCLUSIONS EOCN selectively blocked histamine-induced modulation of active membrane properties.
Collapse
|
5
|
Chen YY, Lv J, Xue XY, He GH, Zhou Y, Jia M, Luo XX. Effects of sympathetic histamine on vasomotor responses of blood vessels in rabbit ear to electrical stimulation. Neurosci Bull 2010; 26:219-24. [PMID: 20502501 DOI: 10.1007/s12264-010-1126-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE To investigate the effects of histamine receptor antagonists on vasoconstriction induced by electrical stimulation (ES) on posterior auricular nerve, and to explore the pre- and post-synaptic effects of sympathetic histamine on the vasomotor responses of vascular smooth muscle in rabbit ear. METHODS ES was applied to posterior auricular nerves of the whole rabbit ear at 10 Hz, 20 Hz and 40 Hz, respectively. Besides, the whole ear was perfused with different histamine receptor antagonists under constant perfusion pressure, and the changes in the flow rate of perfusate were observed. RESULTS The flow rate of venous outflow was decreased by ES at all the 3 frequencies. The ES-induced vasoconstriction at 20 Hz and 40 Hz could be partly inhibited by H(1) receptor antagonist chlorpheniramine (P < 0.05). After exhaustion of histamine in mast cells by pretreatment with specific mast cell degranulator compound 48/80, chlorpheniramine could still inhibit the ES-induced flow rate reduction. In contrast, H(2) receptor antagonist cimetidine could enhance the 40-Hz ES-induced flow rate reduction (P < 0.05). Moreover, ES-induced vasoconstriction at the 3 frequencies could all be enhanced by H(3) receptor antagonist thioperamide (P < 0.05). CONCLUSION Stimulation on the auricular nerve may evoke histamine release from sympathetic nerves rather than from mast cells. Moreover, the functions of sympathetic histamine vary from pre-synaptic modulation to post-synaptic vasoconstriction or vasodilatation, via activation of different histamine receptors.
Collapse
Affiliation(s)
- Ying-Ying Chen
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Histamine is a transmitter in the nervous system and a signaling molecule in the gut, the skin, and the immune system. Histaminergic neurons in mammalian brain are located exclusively in the tuberomamillary nucleus of the posterior hypothalamus and send their axons all over the central nervous system. Active solely during waking, they maintain wakefulness and attention. Three of the four known histamine receptors and binding to glutamate NMDA receptors serve multiple functions in the brain, particularly control of excitability and plasticity. H1 and H2 receptor-mediated actions are mostly excitatory; H3 receptors act as inhibitory auto- and heteroreceptors. Mutual interactions with other transmitter systems form a network that links basic homeostatic and higher brain functions, including sleep-wake regulation, circadian and feeding rhythms, immunity, learning, and memory in health and disease.
Collapse
Affiliation(s)
- Helmut L Haas
- Institute of Neurophysiology, Heinrich-Heine-University, Duesseldorf, Germany.
| | | | | |
Collapse
|
7
|
Liu B, Liang H, Liu L, Zhang H. Phosphatidylinositol 4,5-bisphosphate hydrolysis mediates histamine-induced KCNQ/M current inhibition. Am J Physiol Cell Physiol 2008; 295:C81-91. [PMID: 18448631 DOI: 10.1152/ajpcell.00028.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The M-type potassium channel, of which its molecular basis is constituted by KCNQ2-5 homo- or heteromultimers, plays a key role in regulating neuronal excitability and is modulated by many G protein-coupled receptors. In this study, we demonstrate that histamine inhibits KCNQ2/Q3 currents in human embryonic kidney (HEK)293 cells via phosphatidylinositol 4,5-bisphosphate (PIP(2)) hydrolysis mediated by stimulation of H(1) receptor and phospholipase C (PLC). Histamine inhibited KCNQ2/Q3 currents in HEK293 cells coexpressing H(1) receptor, and this effect was totally abolished by H(1) receptor antagonist mepyramine but not altered by H(2) receptor antagonist cimetidine. The inhibition of KCNQ currents was significantly attenuated by a PLC inhibitor U-73122 but not affected by depletion of internal Ca(2+) stores or intracellular Ca(2+) concentration ([Ca(2+)](i)) buffering via pipette dialyzing BAPTA. Moreover, histamine also concentration dependently inhibited M current in rat superior cervical ganglion (SCG) neurons by a similar mechanism. The inhibitory effect of histamine on KCNQ2/Q3 currents was entirely reversible but became irreversible when the resynthesis of PIP(2) was impaired with phosphatidylinsitol-4-kinase inhibitors. Histamine was capable of producing a reversible translocation of the PIP(2) fluorescence probe PLC(delta1)-PH-GFP from membrane to cytosol in HEK293 cells by activation of H(1) receptor and PLC. We concluded that the inhibition of KCNQ/M currents by histamine in HEK293 cells and SCG neurons is due to the consumption of membrane PIP(2) by PLC.
Collapse
Affiliation(s)
- Boyi Liu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei Province, China
| | | | | | | |
Collapse
|
8
|
Searl TJ, Silinsky EM. Mechanisms of neuromodulation as dissected using Sr2+ at motor nerve endings. J Neurophysiol 2008; 99:2779-88. [PMID: 18385484 DOI: 10.1152/jn.90258.2008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The use of binomial analysis as a tool for determining the sites of action of neuromodulators may be complicated by the nonuniformity of release probability. One of the potential sources for nonuniformity of release probability is the presence of multiple forms of synaptotagmins, the Ca2+ sensors responsible for triggering vesicular exocytosis. In this study we have used Sr2+, an ion whose actions may be restricted to a subpopulation of synaptotagmins, in an attempt to obtain meaningful estimates of the binomial parameters p (the probability of evoked acetylcholine [Ach] release) and n (the immediate available store of ACh quanta, whereby m = np). In contrast to results in Ca2+ solutions, binomial analysis of Sr2+-dependent release reveals a dramatically reduced dependence of n on extracellular Sr2+ concentrations. In Sr2+ solutions, blockade of potassium channels with 3,4-diaminopyridine increased m by an exclusive increase in p, whereas treatment with phorbol ester increased m solely by effects on n. The cyclic adenosine monophosphate (cAMP) analogue CPT-cAMP increased m by increasing both n and p. The effect of CPT-cAMP on p but not on n was blocked by protein kinase A (PKA) inhibitors, whereas the effect on n was mimicked by 8-CPT-2'-O-Me-cAMP, a selective agonist for exchange protein directly activated by cAMP, otherwise known as the cAMP-sensitive guanine nucleotide-exchange protein. The results demonstrate both the utility of the binomial distribution in Sr2+ solutions and the dual effects of cyclic AMP on both PKA-dependent and PKA-independent processes at the amphibian neuromuscular junction.
Collapse
Affiliation(s)
- Timothy J Searl
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, IL 60611, USA.
| | | |
Collapse
|
9
|
Fuder H, Muscholl E. Heteroreceptor-mediated modulation of noradrenaline and acetylcholine release from peripheral nerves. Rev Physiol Biochem Pharmacol 2006; 126:265-412. [PMID: 7886380 DOI: 10.1007/bfb0049778] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- H Fuder
- IKP-AKP, Professo Lücker GmbH, Grünstadt, Germany
| | | |
Collapse
|
10
|
Whyment AD, Blanks AM, Lee K, Renaud LP, Spanswick D. Histamine Excites Neonatal Rat Sympathetic Preganglionic Neurons In Vitro Via Activation of H1 Receptors. J Neurophysiol 2006; 95:2492-500. [PMID: 16354729 DOI: 10.1152/jn.01135.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of histamine in regulating excitability of sympathetic preganglionic neurons (SPNs) and the expression of histamine receptor mRNA in SPNs was investigated using whole-cell patch-clamp electrophysiological recording techniques combined with single-cell reverse transcriptase polymerase chain reaction (RT-PCR) in transverse neonatal rat spinal cord slices. Bath application of histamine (100 μM) or the H1 receptor agonist histamine trifluoromethyl toluidide dimaleate (HTMT; 10 μM) induced membrane depolarization associated with a decrease in membrane conductance in the majority (70%) of SPNs tested, via activation of postsynaptic H1 receptors negatively coupled to one or more unidentified K+ conductances. Histamine and HTMT application also induced or increased the amplitude and/or frequency of membrane potential oscillations in electrotonically coupled SPNs. The H2 receptor agonist dimaprit (10 μM) or the H3 receptor agonist imetit (100 nM) were without significant effect on the membrane properties of SPNs. Histamine responses were sensitive to the H1 receptor antagonist triprolidine (10 μM) and the nonselective potassium channel blocker barium (1 mM) but were unaffected by the H2 receptor antagonist tiotidine (10 μM) and the H3 receptor antagonist, clobenpropit (5 μM). Single cell RT-PCR revealed mRNA expression for H1 receptors in 75% of SPNs tested, with no expression of mRNA for H2, H3, or H4 receptors. These data represent the first demonstration of H1 receptor expression in SPNs and suggest that histamine acts to regulate excitability of these neurons via a direct postsynaptic effect on H1 receptors.
Collapse
MESH Headings
- Action Potentials/drug effects
- Action Potentials/physiology
- Animals
- Animals, Newborn
- Autonomic Fibers, Preganglionic/chemistry
- Autonomic Fibers, Preganglionic/drug effects
- Autonomic Fibers, Preganglionic/physiology
- Barium/pharmacology
- Dimaprit/pharmacology
- Female
- Ganglia, Sympathetic/chemistry
- Ganglia, Sympathetic/drug effects
- Ganglia, Sympathetic/physiology
- Histamine/analogs & derivatives
- Histamine/pharmacology
- Histamine/physiology
- Histamine Agonists/pharmacology
- Histamine H1 Antagonists/pharmacology
- Imidazoles/pharmacology
- In Vitro Techniques
- Male
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Neurons/chemistry
- Neurons/drug effects
- Neurons/physiology
- Patch-Clamp Techniques
- Potassium/physiology
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Rats
- Rats, Inbred WKY
- Receptors, Histamine H1/genetics
- Receptors, Histamine H1/physiology
- Receptors, Histamine H2/physiology
- Receptors, Histamine H3/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Thiourea/analogs & derivatives
- Thiourea/pharmacology
- Triprolidine/pharmacology
Collapse
Affiliation(s)
- Andrew D Whyment
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Searl TJ, Silinsky EM. Phorbol esters and adenosine affect the readily releasable neurotransmitter pool by different mechanisms at amphibian motor nerve endings. J Physiol 2003; 553:445-56. [PMID: 12972626 PMCID: PMC2343571 DOI: 10.1113/jphysiol.2003.051300] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Phorbol esters and adenosine have been proposed to interact at common sites downstream of calcium entry at amphibian motor nerve endings. We thus studied the actions and interactions of phorbol esters and adenosine using electrophysiological recording techniques in conjunction with both binomial statistical analysis and high-frequency stimulation at the amphibian neuromuscular junction. To begin this study, we confirmed previous observations that synchronous evoked acetylcholine (ACh) release (reflected as endplate potentials, EPPs) is well described by a simple binomial distribution. We then used binomial analysis to study the effects of the phorbol ester phorbol dibutyrate (PDBu, 100 nM) and adenosine (50 microM) on the binomial parameters n (the number of calcium charged ACh quanta available for release) and p (the average probability of release), where the mean level of evoked ACh release (m) = np. We found that PDBu increased m by increasing the parameter n whilst adenosine reduced m by reducing n; neither agent affected the parameter p. PDBu had no effect on either the potency or efficacy of the inhibition produced by adenosine. Subtle differences between these two agents were revealed by the patterns of EPPs evoked by high-frequency trains of stimuli. Phorbol esters increased ACh release during the early phase of stimulation but not during the subsequent plateau phase. The inhibitory effect of adenosine was maximal at the beginning of the train and was still present with reduced efficacy during the plateau phase. When taken together with previous findings, these present results suggest that phorbol esters increase the immediately available store of synaptic vesicles by increasing the number of primed vesicles whilst adenosine acts at a later stage of the secretory process to decrease the number of calcium-charged primed vesicles.
Collapse
Affiliation(s)
- T J Searl
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | |
Collapse
|
12
|
Guo J, Schofield GG. Activation of a PTX-insensitive G protein is involved in histamine-induced recombinant M-channel modulation. J Physiol 2002; 545:767-81. [PMID: 12482885 PMCID: PMC2290715 DOI: 10.1113/jphysiol.2002.026583] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The M-type potassium current (I(M)) plays a dominant role in regulating membrane excitability and is modulated by many neurotransmitters. However, except in the case of bradykinin, the signal transduction pathways involved in M-channel modulation have not been fully elucidated. The channels underlying I(M) are produced by the coassembly of KCNQ2 and KCNQ3 channel subunits and can be expressed in heterologous systems where they can be modulated by several neurotransmitter receptors including histamine H(1) receptors. In HEK293T cells, histamine acting via transiently expressed H(1)R produced a strong inhibition of recombinant M-channels but had no overt effects on the voltage dependence or voltage range of I(M) activation. In addition, the modulation of I(M) by histamine was not voltage sensitive, whereas channel gating, particularly deactivation, was accelerated by histamine. Non-hydrolysable guanine nucleotide analogues (GDP-beta-S and GTP-gamma-S) and pertussis toxin (PTX) treatment demonstrated the involvement of a PTX-insensitive G protein in the signal transduction pathway mediating histamine-induced I(M) modulation. Abrogation of the histamine-induced modulation of I(M) by expression of a C-terminal construct of phospholipase C (PLC-beta1-ct), which buffers activated Galpha(q/11) subunits, implicates this G protein alpha subunit in the modulatory pathway. On the other hand, abrogation of the histamine-induced modulation of I(M) by expression of two constructs which buffer free betagamma subunits, transducin (Galphat) and a C-terminal construct of a G protein receptor kinase (MAS-GRK2-ct), implicates betagamma dimers in the modulatory pathway. These findings demonstrate that histamine modulates recombinant M-channels in HEK293T cells via a PTX-insensitive G protein, probably Galpha(q/11), in a similar manner to a number of other G protein-coupled receptors. However, histamine-induced I(M) modulation in HEK293T cells is novel in that betagamma subunits in addition to Galpha(q/11) subunits appear to be involved in the modulation of KCNQ2/3 channel currents.
Collapse
Affiliation(s)
- Juan Guo
- Department of Physiology, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | |
Collapse
|
13
|
Searl TJ, Silinsky EM. Evidence for two distinct processes in the final stages of neurotransmitter release as detected by binomial analysis in calcium and strontium solutions. J Physiol 2002; 539:693-705. [PMID: 11897841 PMCID: PMC2290196 DOI: 10.1113/jphysiol.2001.013129] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The statistical parameters underlying acetylcholine (ACh) release were studied using Ca(2+) and Sr(2+) ions to promote ACh secretion. Experiments were performed at frog neuromuscular junctions using electrophysiological recording techniques. Increases in asynchronous ACh release, reflected as the frequency of occurrence of miniature end-plate potentials (MEPP(f)), were evoked by high potassium depolarization in either Ca(2+) or Sr(2+) solutions. Increases in MEPP(f) mediated by Ca(2+) were of very low probability and well-described by a Poisson distribution whilst similar MEPP(f) increases mediated by Sr(2+) were best described as a simple binomial distribution. From the binomial distribution in Sr(2+) solutions, values for the average probability of release (p) and the number of releasable ACh quanta (n) may be determined (whereby mean MEPP(f) = np). In Sr(2+) solutions, values of p were independent of both bin width and of the value of n, suggesting that both n and p were stationary. Calculations of p using the simple binomial distribution in Sr(2+) solutions gave theoretical values for the third moment of the mean which were indistinguishable from the experimental distribution. These results, in conjunction with Monte Carlo simulations of the data, suggest that spatial and temporal variance do not measurably affect the analysis. Synchronous ACh release evoked by nerve impulses (end-plate potentials, EPPs) follow a simple binomial distribution in both Ca(2+) and Sr(2+) solutions. Similar mean levels of synchronous ACh release (m, where m = np) were produced by lower values of p and higher values of n in Ca(2+) as compared to Sr(2+). The statistical analyses suggest the presence of two different Ca(2+)-dependent steps in the final stages of neurotransmitter release. The results are discussed in accordance with (i) statistical models for quantal neurotransmitter release, (ii) the role of Sr(2+) as a partial agonist for evoked ACh release, and (iii) the specific loci that may represent the sites of Ca(2+) and Sr(2+) sensitivity.
Collapse
Affiliation(s)
- T J Searl
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | | |
Collapse
|
14
|
Hemming JM, Guarraci FA, Firth TA, Jennings LJ, Nelson MT, Mawe GM. Actions of histamine on muscle and ganglia of the guinea pig gallbladder. Am J Physiol Gastrointest Liver Physiol 2000; 279:G622-30. [PMID: 10960363 DOI: 10.1152/ajpgi.2000.279.3.g622] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Histamine is an inflammatory mediator present in mast cells, which are abundant in the wall of the gallbladder. We examined the electrical properties of gallbladder smooth muscle and nerve associated with histamine-induced changes in gallbladder tone. Recordings were made from gallbladder smooth muscle and neurons, and responses to histamine and receptor subtype-specific compounds were tested. Histamine application to intact smooth muscle produced a concentration-dependent membrane depolarization and increased excitability. In the presence of the H(2) antagonist ranitidine, the response to histamine was potentiated. Activation of H(2) receptors caused membrane hyperpolarization and elimination of spontaneous action potentials. The H(2) response was attenuated by the ATP-sensitive K(+) (K(ATP)) channel blocker glibenclamide in intact and isolated smooth muscle. Histamine had no effect on the resting membrane potential or excitability of gallbladder neurons. Furthermore, neither histamine nor the H(3) agonist R-alpha-methylhistamine altered the amplitude of the fast excitatory postsynaptic potential in gallbladder ganglia. The mast cell degranulator compound 48/80 caused a smooth muscle depolarization that was inhibited by the H(1) antagonist mepyramine, indicating that histamine released from mast cells can activate gallbladder smooth muscle. In conclusion, histamine released from mast cells can act on gallbladder smooth muscle, but not in ganglia. The depolarization and associated contraction of gallbladder smooth muscle represent the net effect of activation of both H(1) (excitatory) and H(2) (inhibitory) receptors, with the H(2) receptor-mediated response involving the activation of K(ATP) channels.
Collapse
Affiliation(s)
- J M Hemming
- Department of Anatomy and Neurobiology, College of Medicine, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | | | |
Collapse
|
15
|
Albuquerque AA, Leal-Cardoso JH, Weinreich D. Role of mast cell- and non-mast cell-derived inflammatory mediators in immunologic induction of synaptic plasticity. Braz J Med Biol Res 1997; 30:909-12. [PMID: 9361717 DOI: 10.1590/s0100-879x1997000700014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have previously discovered a long-lasting enhancement of synaptic transmission in mammal autonomic ganglia caused by immunological activation of ganglionic mast cells. Subsequent to mast cell activation, lipid and peptide mediators are released which may modulate synaptic function. In this study we determined whether some mast cell-derived mediators, prostaglandin D2 (PGD2; 1.0 microM), platelet aggregating factor (PAF; 0.3 microM) and U44619 (a thromboxane analogue; 1.0 microM), and also endothelin-1 (ET-1; 0.5 microM) induce synaptic potentiation in the guinea pig superior cervical ganglion (SCG), and compared their effects on synaptic transmission with those induced by a sensitizing antigen, ovalbumin (OVA; 10 micrograms/ml). The experiments were carried out on SCGs isolated from adult male guinea pigs (200-250 g) actively sensitized to OVA, maintained in oxygenated Locke solution at 37 degrees C. Synaptic potentiation was measured through alterations of the integral of the post-ganglionic compound action potential (CAP). All agents tested caused long-term (LTP; duration > or = 30 min) or short-term (STP; < 30 min) potentiation of synaptic efficacy, as measured by the increase in the integral of the post-ganglionic CAP. The magnitude of mediator-induced potentiation was never the same as the antigen-induced long-term potentiation (A-LTP). The agent that best mimicked the antigen was PGD2, which induced a 75% increase in CAP integral for LTP (antigen: 94%) and a 34% increase for STP (antigen: 91%). PAF-, U44619-, and ET-1-induced increases in CAP integral ranged for LTP from 34 to 47%, and for STP from 0 to 26%. These results suggest that the agents investigated may participate in the induction of A-LTP.
Collapse
Affiliation(s)
- A A Albuquerque
- Departamento de Fisiologia e Farmacologia, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | | | | |
Collapse
|
16
|
Cavalcante de Albuquerque AA, Leal-Cardoso JH, Weinreich D. Antigen-induced synaptic plasticity in sympathetic ganglia from actively and passively sensitized guinea-pigs. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1996; 61:139-44. [PMID: 8946332 DOI: 10.1016/s0165-1838(96)00075-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Alterations in synaptic efficacy induced by antigen challenge to isolated superior cervical ganglia (SCG) were monitored by measuring the magnitude of the postganglionic compound action potential (CAP) elicited by electrical stimulation of the cervical sympathetic nerve trunk. Antigen-induced changes in the CAP were measured in SCG removed from actively and from passively sensitized guinea-pigs. Additionally, some SCG were sensitized in vitro by incubating naive ganglia 24 h in serum obtained from actively sensitized animals. Histamine released from SCG upon specific antigenic challenge was measured to assess the effectiveness of the two forms of sensitization. Challenging SCG isolated from passively or actively sensitized animals with the sensitizing antigen, ovalbumin (OVA), produced a sustained potentiation of the CAP lasting longer than 30 min (antigen-induced long-term potentiation, A-LTP) and a net increase in histamine release. Neither the magnitude nor duration of A-LTP induced by passive sensitization differed significantly (p < 0.05) from results after active sensitization. The existence of A-LTP in SCG following passive sensitization indicates that the afferent limb of the immune system is not required for the development of this phenomenon and that the immune cells and the mediators responsible for A-LTP are resident to sympathetic ganglia.
Collapse
Affiliation(s)
- A A Cavalcante de Albuquerque
- Department of Pharmacology and Experimental Therapeutics, School of Medicine, University of Maryland at Baltimore 21201, USA
| | | | | |
Collapse
|
17
|
Cooke HJ, Wang YZ. H3 receptors: modulation of histamine-stimulated neural pathways influencing electrogenic ion transport in the guinea pig colon. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1994; 50:201-7. [PMID: 7884159 DOI: 10.1016/0165-1838(94)90010-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The role of H3 receptors in neurally-evoked recurrent increases in chloride ion secretion evaluated from changes in short-circuit current (Isc) was examined during application of histamine or histamine analogs. Muscle-stripped or whole thickness segments of distal colon were set up in flux chambers. Histamine and dimaprit, an H2 receptor agonist, caused recurrent increases in Isc. Dimaprit-evoked recurrent responses were reduced by the H3 receptor agonists, N alpha-methylhistamine and R alpha-methylhistamine, and the inhibition was reversed by the H3 receptor antagonist, burimamide. Histamine-evoked recurrent increases in Isc were enhanced by the H3 receptor antagonists burimamide and thioperamide. The results indicate that H3 receptors play an inhibitory role in histamine-evoked, neurally-mediated recurrent increases in Isc in guinea pig colon.
Collapse
Affiliation(s)
- H J Cooke
- Department of Physiology, Ohio State University, Columbus 43210
| | | |
Collapse
|
18
|
Fuder H, Ries P, Schwarz P. Histamine and serotonin released from the rat perfused heart by compound 48/80 or by allergen challenge influence noradrenaline or acetylcholine exocytotic release. Fundam Clin Pharmacol 1994; 8:477-90. [PMID: 7536702 DOI: 10.1111/j.1472-8206.1994.tb00829.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Terminal nerve fibres of the autonomic nervous system closely approach mast cells in peripheral organs, and mutual influences between release of neurotransmitters or mast cell mediators may cause neuro-immunological interactions. We have studied the influence of mast cell degranulation on the release of endogenous noradrenaline and newly incorporated acetylcholine (such as 14C-choline/acetylcholine overflow) evoked by stimulation of extrinsic postganglionic sympathetic or preganglionic vagal nerves in the rat Langendorff heart perfused with Tyrode solution. Compound 48/80 perfused in normal hearts, or ovalbumin infused into hearts from rats sensitized to ovalbumin, enhanced the overflow of endogenous histamine and serotonin. Both stimuli increased the release of mediators to a similar extent and with fast kinetics. Maximum average concentrations in the perfusate of histamine were about 800 nmol/l, and of serotonin 40 nmol/l, in a sample collected within 4 min after mast cell degranulation. Stimulation of autonomic nerves did not affect basal histamine or serotonin overflow. Whereas basal overflows were unaffected, the stimulation-evoked releases of both noradrenaline and acetylcholine, were facilitated when compound 48/80 was perfused before and during nerve stimulation. The facilitation of noradrenaline overflow was more pronounced (by 60%) when compound 48/80-induced mediator overflow started 4 min before nerve stimulation as compared to 30 s (15%), and was reduced by cocaine (by 50%), and, in the presence of cocaine, abolished by cimetidine (but was unaffected by mepyramine and thioperamide) and NG-nitro-(L)-(-)-arginine. In the presence of cimetidine and cocaine, when the facilitatory components were abolished, the evoked noradrenaline overflow observed 30 s after the start of infusion of compound 48/80 was inhibited, and the inhibition was partly reduced by methiotepin and ketanserin. Ovalbumin infusion in hearts from sensitized animals caused an inhibition of evoked noradrenaline overflow sensitive to methiotepin and also partly to ketanserin, and no facilitation was observed. The facilitation (> 100%) of evoked overflow of acetylcholine observed at 4 min after the start of perfusion with compound 48/80 was partly reduced by thioperamide (but not mepyramine or cimetidine) and to a comparable extent either by tropisetron (3 mumol/l) alone or by tropisetron plus methiotepin. In conclusion, degranulation of immunological cells is followed by histamine and serotonin release in the rat heart and may affect the release of autonomic neurotransmitters in rather unusual ways, by i) an uptake1-dependent and ii) an H2-mediated facilitation which probably involves nitric oxide as a permissive mediator, and iii) a serotonergic inhibition, of noradrenaline release, and iv) an H3- and serotonergic facilitation of acetylcholine release.
Collapse
Affiliation(s)
- H Fuder
- Pharmakologisches Institut der Universität, Mainz, Germany
| | | | | |
Collapse
|
19
|
Abstract
Experiments were undertaken to determine the effect of the selective histamine H3 receptor agonist (R)-alpha-methylhistamine on the amplitude of neurally evoked electrodermal (sudomotor) responses in anesthetized cats. (R)-alpha-Methylhistamine produced comparable dose-related depressions of these evoked sympathetic-cholinergic electrodermal responses elicited by either pre- or postganglionic nerve stimulation. Responses evoked by i.a. methacholine were not depressed by pretreatment with (R)-alpha-methylhistamine. (R)-alpha-Methylhistamine inhibition of preganglionic evoked responses was antagonized by pretreatment with the histamine H3 receptor antagonist thioperamide, but not by pretreatment with selective blockers of histamine H1 or histamine H2 receptors (chlorpheniramine or cimetidine). Pretreatment with thioperamide did not antagonize presynaptic inhibition produced by i.v. (-)-epinephrine, nor did rauwolscine block the inhibition produced by (R)-alpha-methylhistamine. These results suggest that (R)-alpha-methylhistamine stimulates presynaptic histamine H3 receptors located on sudomotor postganglionic nerve endings to depress neurally evoked release of acetylcholine. (R)-alpha-Methylhistamine does not appear to act at an autonomic ganglionic site in this system.
Collapse
Affiliation(s)
- M C Koss
- Department of Pharmacology, University of Oklahoma Health Sciences Center, Oklahoma City 73190
| |
Collapse
|
20
|
McLeod RL, Gertner SB, Hey JA. Production by R-alpha-methylhistamine of a histamine H3 receptor-mediated decrease in basal vascular resistance in guinea-pigs. Br J Pharmacol 1993; 110:553-8. [PMID: 7902173 PMCID: PMC2175947 DOI: 10.1111/j.1476-5381.1993.tb13846.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. The effect of the selective histamine H3 receptor agonist, R-alpha-methylhistamine given intravenously (10-100 micrograms kg-1) was examined on baseline total peripheral resistance (TPR), and cardiovascular haemodynamics in bilaterally vagotomized, anaesthetized guinea-pigs. 2. R-alpha-methylhistamine produced a dose-dependent hypotension and fall in TPR at 30 and 100 micrograms kg-1. A decrease in heart rate (HR) was observed at a dose of 100 micrograms kg-1. R-alpha-methylhistamine (10-100 micrograms kg-1) also produced a dose-dependent fall in rate pressure product (RPP). There was no effect on cardiac output (CO) or stroke volume (SV) at these doses. 3. Histamine H1 and H2 blockade in animals pretreated with a combination of chlorpheniramine (0.3 mg kg-1) and cimetidine (3.0 mg kg-1) did not alter the haemodynamic actions of R-alpha-methyl-histamine (100 micrograms kg-1, i.v.). Pretreatment with the selective H3 antagonist, thioperamide (1 mg kg-1), completely blocked the action of R-alpha-methylhistamine on haemodynamic parameters. 4. To study the mechanism of action of R-alpha-methylhistamine, the vasodilator hydralazine (1 mg kg-1, i.v.) was used. Hydralazine lowered BP, TRP and RPP in guinea-pigs pretreated with ipratropium (50 micrograms kg-1, i.v.). Hydralazine had no effect on HR, SV or CO. 5. R-alpha-methylhistamine (100 micrograms kg-1) did not affect the vasopressor action and increases in TPR produced by adrenaline (1 and 3 micrograms kg-1). On the other hand, the vasodilator hydralazine (1 mg kg-1, i.v.) inhibited the effects of adrenaline (3 micrograms kg-1) on TPR and RPP. The effect of both doses of adrenaline on BP were attenuated by hydralazine. Therefore, the inhibitory effects of R-alpha-methylhistamine are not mediated through a direct action on vascular smooth muscle.6. In adrenalectomized guinea-pigs, R-alpha-methylhistamine (100 microg kg-1) produced a drop in BP and HR.There was no difference between the effects of R-alpha-methylhistamine on blood pressure and heart rate in adrenalectomized and non-adrenalectomized guinea-pigs.7. These results show that activation of peripheral H3 receptors lowers basal BP, HR and TPR, most likely by a peripheral prejunctional mechanism. The fall in BP and TPR is probably due to a decrease in noradrenaline release from sympathetic effector nerves innervating the resistance blood vessels.
Collapse
Affiliation(s)
- R L McLeod
- Department of Pharmacology and Toxicology, New Jersey Medical School-UMDNJ, Newark
| | | | | |
Collapse
|
21
|
Koss MC, Hey JA. Prejunctional inhibition of sympathetically evoked pupillary dilation in cats by activation of histamine H3 receptors. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1993; 348:141-5. [PMID: 8232592 DOI: 10.1007/bf00164790] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Frequency-dependent pupillary dilations were evoked by electrical stimulation of the pre- or post-ganglionic cervical sympathetic nerve (sympatho-excitation) or the hypothalamus (parasympatho-inhibition) in sympathectomized anesthetized cats. Systemic administration of the selective histamine H3 receptor agonist (R)-alpha-methylhistamine (R alpha MeHA) produced a dose-dependent depression of mydriasis due to direct neural sympathetic activation but had no effect on responses elicited by parasympathetic withdrawal. The histamine H2 receptor agonist, dimaprit, was inactive. R alpha MeHA was much more effective in depressing sympathetic responses obtained at lower frequencies when compared to higher frequencies of stimulation. Responses evoked both pre- and postganglionically were inhibited by R alpha MeHA. This peripheral sympatho-inhibitory action of R alpha MeHA was antagonized by the histamine H3 receptor blocker thioperamide but not by intravenous pretreatment with the histamine H1 receptor antagonist chlorpheniramine. Histamine H2 receptor blockers cimetidine and ranitidine were also without effect. R alpha MeHA did not depress pupillary responses elicited by i.v. (-)-adrenaline. The results demonstrate that histamine H3 receptors modulate sympathetic activation of the iris at a site proximal to the iris dilator muscle. The predominant mechanism of action appears to the prejunctional inhibition of noradrenaline release from postganglionic sympathetic nerve endings. However, a concomitant ganglionic inhibitory action cannot be excluded.
Collapse
Affiliation(s)
- M C Koss
- Department of Pharmacology, University of Oklahoma College of Medicine, Oklahoma City 73190
| | | |
Collapse
|